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Abstract

For an integer 𝑏 ≥ 0, a 𝑏-matching in a graph𝐺 = (𝑉 , 𝐸) is a set 𝑆 ⊆ 𝐸 such that each vertex 𝑣 ∈ 𝑉
is incident to at most 𝑏 edges in 𝑆 . We design a fully polynomial-time approximation scheme (FPTAS)
for counting the number of 𝑏-matchings in graphs with bounded degrees. Our FPTAS also applies to a
broader family of counting problems, namely Holant problems with log-concave signatures.

Our algorithm is based on Moitra’s linear programming approach (JACM’19). Using a novel con-
struction called the extended coupling tree, we derandomize the coupling designed by Chen and Gu
(SODA’24).

1 Introduction

Holant problems, namely the read-twice counting CSPs, are an expressive framework for counting prob-
lems. An instance of (Boolean domain) Holant problem is a tuple Φ = (𝐺 = (𝑉 , 𝐸), {𝑓𝑣}𝑣∈𝑉 ) where each
𝑓𝑣 : {0, 1}𝐸𝑣 → ℂ is a constraint function (usually called a signature) with domain 𝐸𝑣 , the set of edges
incident to 𝑣 . The problem is to compute the Holant, or the partition function defined as

Holant(Φ) =
∑︁

𝜎∈{0,1}𝐸

∏
𝑣∈𝑉

𝑓𝑣 (𝜎 (𝐸 (𝑣))) ,

where 𝜎 (𝐸𝑣) is the restriction of 𝜎 on 𝐸𝑣 . The framework encodes a broad family of counting problems
including counting matchings (𝑓𝑣 (𝜏) = 𝟙 [|𝜏 | ≤ 1])1, perfect matchings (𝑓𝑣 (𝜏) = 𝟙 [|𝜏 | = 1]), counting edge
covers (𝑓𝑣 (𝜏) = 𝟙 [|𝜏 | ≥ 1]) etc.

Despite the success in classifying the exact counting complexity of Holant problems (e.g., [CGW16a,
CGW16b, SC20, Bac21, CF23]), understanding their approximability remains a long-term yet incomplete
task (e.g., [LWZ14, HLZ16, CLLY20, GLLZ21, CLV22, HQZ23, CG24]). Even for symmetric constraint func-
tions with Boolean domains, namely those 𝑓𝑣 (𝜏) whose value only depends on the Hamming weights of 𝜏 ,
the complete picture is far from clear.

One notable benchmark problem for algorithmic techniques is the problem of counting 𝑏-matchings,
which asks for the number of {0, 1}-assignments to edges such each vertex is adjacent to at most 𝑏 edges
with value 1. It can be phrased in the Holant framework where each 𝑓𝑣 (𝜏) = 𝟙 [|𝜏 | ≤ 𝑏]. Clearly, when
𝑏 = 1, it is the counting matching problem, which has been a central problem in approximate counting.

1For an assignment 𝜎 ∈ {0, 1}𝑆 , we use |𝜎 | to denote its Hamming weight, namely
∑
𝑖∈𝑆 𝜎 (𝑖).
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However, when 𝑏 becomes larger, many good properties of matchings break down, posing new challenges
in algorithm design. The problem was perhaps first studied in the work of [HLZ16], in which the rapid
mixing of a particular Markov chain was established for 𝑏 ≤ 7 using the method of canonical paths, and
the chain can be used to uniformly sample from 𝑏-matchings. Recently, using a simple and neat coupling
argument, among many other things, the spectral independence property for the uniform distribution of
𝑏-matching was established in [CG24], which implies the rapid mixing of Glauber dynamics for sampling
𝑏-matchings. As a result, one obtains a fully polynomial-time randomized approximation scheme (FPRAS)
for counting 𝑏-matchings for any 𝑏 ≥ 0.

In this work, we focus on deterministic approximate counting algorithms. There are a few popular
techniques for designing deterministic algorithms for Holant-type problems, including the method of cor-
relation decay [BGK+07, LWZ14, LLL14, LLZ14] and polynomial interpolation [GLLZ21, BCW22, CFF+22],
which result in fully polynomial-time approximation schemes (FPTAS) for counting problems. Both the
methods of correlation decay and polynomial interpolation are successful for counting matchings and
many other Holant problems.

However, for 𝑏 larger than 1, the problem of 𝑏-matching resists both methods: the problem lacks a con-
cise and lossless recursion for computing marginals necessary to apply the correlation decay technique,
and it is challenging to determine the location of zeros for the partition function in order to use the poly-
nomial interpolation method (in particular, the𝐻𝜀-stable property in [GLLZ21] for local polynomials does
not hold for a general 𝑑).

We design an FPTAS for 𝑏-matching and more generally Holant problems with log-concave signature
by developing the method of linear programming, invented by Moitra in [Moi19], which was previously
only applied to counting problems on hypergraphs under Lovász-local-lemma-type conditions [Moi19,
GLLZ19, GGGY21, JPV22, WY24]. We will summarize our main results in Section 1.1 and explain our
technical contributions in Section 1.2, respectively.

1.1 Main results

𝒃-matchings Given a graph𝐺 = (𝑉 , 𝐸), recall that 𝐸𝑣 = {𝑒 ∈ 𝐸 : 𝑒 is incident to 𝑣} is the collection of all
edges incident to 𝑣 for each 𝑣 ∈ 𝑉 . For a vector 𝒃 = {𝑏𝑣}𝑣∈𝑉 ∈ ℕ𝑉

>0, we say that 𝑆 ⊆ 𝐸 is a 𝒃-matching of𝐺
if |𝑆 ∩ 𝐸𝑣 | ≤ 𝑏𝑣 for every 𝑣 ∈ 𝑉 . Note that when 𝑏𝑣 = 𝑏 for every 𝑣 ∈ 𝑉 we obtain the typical 𝑏-matchings.

Theorem 1 (Informal version of Theorem 32). Given any positive integers Δ and 𝑏, there exists an FPTAS for
counting the number of 𝒃-matchings for any graph with maximum degree Δ and any 𝒃 = {𝑏𝑣}𝑣∈𝑉 satisfying
𝑏𝑣 ≤ 𝑏 for every 𝑣 ∈ 𝑉 .

Closely to 𝒃-matchings, another problem is counting 𝒃-edge covers. For an edge subset 𝑆 ⊆ 𝐸, we say
that 𝑆 is a 𝒃-edge cover of 𝐺 if |𝑆 ∩ 𝐸𝑣 | ≥ 𝑏𝑣 for every 𝑣 ∈ 𝑉 . Note that for every 𝒃-edge cover 𝑆 , its
complement 𝐸 \ 𝑆 forms a 𝒃′-matching where 𝒃′ =

{
𝑏′𝑣

}
𝑣∈𝑉 is defined as 𝑏′𝑣 = deg𝐺 (𝑣) − 𝑏𝑣 . Then one

can easily derive the following result for counting 𝒃-edge covers as an immediate corollary of counting
𝒃′-matchings.

Corollary 2 (𝒃-edge covers). Given any positive integers Δ and 𝑏 ≤ Δ, there exists an FPTAS for counting
the number of 𝒃-edge covers for any graph with maximum degree Δ and any 𝒃 = {𝑏𝑣}𝑣∈𝑉 satisfying 𝑏𝑣 ≥ 𝑏

for every 𝑣 ∈ 𝑉 .

Holant problems with log-concave signatures Beyond counting the number of 𝑏-matchings, we also
consider the family of Holant problems with Boolean domain symmetric log-concave signatures. Recall
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that an instance of the Holant problem is a tuple Φ =
(
𝐺 = (𝑉 , 𝐸),𝒇 = {𝑓𝑣}𝑣∈𝑉

)
where for each 𝑣 ∈ 𝑉 ,

𝑓𝑣 : {0, 1}𝐸𝑣 → ℂ. For each 𝑣 ∈ 𝑉 , the constraint function 𝑓𝑣 is usually referred to as the signature on 𝑣 .
In this work, we only consider signatures taking non-negative values. As a result, an instanceΦ induces

the Gibbs distribution 𝜇 = 𝜇Φ over Ω = ΩΦ = {0, 1}𝐸 such that

∀𝜎 ∈ Ω, 𝜇 (𝜎) = 1
𝑍

∏
𝑣∈𝑉

𝑓𝑣 (𝜎 (𝐸𝑣)) , (1)

where 𝑍 = Holant(Φ) is the partition function of Φ.
Recall that a 𝑑-ary Boolean domain function 𝑓 is symmetric if its value only depends on the Hamming

weight of the input. We can represent it in the compact way 𝑓 = [𝑓 (0), 𝑓 (1), . . . , 𝑓 (𝑑)] where 𝑓 (𝑖) ≥ 0 is
the value of 𝑓 on inputs with Hamming weight 𝑖 . We say 𝑓 is log-concave if and only if it satisfies:

1. 𝑓 (𝑘)2 ≥ 𝑓 (𝑘 − 1) 𝑓 (𝑘 + 1) for every 1 ≤ 𝑘 ≤ 𝑑 − 1;

2. If 𝑓 (𝑘1) > 0 and 𝑓 (𝑘2) > 0 for some 0 ≤ 𝑘1 ≤ 𝑘2 ≤ 𝑑 , then for every 𝑘1 ≤ 𝑗 ≤ 𝑘2, 𝑓 ( 𝑗) > 0.

We say that Φ =
(
𝐺 = (𝑉 , 𝐸), {𝑓𝑣}𝑣∈𝑉

)
is log-concave if all its signatures are log-concave. Clearly an

instance of 𝑏-matchings, when stated as a Holant problem, is log-concave.
We consider a family of Holant instances satisfying the following conditions.

Condition 1. Consider the Holant instance Φ = (𝐺,𝒇 ) satisfying that 𝒇 is a family of Boolean domain sym-
metric log-concave signatures where 𝑓 (0) > 0 for each 𝑓 ∈ 𝒇 .

Theorem 3 (Informal version of Theorem 31). Given any positive integer Δ and any positive real number
𝑟 , there exists an FPTAS for the partition function of every Holant instance Φ =

(
𝐺 = (𝑉 , 𝐸),𝒇 = {𝑓𝑣}𝑣∈𝑉

)
satisfying Condition 1 where the maximum degree of 𝐺 is Δ and 𝑓𝑣 (1) ≤ 𝑟 𝑓𝑣 (0) for each 𝑣 ∈ 𝑉 .

We remark that an FPRAS for Holant problems with log-concave signatures under the same condition
was found in [CG24].

1.2 Overview of our techniques

Since the (approximate) counting task can be reduced to estimating the marginal ratios of the Gibbs mea-
sure on a single edge, at a high level, our algorithm follows the idea of Moitra [Moi19] to bootstrap the
marginal ratios using a linear program (LP):

• Design a randomprocess tomimic the coupling of two conditional Gibbs distributions, whose bound-
ary conditions only differ on a single-edge.

• Establish a linear program to certify the random process, whose solution can recover the desired
marginal ratios.

The Moitra’s LP-based framework achieved significant success in designing deterministic algorithms
for counting problems that involve high-order constraints [Moi19, GLLZ19, GGGY21, JPV22,WY24]. In this
work, we extend the applicability of the method to Holant problems with Boolean symmetric signatures.
Similar to previous work, the design of a specific LP formulation and the retrieval of the marginal ratio
from the solution of LP are the primary technical challenges in applying this framework. We provide an
overview of the key technical aspects of our algorithm below.
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Our starting point is the coupling process described in [CG24], which has been employed to estab-
lish the spectral independence property of the underlying Gibbs measure. We first sketch the coupling
for instances of 𝑏-matchings. The process maintains a pair of 𝑏-matching instances (Φ,Φ′) differing
only on the signature on a unique vertex 𝑣 . We assume the distinct signature is 𝑓𝑣 (𝜏) = 𝟙 [|𝜏 | ≤ 𝑘] and
𝑓𝑣 (𝜏) = 𝟙 [|𝜏 | ≤ 𝑘 − 1] on the vertex 𝑣 in Φ and Φ′ respectively. The coupling proceeds as follows, trying
to eliminate the discrepancy:

1. The property of the 𝑏-matchings guarantees that for at least one incident edge of 𝑣 , say 𝑒 = {𝑣,𝑢},
the marginal probability of assigning 1 on 𝑒 in Φ is less than that in Φ′. Then one applies the optimal
(marginal) coupling on the edge 𝑒 .

2. If the assignments on 𝑒 successfully couple, one can repeat the argument to the remaining graph
(with the discrepancy still at 𝑣).

3. If the assignment on 𝑒 does not couple, the discrepancy moves to the vertex 𝑢 and one recursively
couples the remaining graph (with the discrepancy at 𝑢).

It is shown in [CG24] that the process terminates in logarithmic steps with high probability which
is the key property of the coupling that our algorithm relies on. However, there are several technical
challenges to certify the coupling using Moitra’s method.

1.2.1 The extended coupling tree

One crucial point in the first step of the above coupling is that the choice of 𝑒 cannot be arbitrary, at least for
general log-concave instances of Holant problems. We provide an example illustrating this in Appendix A.
This poses the main difficulty for us: To write an explicit linear program that certifies the entire coupling
process, one has to know the identity of 𝑒 at each step, as in previous work, which is currently difficult to
determine. This task of identifying 𝑒 might be as challenging as the original task of estimating the marginal
in general Holant cases.

We overcome this difficulty by introducing a new structure called the extended coupling tree based
on the original coupling process. Specifically, we introduce a new set of auxiliary variables in the linear
program for each edge 𝑒′ incident to 𝑣 when dealing with a pair of instances differing at the vertex 𝑣 .
We add constraints to ensure that the value of these variables forms a distribution. Clearly, the coupling
itself corresponds to a feasible solution, namely setting the correct edge with probability one. These new
variables have the following intended meaning: since we do not know which edge 𝑒 is the correct one
(used in the coupling), pick one with a probability proportional to what the solution of the linear program
indicates. In other words, instead of certifying an unknown edge 𝑒 , we certify a fractional choice of edges.
It is important to note that this approach may lead us to select “wrong” edges. However, with appropriate
constraints to control the error, we show that this larger linear program define on the extended coupling
tree can bootstrap the desired marginal probability within the required precision as well.

1.2.2 Encoding the coupling error

Another technical ingredient in Moitra’s method is to trade off the efficiency and the precision of the
marginal ratios estimation. Ideally, we can perfectly recover the marginal ratios by the LP based on certain
couplings. However, it is intractable to write down the whole coupling tree as the number of possible
states grows exponentially with the problem size. As a result, one must truncate the coupling tree to a
tractable size and ensure the error incurred remains tolerable. In Moitra’s method, the coupling error is
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hard-coded in the LP via linear constraints. In [Moi19, GLLZ19, GGGY21, JPV22], this is possible due to
the local uniformity property under local-lemma-type conditions. In these work, variables are partitioned
into marked one and unmarked ones. In the coupling, one selects an unpinned marked variable to apply
the optimal coupling where the local uniformity ensures that the assignments on the variables can be
successfully coupled with a good chance. This property can be encoded in LP by introducing a linear
constraint relating the ratio of the marginals in consecutive steps in the coupling tree. Therefore, errors
were encoded locally.

In the very recent work of [WY24], a new method to encode the coupling error has been introduced.
They utilized the constraint-wise coupling and completely dispensed with the local uniformity to obtain
tighter bounds. They wrote the error caused along root-to-leaf paths in the coupling tree in a single
constraint, which can be viewed as a global way to encode the error.

Our method of encoding error can be viewed as a middle ground between previous approaches. We
write the error caused by the coupling in a few steps in a single constraint, reflecting the nature of the cou-
pling in [CG24] and the structure of our extended coupling tree. Our analysis for constraints of this form
also demonstrates the flexibility of controlling the error in Moitra’s method, which might find applications
in other problems.

1.3 Organization of the paper

After introducing basic notations and a few standard properties of Holant instances in Section 2, we in-
troduce our main construction, the extended coupling tree, in Section 3. Using this structure, we apply
Moitra’s linear programming approach to estimate the marginals in Section 4. Finally in Section 5, we
present our approximate counting algorithms and prove the main theorems.

2 Preliminaries

2.1 Notations

For a natural number 𝑛 ∈ ℕ, we use [𝑛] to denote the set {1, 2, . . . , 𝑛}. We use log(·) to denote the
logarithm with the natural base. For an event E , we use 𝟙 [E] to denote the indicator of it. We will
use boldface type, e.g., 𝑺, 𝒄 , for vectors. Specifically, we use 0 and 1 to denote the all-zero vector and
the all-one vector, respectively. For any sequence 𝒔 = (𝑠1, . . . , 𝑠ℓ ) and any element 𝑡 , let 𝒔 ◦ 𝑡 denote
(𝑠1, . . . , 𝑠ℓ , 𝑡), the concatenation of 𝒔 and 𝑡 . With a slight abuse of notation, we will occasionally use the
sequence 𝒔 = (𝑠1, . . . , 𝑠ℓ ) to denote the set {𝑠1, . . . , 𝑠ℓ } when it is clear from the context. Moreover, we use
the notation ∅ to denote an empty sequence.

We consider the graphs with “half-edges” in this paper. Formally, given a set of nodes 𝑉 , an normal
edge on 𝑉 is a pair of different nodes {𝑢, 𝑣} where 𝑢, 𝑣 ∈ 𝑉 , and a half-edge on 𝑣 is a singleton tuple {𝑢}
where 𝑢 ∈ 𝑉 . Moreover, we sometimes abuse 𝑒 as a set of vertices, i.e., we will use “𝑣 ∈ 𝑒” to denote the
event that 𝑣 is an endpoint of 𝑒 and 𝑣 ∉ 𝑒 otherwise. A graph with half-edges is a pair (𝑉 , 𝐸1 ∪ 𝐸2) where
𝑉 is a set of nodes, 𝐸1 is a set of normal edges, and 𝐸2 is a set of half-edges. When referring to a graph
with half-edges, wewill always use two subsets to denote its normal edges and half-edges separately. Thus,
when we use the notation𝐺 = (𝑉 , 𝐸), it implies that𝐺 has no half-edges. One can verify that the notations
𝜇Φ, 𝑍Φ, e.t.c., can be naturally generalized to instances where the underlying graph has half edges. Given
a graph 𝐺 , we always use 𝑉 (𝐺) to denote the vertex set of 𝐺 , 𝐸 (𝐺) to denote the edge set, and Δ(𝐺) to
denote the maximum degree. For every 𝑣 ∈ 𝑉 , we use deg𝐺 (𝑣) to denote the degree of 𝑣 in 𝐺 , i.e., the
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number of edges incident to 𝑣 . If 𝐺 is clear from the context, we may omit 𝐺 from these notations. For
convenience, we suppose that an arbitrary order is assumed over all the edges in 𝐸1.

We call 𝜎 : 𝐸 → {0, 1} an assignment of 𝐺 . For any subset 𝑆 ⊆ 𝐸 and any assignment 𝜎 , we use
𝜎 (𝑆) to denote the assignments of 𝜎 on 𝑆 . For simplicity, let 𝜎 (𝑒) denote 𝜎 ({𝑒}) for each 𝑒 ∈ 𝐸. For any
𝑆 ⊆ 𝐸, we call 𝜎 : 𝑆 → {0, 1} a partial assignment of 𝐺 defined on 𝑆 . For any subset 𝑆 ⊆ 𝐸 and any partial
assignment 𝜎 defined on 𝑆 , let Λ(𝜎) denote 𝑆 . For any assignment 𝜎 and any partial assignment 𝜏 , we
abuse the notation 𝜎 ∈ 𝜏 to denote the event that 𝜎 (Λ(𝜏)) = 𝜏 .

Given any partial assignment 𝜎 and any vertex 𝑣 ∈ 𝑉 , we use Ham(𝜎, 𝐸𝑣) to denote |𝜎 (𝐸𝑣 ∩ Λ(𝜎)) |, i.e.,
the Hamming weight of 𝜎 restricted to 𝐸𝑣∩Λ(𝜎). For two partial assignments 𝜎 and 𝜏 where Λ(𝜎)∩Λ(𝜏) =
∅, we use 𝜎 ∧ 𝜏 : Λ(𝜎) ∪ Λ(𝜏) → {0, 1} to denote the concatenation of 𝜎 and 𝜏 , i.e., (𝜎 ∧ 𝜏) (𝑒) = 𝜎 (𝑒) for
each 𝑒 ∈ Λ(𝜎) and (𝜎 ∧ 𝜏) (𝑒) = 𝜏 (𝑒) for each 𝑒 ∈ Λ(𝜏). Additionally, for any 𝑆 ⊆ 𝐸 and any 𝒄 ∈ {0, 1}𝑆 ,
we use 𝑆 ← 𝒄 to denote the partial assignment 𝜎 where Λ(𝜎) = 𝑆 and 𝜎 (𝑆) = 𝒄 .

Given any instance Φ =
(
𝐺 = (𝑉 , 𝐸),𝒇 = {𝑓𝑣}𝑣∈𝑉

)
of the Holant problem, we always assume w.l.o.g.

that the signature 𝑓𝑣 = [𝑓𝑣 (0), · · · , 𝑓𝑣 (𝑑)] at 𝑣 satisfies 𝑑 = deg𝐺 (𝑣) for each vertex 𝑣 ∈ 𝑉 (𝐺). Recall the
distribution 𝜇 ≜ 𝜇Φ defined in (1). We say an assignment 𝜎 of 𝐺 is feasible if 𝜇 (𝜎) > 0. We say a partial
assignment 𝜏 is feasible if there exists a feasible assignment 𝜎 ∈ 𝜏 .

For any partial assignment 𝜏 and any vertex 𝑣 ∈ 𝑉 , we use 𝐸𝜏𝑣 ≜ 𝐸𝑣 \Λ(𝜏) to denote the set of unpinned
edges incident to 𝑣 under 𝜏 . Given any feasible partial assignment 𝜏 and any subset 𝑆 ⊆ 𝐸 \Λ(𝜏), we denote
by 𝜇𝜏

𝑆
the marginal probability distribution of 𝜇 projected to 𝑆 conditional on 𝜏 . Similarly, let 𝜇𝑆 denote the

marginal probability distribution of 𝜇 projected to 𝑆 . Furthermore, given any partial assignment 𝜎 where
𝑆 ⊆ Λ(𝜎) and any 𝑒 ∈ 𝐸 where 𝑒 ∉ Λ(𝜏), we will use the following simplified notations:

• Let 𝜇𝜏
𝑆
(𝜎), 𝜇𝑆 (𝜎) denote 𝜇𝜏𝑆 (𝜎 (𝑆)), 𝜇𝑆 (𝜎 (𝑆)), respectively;

• Let 𝜇𝜏 (𝜎), 𝜇 (𝜎) denote 𝜇𝜏
Λ(𝜎 )\Λ(𝜏 ) (𝜎), 𝜇Λ(𝜎 ) (𝜎), respectively;

• Let 𝜇𝜏𝑒 (𝜎), 𝜇𝑒 (𝜎) denote 𝜇𝜏{𝑒 } (𝜎), 𝜇{𝑒 } (𝜎), respectively.

2.2 Properties of Holant instances

For a symmetric signature 𝑓 = [𝑓 (0), 𝑓 (1), . . . , 𝑓 (𝑑)] of arity𝑑 , its local polynomial introduced by [GLLZ21]
is defined as follows:

𝑃𝑓 (𝑥) ≜
𝑑∑︁
𝑖=0

(
𝑑

𝑖

)
𝑓 (𝑖)𝑥𝑖 . (2)

Let Φ =
(
𝐺 = (𝑉 , 𝐸 = 𝐸1 ∪ 𝐸2),𝒇 = {𝑓𝑣}𝑣∈𝑉

)
be a Holant instance satisfying Condition 1.

We define the pinning of Holant instances as follows.

Definition 4 (Pinning ofHolant instances). Given aHolant instanceΦ =
(
𝐺 = (𝑉 , 𝐸 = 𝐸1 ∪ 𝐸2),𝒇 = {𝑓𝑣}𝑣∈𝑉

)
satisfying Condition 1, an edge 𝑒 ∈ 𝐸 and a value 𝑐 ∈ {0, 1}, the pinning of Φ with 𝑒 assigned to 𝑐 , denoted
by Φ𝑒←𝑐 =

(
𝐺𝑒←𝑐 ,𝒇𝑒←𝑐 =

{
𝑓 𝑒←𝑐
𝑣

}
𝑣∈𝑉

)
, is the Holant instance satisfying

• 𝐺𝑒←𝑐 = (𝑉 , 𝐸 \ {𝑒});

• For every 𝑣 ∈ 𝑉 , if 𝑣 ∉ 𝑒 , then 𝑓 𝑒←𝑐
𝑣 = 𝑓𝑣 ; otherwise, 𝑓 𝑒←𝑐

𝑣 =
[
𝑓𝑣 (0 + 𝑐), · · · , 𝑓𝑣 (deg𝐺 (𝑣) − 1 + 𝑐)

]
.
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For 𝑒 ∈ 𝐸 and 𝑐 ∈ {0, 1}, let 𝑍𝑒←𝑐 = 𝑍𝑒←𝑐
Φ ≜ 𝑍Φ𝑒←𝑐 denote the partition function conditional on 𝑒 ← 𝑐 .

One can verify that
𝑍𝑒←𝑐 =

∑︁
𝜎∈{0,1}𝐸 :𝜎 (𝑒 )=𝑐

∏
𝑣∈𝑉

𝑓𝑣 ( |𝜎 (𝐸𝑣) |)

and 𝑍 = 𝑍𝑒←0 + 𝑍𝑒←1. We remark here that 𝑍𝑒←𝑐 > 0 if and only if for every 𝑣 ∈ 𝑒 , 𝑓𝑣 (𝑐) > 0 and for Φ
satisfying Condition 1, 𝑍𝑒←0 is positive.

For the instance Φ, we define the following quantities:

𝐵 = 𝐵(Φ) ≜ min
𝑣∈𝑉

𝑃𝑓𝑣 (0)
𝑃𝑓𝑣 (𝑟max)

(3)

where

𝑟max = 𝑟max(Φ) ≜ max
𝑣∈𝑉

𝑓𝑣 (1)
𝑓𝑣 (0)

(4)

with convention 𝑓𝑣 (1) = 0 for every isolated vertex 𝑣 ∈ 𝑉 . Note that since Φ satisfies Condition 1, it holds
that 𝑟max ≥ 0. Hence 0 ≤ 𝑃𝑓𝑣 (0) ≤ 𝑃𝑓𝑣 (𝑟max) by (3), leading to 0 < 𝐵 ≤ 1. When 𝐵 = 1, it follows from
the definition that 𝑓𝑣 (1) = 0 for all 𝑣 ∈ 𝑉 . In this case, the only feasible assignment of Φ is 𝜎 (𝑒) = 0 for
every 𝑒 ∈ 𝐸 and the partition function is 𝑍 =

∏
𝑣∈𝑉 𝑓𝑣 (0), which is trivial. Thus throughout this paper’s

subsequent part, we assume that 0 < 𝐵 < 1.
The following lemma in [CG24] shows the monotonicity of 𝑟max and 𝐵 under the pinnings. For com-

pleteness, we postpone the proof of it in Appendix B.

Lemma 5 (Observation 15 in [CG24]). Given a Holant instance Φ = (𝐺 = (𝑉 , 𝐸 = 𝐸1 ∪ 𝐸2),𝒇 ) satisfy-
ing Condition 1, for an edge 𝑒 ∈ 𝐸 and 𝑐 ∈ {0, 1}, if 𝑍𝑒←𝑐

Φ > 0, then the following inequalities hold for 𝑟max
and 𝐵:

𝑟max(Φ) ≥ 𝑟max(Φ𝑒←𝑐), 𝐵(Φ) ≤ 𝐵(Φ𝑒←𝑐) .

Recall that 𝜇 = 𝜇Φ is the induced Gibbs distribution. Given any partial assignment 𝜎 and vertex 𝑣 ∈ 𝑉 ,
recall that 𝐸𝜎𝑣 is the set of unpinned edges incident to 𝑣 under 𝜎 . The following lemma in [CG24] establishes
lower bounds of the marginal probability of 𝜇.

Lemma 6 (Lemma 18 in [CG24]). Given any Holant instance Φ = (𝐺 = (𝑉 , 𝐸 = 𝐸1 ∪ 𝐸2),𝒇 ) satisfying Con-
dition 1, it holds that

𝜇𝜎
𝐸𝜎
𝑣
(0) ≥ 𝐵(Φ), (5)

for any feasible partial assignment 𝜎 and vertex 𝑣 ∈ 𝑉 where 𝐸𝜎𝑣 ⊆ 𝐸1.

As shown in subsequent sections, to apply Lemma 6, we also need to decide the feasibility of the partial
assignment by the following lemma. The proof of this lemma is provided in Appendix B.

Lemma 7. Given any instance Φ = (𝐺 = (𝑉 , 𝐸 = 𝐸1 ∪ 𝐸2),𝒇 ) satisfying Condition 1 with any partial assign-
ment 𝜎 , there is an algorithm deciding whether 𝜎 is feasible in time 𝑂 ( |Λ(𝜎) |).

For every edge 𝑒 ∈ 𝐸, define its marginal ratio as

𝑅(𝑒) = 𝑅Φ(𝑒) ≜
Pr𝑋∼𝜇 [𝑋 (𝑒) = 1]
Pr𝑋∼𝜇 [𝑋 (𝑒) = 0] =

𝜇𝑒 (1)
𝜇𝑒 (0)

, (6)

which is well-defined since 𝑓𝑣 (0) > 0 for each 𝑣 ∈ 𝑉 by Condition 1. Note that 𝑅(𝑒) = 𝑍𝑒←1/𝑍𝑒←0. The
marginal ratio of a half-edge can be bounded as follows.
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Lemma 8. Given any Holant instance Φ = (𝐺 = (𝑉 , 𝐸 = 𝐸1 ∪ 𝐸2),𝒇 ) satisfying Condition 1 , for each half-
edge 𝑒 ∈ 𝐸2, it holds that

𝑅Φ(𝑒) ≤ 𝑟max(Φ) .

For completeness, we prove Lemma 8 in Appendix B.

3 The Extended Coupling Trees

This section introduces the key ingredient of our counting algorithm, the extended coupling tree. As
mentioned in Section 1.2, our counting algorithm employs Moitra’s linear programming approach [Moi19]
to derandomize the coupling procedure for Holant problems [CG24]. Firstly, we describe the coupling
procedure in Section 3.1. Next, we construct a random process to simulate the coupling procedure in
Section 3.2. Following this, we encode the states of the random process within the extended coupling tree
in Section 3.3. At last, we extend the marginals in the random process to the extended coupling tree in
Section 3.4. The extended coupling tree and the marginals form the foundation for establishing the linear
program. Unlike typical methods, our extended coupling tree includes impossible states in the random
process, allowing for its efficient construction.

3.1 The coupling procedure

In this section, we review the coupling procedure forHolant problems from [CG24]. The procedure inspires
our random process in Section 3.2 for simulating the coupling and our extended coupling tree in Section 3.3
for encoding the states of the random process.

In the subsequent discussion, we consider instances satisfying the following condition.

Condition 2. The following holds for the tuple (Φ = (𝐺,𝒇 ), 𝜎⊥, 𝜏⊥, 𝑣⊥):

• 𝐺 = (𝑉 , 𝐸 = 𝐸1 ∪ {𝑒⊥}) is a graph with a unique half edge 𝑒⊥ = {𝑣⊥} where 𝑣⊥ ∈ 𝑉 ;

• Φ = (𝐺,𝒇 ) satisfying Condition 1;

• 𝜎⊥ = (𝑒⊥ ← 1) and 𝜏⊥ = (𝑒⊥ ← 0).

For an instance (Φ = (𝐺,𝒇 ), 𝜎⊥, 𝜏⊥, 𝑣⊥) satisfying Condition 2, recall that an arbitrary order is assumed
over all the edges in 𝐸1. Also recall the distribution 𝜇 ≜ 𝜇Φ defined in (1).

Let 𝜎, 𝜏 be two partial assignments of 𝐺 where Λ(𝜎) = Λ(𝜏). We say that a vertex 𝑣 ∈ 𝑉 is weight-
distinct under (𝜎, 𝜏) if Ham (𝜎, 𝐸𝑣) ≠ Ham (𝜏, 𝐸𝑣). Furthermore, a vertex 𝑣 is called 1-distinct under (𝜎, 𝜏) if
|Ham (𝜎, 𝐸𝑣) − Ham (𝜏, 𝐸𝑣) | = 1. We say that (𝜎, 𝜏) is a pair of 1-discrepancy partial assignments if there is a
unique weight-distinct vertex 𝑣 ∈ 𝑉 and 𝑣 is 1-distinct. Given a pair of 1-discrepancy partial assignments
(𝜎, 𝜏) where 𝑣 is the unique weight-distinct vertex, we call an edge 𝑒 ∈ 𝐸𝜎𝑣 amenable under (𝜎, 𝜏) if 𝜇𝜎𝑒 (1) ≥
𝜇𝜏𝑒 (1) when Ham(𝜎, 𝐸𝑣) < Ham(𝜏, 𝐸𝑣) or 𝜇𝜎𝑒 (1) ≤ 𝜇𝜏𝑒 (1) when Ham(𝜎, 𝐸𝑣) > Ham(𝜏, 𝐸𝑣).

Given a pair of 1-discrepancy partial assignments (𝜎, 𝜏), Algorithm 1 from [CG24] defines a coupling
of 𝜇𝜎 and 𝜇𝜏 . The following proposition demonstrates the correctness of the coupling process, which has
been proved in [CG24].

Proposition 9 ([CG24]). The procedure Couple(Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) satisfies the following properties:

1. (Soundness of the coupling) It always terminates.
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Algorithm 1: Couple(Φ, 𝜎, 𝜏, 𝑣)
Input: A Holant instance Φ =

(
𝐺 = (𝑉 , 𝐸 = 𝐸1 ∪ {𝑒⊥}),𝒇 = {𝑓𝑣}𝑣∈𝑉

)
, a pair of 1-discrepancy

partial assignments (𝜎, 𝜏) of 𝐺 where 𝜎 (𝑒⊥) = 1, 𝜏 (𝑒⊥) = 0, and the unique weight-distinct
vertex 𝑣 ∈ 𝑉 under (𝜎, 𝜏).

Output: A pair of assignments drawn from a coupling between 𝜇𝜎 and 𝜇𝜏 .
1 𝑆 ← ∅;
2 while 𝐸𝜎𝑣 ≠ ∅ do
3 if Ham (𝜎, 𝐸𝑣) < Ham (𝜏, 𝐸𝑣) then
4 let 𝑒 = {𝑢, 𝑣} be the first edge satisfying 𝑒 ∈ 𝐸𝜎𝑣 and 𝜇𝜎𝑒 (1) ≥ 𝜇𝜏𝑒 (1);
5 // pick the amenable edge

6 else
7 let 𝑒 = {𝑢, 𝑣} be the first edge satisfying 𝑒 ∈ 𝐸𝜎𝑣 and 𝜇𝜎𝑒 (1) ≤ 𝜇𝜏𝑒 (1);
8 // pick the amenable edge

9 sample (𝜎𝑒 , 𝜏𝑒) from an optimal coupling of (𝜇𝜎𝑒 , 𝜇𝜏𝑒 );
10 𝜎 ← 𝜎 ∧ 𝜎𝑒 , 𝜏 ← 𝜏 ∧ 𝜏𝑒 , 𝑆 ← 𝑆 ∪ {𝑒};
11 if 𝜎𝑒 ≠ 𝜏𝑒 then
12 (𝜎 ′, 𝜏 ′) ← Couple(Φ, 𝜎, 𝜏,𝑢); // The weight-distinct vertex has been changed
13 return (𝜎 (𝑆) ∧ 𝜎 ′, 𝜏 (𝑆) ∧ 𝜏 ′)

14 Sample 𝜎 ′ ∼ 𝜇𝜎 ;
15 return (𝜎 (𝑆) ∧ 𝜎 ′, 𝜏 (𝑆) ∧ 𝜎 ′);

2. (Validity of the recursive call) At each call of Couple(Φ, 𝜎, 𝜏,𝑢) in Line 12, (𝜎, 𝜏) is always a pair
of 1-discrepancy partial assignments where 𝜎 (𝑒⊥) = 1, 𝜏 (𝑒⊥) = 0, and 𝑢 is always the unique weight-
distinct vertex under (𝜎, 𝜏). Moreover, 𝜎 and 𝜏 are feasible.

3. (Existence of amenable edges)When 𝐸𝜎𝑣 ≠ ∅ in Line 2, there always exists an amenable edge 𝑒 ∈ 𝐸𝜎𝑣 .

4. (Correctness of the coupling) The outcome of Couple(Φ, 𝜎, 𝜏, 𝑣) is a coupling of (𝜇𝜎 , 𝜇𝜏 ).

3.2 Random process simulating the truncated coupling procedure

In this section, given an instance (Φ = (𝐺,𝒇 ), 𝜎⊥, 𝜏⊥, 𝑣⊥) satisfying Condition 2, we construct a random
process to simulate Couple(Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) with truncation.

In the subsequent discussion, we always consider the tuples satisfying the following condition.

Condition 3. The tuples (𝜎, 𝜏, 𝒔), (𝜎, 𝜏, 𝒔, 𝑒), (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) and (𝜎, 𝜏, 𝒔, 𝑣, 𝐿, 𝑒) satisfy the following:

• (𝜎, 𝜏) is a pair of 1-discrepancy partial assignments and 𝜎 (𝑒⊥) = 1, 𝜏 (𝑒⊥) = 0;

• 𝒔 records the sequence of assigned edges in Λ(𝜎) \ {𝑒⊥};

• 𝑣 is the unique weight-distinct vertex under (𝜎, 𝜏);

• 𝐿 = |{𝑒′ ∈ Λ(𝜎) | (𝑒′ ≠ 𝑒⊥) ∧ (𝜎 (𝑒′) ≠ 𝜏 (𝑒′))}|;

• 𝑒 is an edge in 𝐸𝜎𝑣 .
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For any tuple generated by certain processes, we will also ensure that Condition 3 is satisfied, including
those processes in Definitions 10 and 14. Given any (𝜎, 𝜏), let 𝑣 (𝜎, 𝜏) denote the unique weight-distinct
vertex under (𝜎, 𝜏) and 𝐿(𝜎, 𝜏) denote |{𝑒 ∈ Λ(𝜎) | (𝑒 ≠ 𝑒⊥) ∧ (𝜎 (𝑒) ≠ 𝜏 (𝑒))}|.

The random process to simulate Couple(Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) is as follows.

Definition 10 (ℓ-truncated random process). For any instance (Φ = (𝐺,𝒇 ), 𝜎⊥, 𝜏⊥, 𝑣⊥) satisfying Condi-
tion 2 and integer ℓ > 0, the ℓ-truncated random process 𝑃cp ≜ 𝑃

cp
ℓ
(Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) = {(𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 )}0≤𝑡≤𝑇

repeats the following operations:

1. The initial state is (𝜎0, 𝜏0, 𝒔0, 𝑣0, 𝐿0) = (𝜎⊥, 𝜏⊥,∅, 𝑣⊥, 0).

2. For 𝑡 = 0, 1, · · · : for the state (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 ):

(a) If 𝐿𝑡 ≥ ℓ or 𝐸𝜎𝑡𝑣𝑡 = ∅, then the process lets 𝑇 ← 𝑡 , outcomes (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 ), and stops.
(b) Otherwise, 𝐸𝜎𝑡𝑣𝑡 ≠ ∅. If Ham

(
𝜎𝑡 , 𝐸𝑣𝑡

)
< Ham

(
𝜏𝑡 , 𝐸𝑣𝑡

)
, let 𝑒 = {𝑢, 𝑣𝑡 } be the first edge in 𝐸

𝜎𝑡
𝑣𝑡 with

𝜇
𝜎𝑡
𝑒 (1) ≥ 𝜇

𝜏𝑡
𝑒 (1). Otherwise, let 𝑒 = {𝑢, 𝑣𝑡 } be the first edge in 𝐸

𝜎𝑡
𝑣𝑡 with 𝜇

𝜎𝑡
𝑒 (1) ≤ 𝜇

𝜏𝑡
𝑒 (1).

(i) Sample (𝜎𝑒 , 𝜏𝑒) from an optimal coupling of (𝜇𝜎𝑡𝑒 , 𝜇
𝜏𝑡
𝑒 ).

(ii) Let 𝜎𝑡+1 ← 𝜎𝑡 ∧ 𝜎𝑒 , 𝜏𝑡+1 ← 𝜏𝑡 ∧ 𝜏𝑒 , 𝒔𝑡+1 ← 𝒔𝑡 ◦ 𝑒 . If 𝜎𝑒 = 𝜏𝑒 , let 𝑣𝑡+1 ← 𝑣𝑡 , 𝐿𝑡+1 ← 𝐿𝑡 ;
otherwise, let 𝑣𝑡+1 ← 𝑢 and 𝐿𝑡+1 ← 𝐿𝑡 + 1.

Intuitively, for any state (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 ) in 𝑃cp, 𝒔𝑡 records the sequence of chosen edges and 𝐿𝑡 records
the total number of edges 𝑒 in 𝒔𝑡 where 𝜎𝑡 (𝑒) ≠ 𝜏𝑡 (𝑒). By comparing Definition 10 with Algorithm 1,
one can verify that 𝑃cp ≜ 𝑃

cp
ℓ
(Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) simulates Couple(Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) while ensuring that the depth

of recursion does not exceed ℓ . Moreover, one can verify the following lemma by Definition 10 and the
induction.

Lemma 11. In the ℓ-truncated random process 𝑃cp ≜ 𝑃
cp
ℓ
(Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) = {(𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 )}0≤𝑡≤𝑇 , we have

(𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 ) satisfies Condition 3 for each 0 ≤ 𝑡 ≤ 𝑇 .

The following notations related to the randomprocess 𝑃cp ≜ 𝑃
cp
ℓ
(Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) = {(𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 )}0≤𝑡≤𝑇

will be used in its analysis.

Definition 12. In the ℓ-truncated random process 𝑃cp, define Prcp as follows.

• For any (𝜎, 𝜏, 𝒔, 𝑣, 𝐿), let Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿)] denote the probability that (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) is a state in the
random process 𝑃cp. Formally, for each (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) where |𝒔 | = 𝑡 ,

Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿)] ≜ Pr [(𝑇 ≥ 𝑡) ∧ ((𝜎, 𝜏, 𝒔, 𝑣, 𝐿) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 ))] . (7)

• For any (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) and 𝑒 ∈ 𝐸𝜎𝑣 , let Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿, 𝑒)] denote the probability that (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) is a
state in the random process 𝑃cp and 𝑒 is the chosen edge at that state. Formally, for each (𝜎, 𝜏, 𝒔, 𝑣, 𝐿)
where |𝒔 | = 𝑡 and each 𝑒 ∈ 𝐸𝜎𝑣 ,

Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿, 𝑒)] ≜ Pr [(𝑇 > 𝑡) ∧ ((𝜎, 𝜏, 𝒔, 𝑣, 𝐿) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 )) ∧ (𝒔𝑡+1 = 𝒔 ◦ 𝑒)] . (8)

The following property on the random process 𝑃cp will be used in its analysis. For completeness, we
provide its proof in Appendix C.1.

Lemma 13. In Definition 10, the following properties hold:
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1. For each (𝜎, 𝜏, 𝒔, 𝑣, 𝐿), we have

Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿)] ≤ 𝜇𝜎⊥𝒔 (𝜎), Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿)] ≤ 𝜇𝜏⊥𝒔 (𝜏) . (9)

2. For each (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) and 𝑒 ∈ 𝐸𝜎𝑣 , we have

Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿, 𝑒)] ≤ 𝜇𝜎⊥𝒔 (𝜎), Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿, 𝑒)] ≤ 𝜇𝜏⊥𝒔 (𝜏). (10)

3.3 Truncated extended coupling tree

Given an instance (Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) satisfying Condition 2, we follow the idea of Moitra [Moi19] to estimate
the marginal probability distribution 𝜇𝑒⊥ , which recovers the probabilities in Definition 12 using a linear
program. Typically, this linear program is built based on a coupling tree that encodes all possible states of
the random process 𝑃cp. For the linear program to be constructed efficiently, the coupling tree itself must
be constructed efficiently. However, this is a challenging task because identifying an amenable edge 𝑒 ∈ 𝐸𝜎𝑡𝑣𝑡
at each state (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 ) as described in Definition 10 is difficult. The difficulty arises because it seems
to bring us back to the original problem of estimating the marginal probability distribution. To address
this challenge, we extend the coupling tree by adding some extra auxiliary states, which are impossible in
𝑃cp, allowing for its efficient construction.

We say a tuple (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) is feasible if the partial assignments 𝜎 and 𝜏 are both feasible. Our extended
coupling tree for encoding the states of 𝑃cp is as follows.

Definition 14 (ℓ-truncated extended coupling tree). For any instance (Φ = (𝐺,𝒇 ), 𝜎⊥, 𝜏⊥, 𝑣⊥) satisfying
Condition 2 and any positive integer ℓ , the ℓ-truncated extended coupling tree T ≜ Tℓ (Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) is a
rooted tree constructed as follows:

1. The root of T is the node with label (𝜎⊥, 𝜏⊥,∅, 𝑣⊥, 0) of depth 0.

2. For 𝑖 = 0, 1, · · · : for each node 𝑢 of depth 𝑖 in the current T , suppose the label of 𝑢 is (𝜎, 𝜏, 𝒔, 𝑣, 𝐿).

(a) If 𝐿 ≥ ℓ or 𝐸𝜎𝑣 = ∅ or (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) is infeasible, then 𝑢 is a leaf node in T ;
(b) Otherwise, for each 𝑒 = {𝑣, 𝑣 ′} ∈ 𝐸𝜎𝑣 ,

(i) If Ham (𝜎, 𝐸𝑣) < Ham (𝜏, 𝐸𝑣), add three nodes with labels (𝜎∧(𝑒 ← 0), 𝜏∧(𝑒 ← 0), 𝒔◦𝑒, 𝑣, 𝐿),
(𝜎 ∧ (𝑒 ← 1), 𝜏 ∧ (𝑒 ← 0), 𝒔 ◦ 𝑒, 𝑣 ′, 𝐿 + 1), and (𝜎 ∧ (𝑒 ← 1), 𝜏 ∧ (𝑒 ← 1), 𝒔 ◦ 𝑒, 𝑣, 𝐿) as
children of 𝑢;

(ii) Otherwise, add three nodes with labels (𝜎 ∧ (𝑒 ← 0), 𝜏 ∧ (𝑒 ← 0), 𝒔 ◦ 𝑒, 𝑣, 𝐿), (𝜎 ∧ (𝑒 ←
0), 𝜏 ∧ (𝑒 ← 1), 𝒔 ◦ 𝑒, 𝑣 ′, 𝐿 + 1), and (𝜎 ∧ 𝑒 ← 1, 𝜏 ∧ (𝑒 ← 1), 𝒔 ◦ 𝑒, 𝑣, 𝐿) as children of 𝑢.

For simplicity, let 𝑉 (T ) denote the set of nodes in T .

Comparing Definition 14 with Definition 10, one can verify that the ℓ-truncated extended coupling
tree T encodes all possible states in the ℓ-truncated random process 𝑃cp. Furthermore, additional auxiliary
states are also introduced in T . In 𝑃cp, only one amenable edge in 𝐸

𝜎𝑡
𝑣𝑡 selected to generate the next state

at each state (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 ). In contrast, in T , all edges in 𝐸𝜎𝑣 are enumerated to generate the children of
each node labeled (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) in Definition 14.

By Definition 14 and the induction, one can verify the following properties:

• For each node 𝑢 with label (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) and depth 𝑖 , we have |𝒔 | = 𝑖 . Thus, any two nodes at different
depths have distinct labels.
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• For each node 𝑢 ∈ 𝑉 (T ), the children of 𝑢 have distinct labels. Moreover, for any two nodes 𝑢, 𝑣 ∈
𝑉 (T ) with distinct labels, the child 𝑢′ of 𝑢 and the child 𝑣 ′ of 𝑣 have distinct labels. Thus, by using
induction on depth, we can also prove that any two nodes at the same depth have distinct labels.

In summary, we have the following lemma.

Lemma 15. Any two different nodes in the ℓ-truncated extended coupling tree have distinct labels.

By Lemma 15, one can use a label (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) to refer to the unique node with this label in the ℓ-
truncated extended coupling tree T . Thus, wewill say ‘the node (𝜎, 𝜏, 𝒔, 𝑣, 𝐿)’, ‘the feasible node (𝜎, 𝜏, 𝒔, 𝑣, 𝐿)’
rather than ‘the node with label (𝜎, 𝜏, 𝒔, 𝑣, 𝐿)’ and ‘the node with feasible label (𝜎, 𝜏, 𝒔, 𝑣, 𝐿)’, respectively.

The following property on the nodes in 𝑉 (T ) is immediate by Definition 14 and the induction.

Lemma 16. Each node (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) ∈ 𝑉 (T ) satisfies Condition 3.

The following notations related to the ℓ-truncated extended coupling tree Tℓ will be used in its analysis.

Definition 17. Given any ℓ-truncated extended coupling tree T = Tℓ , define the sets V,L,Lgood and the
function D(·) as follows:

• Let V denote the set of feasible nodes in 𝑉 (T );

• Let L denote the set of leaf nodes in 𝑉 (T );

• Define Lgood = {(𝜎, 𝜏, 𝒔, 𝑣, 𝐿) ∈ L | 𝐿 < ℓ} and Lbad ≜ Lbad(ℓ) = L \ Lgood.

• Given any (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) ∈ V \ L, define

D(𝜎, 𝜏, 𝒔, 𝑣, 𝐿) ≜
{
(𝜎 ′, 𝜏 ′, 𝒔′, 𝑣 ′, 𝐿′) ∈ 𝑉 (T )

�� 𝜎 ′ = 𝜎 ∧ (𝐸𝜎𝑣 ← 0), 𝜏 ′ = 𝜏 ∧ (𝐸𝜎𝑣 ← 0)
}
.

Intuitively, Lgood contains the leaves (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) where 𝜎 and 𝜏 are coupled successfully, i.e., 𝜇𝜎 = 𝜇𝜏 .
These leaves are easily handled in our marginal ratio estimator, as discussed in Section 4.3. Conversely, the
leaves in Lbad are more challenging to handle and can introduce errors into our estimator. The notation
D(·) is crucial for bounding such errors. We remark that if

��𝐸𝜎𝑣 �� > 1, then |D(𝜎, 𝜏, 𝒔, 𝑣, 𝐿) | can be larger
than 1, because each permutation 𝑒1, 𝑒2, · · · , 𝑒 |𝐸𝜎

𝑣 | of the edges in 𝐸𝜎𝑣 results in a possible sequence 𝒔′ =
𝒔 ◦ 𝑒1 ◦ 𝑒2 · · · ◦ 𝑒 |𝐸𝜎

𝑣 | .
The following proposition provides some useful properties of the ℓ-truncated extended coupling tree.

We defer its proof in Appendix C.1.

Proposition 18. The following holds for the ℓ-truncated extended coupling tree T :

(1) 𝑉 (T ) \ L = V \ L.

(2) T is of degree at most 3Δ, of depth at most Δℓ . Thus, |𝑉 (T ) | ≤ (3Δ)Δℓ+1. In addition, for each node
(𝜎, 𝜏, 𝒔, 𝑣, 𝐿) ∈ T , we have |Λ(𝜎) | = |Λ(𝜏) | ≤ Δℓ + 1.

(3) For each node (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) ∈ Lgood ∩ V , we have 𝜇𝜎 = 𝜇𝜏 . Thus,

𝜇 (𝜏)
𝜇 (𝜎) =

𝑓𝑣 ( |𝜏 (𝐸𝑣) |)
𝑓𝑣 ( |𝜎 (𝐸𝑣) |)

.
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3.4 Marginals for the extended coupling tree

In this section, we extend the marginals in 𝑃cp to the extended coupling tree and prove several useful
properties. These marginals and properties form the foundation for establishing the linear program.

For simplification, we will use (𝜎, 𝜏, 𝒔) to denote (𝜎, 𝜏, 𝒔, 𝑣 (𝜎, 𝜏), 𝐿(𝜎, 𝜏)). Specifically, we will use
Prcp [(𝜎, 𝜏, 𝒔)] , Prcp [(𝜎, 𝜏, 𝒔, 𝑒)] to denote Prcp [(𝜎, 𝜏, 𝒔, 𝑣 (𝜎, 𝜏), 𝐿(𝜎, 𝜏))] , Prcp [(𝜎, 𝜏, 𝒔, 𝑣 (𝜎, 𝜏), 𝐿(𝜎, 𝜏), 𝑒)], re-
spectively.

Definition 19. Define the following quantities related to Definition 10:

• For each node (𝜎, 𝜏, 𝒔) ∈ V , define

𝑝𝜎𝜎,𝜏,𝒔 ≜ Prcp [(𝜎, 𝜏, 𝒔)] /𝜇𝜎⊥𝒔 (𝜎), 𝑝𝜏𝜎,𝜏,𝒔 ≜ Prcp [(𝜎, 𝜏, 𝒔)] /𝜇𝜏⊥𝒔 (𝜏) . (11)

• For each node (𝜎, 𝜏, 𝒔) ∈ V \ L and 𝑒 ∈ 𝐸𝜎
𝑣 (𝜎,𝜏 ) , define

𝑝𝜎𝜎,𝜏,𝒔,𝑒 ≜ Prcp [(𝜎, 𝜏, 𝒔, 𝑒)] /𝜇𝜎⊥𝒔 (𝜎), 𝑝𝜏𝜎,𝜏,𝒔,𝑒 ≜ Prcp [(𝜎, 𝜏, 𝒔, 𝑒)] /𝜇𝜏⊥𝒔 (𝜏) . (12)

• For each node (𝜎, 𝜏, 𝒔) ∈ 𝑉 (T ) \ V , define 𝑝𝜎𝜎,𝜏,𝒔 = 𝑝𝜏𝜎,𝜏,𝒔 = 0.

Remark. For each (𝜎, 𝜏, 𝒔) ∈ V \ L and 𝑒 ∈ 𝐸𝜎
𝑣 (𝜎,𝜏 ) , by the definition of V , we have 𝜎 is feasible. Thus,

𝜇 (𝜎) > 0. In addition, recall that 𝜎 (𝑒⊥) = 1, 𝜎⊥ = (𝑒⊥ ← 1). We have 𝜇𝜎⊥𝒔 (𝜎) ≥ 𝜇 (𝜎) > 0. Thus, 𝑝𝜎𝜎,𝜏,𝒔 and
𝑝𝜎𝜎,𝜏,𝒔,𝑒 are well defined. Similarly, we also have 𝑝𝜏𝜎,𝜏,𝒔 and 𝑝𝜏𝜎,𝜏,𝒔,𝑒 are well defined.

Intuitively, the ratio 𝑝𝜎𝜎,𝜏,𝒔 is a normalized probability, where the randomness of 𝜎 is eliminated, leaving
only the randomness of 𝜏 . The same applies to 𝑝𝜎𝜎,𝜏,𝒔, 𝑝

𝜏
𝜎,𝜏,𝒔, 𝑝

𝜎
𝜎,𝜏,𝒔,𝑒 and 𝑝𝜏𝜎,𝜏,𝒔,𝑒 . In the following, when we

use the notations 𝑝𝜎𝜎,𝜏,𝒔 and 𝑝𝜏𝜎,𝜏,𝒔 , we always assume (𝜎, 𝜏, 𝒔) ∈ 𝑉 (T ). Similarly, when we use the notations
𝑝𝜎𝜎,𝜏,𝒔,𝑒 and 𝑝𝜏𝜎,𝜏,𝒔,𝑒 , we always assume (𝜎, 𝜏, 𝒔) ∈ V \ L and 𝑒 ∈ 𝐸𝜎

𝑣 (𝜎,𝜏 ) .
One can verify that the following proposition holds for the above quantities. The proof of the propo-

sition is deferred to Appendix C.1.

Proposition 20. The following holds for the ratios in Definition 19:

(1) All 𝑝𝜎𝜎,𝜏,𝒔, 𝑝
𝜏
𝜎,𝜏,𝒔, 𝑝

𝜎
𝜎,𝜏,𝒔,𝑒 , 𝑝

𝜏
𝜎,𝜏,𝒔,𝑒 are in [0, 1]. In particular, 𝑝𝜎⊥𝜎⊥,𝜏⊥,∅ = 𝑝

𝜏⊥
𝜎⊥,𝜏⊥,∅ = 1.

(2) For each (𝜎, 𝜏, 𝒔) ∈ V \ L, let 𝑣 = 𝑣 (𝜎, 𝜏). Then

𝑝𝜎𝜎,𝜏,𝒔 =
∑︁
𝑒∈𝐸𝜎

𝑣

𝑝𝜎𝜎,𝜏,𝒔,𝑒 , 𝑝𝜏𝜎,𝜏,𝒔 =
∑︁
𝑒∈𝐸𝜎

𝑣

𝑝𝜏𝜎,𝜏,𝒔,𝑒 . (13)

(3) For each (𝜎, 𝜏, 𝒔) ∈ V \ L and 𝑒 ∈ 𝐸𝜎𝑣 where 𝑣 = 𝑣 (𝜎, 𝜏), if Ham (𝜎, 𝐸𝑣) < Ham (𝜏, 𝐸𝑣), we have

𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝
𝜎∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 , 𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝

𝜎∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←0),𝒔◦𝑒 + 𝑝

𝜎∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 , (14)

𝑝𝜏𝜎,𝜏,𝒔,𝑒 = 𝑝
𝜏∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 + 𝑝

𝜏∧(𝑒←0)
𝜎∧(𝑒←1),𝜏∧(𝑒←0),𝒔◦𝑒 , 𝑝𝜏𝜎,𝜏,𝒔,𝑒 = 𝑝

𝜏∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 . (15)

Otherwise, we have

𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝
𝜎∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 + 𝑝

𝜎∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←1),𝒔◦𝑒 , 𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝

𝜎∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 , (16)

𝑝𝜏𝜎,𝜏,𝒔,𝑒 = 𝑝
𝜏∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 , 𝑝𝜏𝜎,𝜏,𝑆,𝑒 = 𝑝

𝜏∧(𝑒←1)
𝜎∧(𝑒←0),𝜏∧(𝑒←1),𝒔◦𝑒 + 𝑝

𝜏∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 . (17)
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(4) For each (𝜎, 𝜏, 𝒔) ∈ V , we have

𝑝𝜎𝜎,𝜏,𝒔 = 𝑝𝜏𝜎,𝜏,𝒔 ·
𝜇𝑒⊥ (1)
𝜇𝑒⊥ (0)

· 𝜇 (𝜏)
𝜇 (𝜎) . (18)

Recall the definitions of 𝐵 and D(·) in (3) and Definition 17. The next lemma provides a key property
for bounding the error of our marginal ratio estimator in Section 4.3, introduced by the bad leaves in Lbad.

Lemma 21. For each (𝜎, 𝜏, 𝒔) ∈ V \ L, let D ≜ D(𝜎, 𝜏, 𝒔). Then D ≠ ∅. In addition,∑︁
(𝜎 ′,𝜏 ′,𝒔′ ) ∈D

𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ ≥ 𝐵 · 𝑝𝜎𝜎,𝜏,𝒔,
∑︁

(𝜎 ′,𝜏 ′,𝒔′ ) ∈D
𝑝𝜏
′

𝜎 ′,𝜏 ′,𝒔 ≥ 𝐵 · 𝑝𝜏𝜎,𝜏,𝒔 . (19)

The lemma states a lower bound for the probability of a successful coupling at the node (𝜎, 𝜏, 𝒔), which
is derived from the marginal bound in Lemma 6. A formal proof of Lemma 21 is provided in Appendix C.1.

4 The Marginal Ratio Estimator via Linear Program

In this section, we design a deterministic algorithm to efficiently approximate the marginal ratio for any
Holant instance satisfying Condition 1. We start by establishing a linear program based on the truncated
extended coupling tree, and then design a marginal estimator using this linear program. This section is
dedicated to proving the following theorem.

Theorem 22. There exists a deterministic algorithm A such that given as input any 𝜀 ∈ (0, 1/4) and any
instance Φ = (𝐺 = (𝑉 , 𝐸),𝒇 ) satisfying Condition 1 with any edge 𝑒 ∈ 𝐸, it outputs a number 𝑅 such that

(1 − 𝜀)𝑅Φ(𝑒) ≤ 𝑅 ≤ (1 + 𝜀)𝑅Φ(𝑒),

within time 𝑂
(
|𝑉 | · 𝜀−poly(Δ(𝐺 ),1/𝐵 (Φ) )

)
.

4.1 Setting up the linear program

We first introduce a linear program induced by the coupling process 𝑃cp described in Definition 10. Our
linear program is built on the extended coupling tree of 𝑃cp rather than the original coupling tree.

Definition 23 (Linear program induced by the coupling). For any instance (Φ = (𝐺,𝒇 ), 𝜎⊥, 𝜏⊥, 𝑣⊥) satisfying
Condition 2 and any positive integer ℓ , let T = Tℓ (Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) be the ℓ-truncated extended coupling tree in
Definition 14 and 0 ≤ 𝑟− ≤ 𝑟+ be two parameters. The LP induced by the ℓ-truncated random process in
Definition 10 is as follows. The variables of the LP are:

• For each (𝜎, 𝜏, 𝒔) ∈ 𝑉 (T ), there are two variables 𝑝𝜎𝜎,𝜏,𝒔 , 𝑝𝜏𝜎,𝜏,𝒔 .

• For each (𝜎, 𝜏, 𝒔) ∈ V \ L and each 𝑒 ∈ 𝐸𝜎
𝑣 (𝜎,𝜏 ) , there are two variables 𝑝

𝜎
𝜎,𝜏,𝒔,𝑒 , and 𝑝

𝜏
𝜎,𝜏,𝒔,𝑒 .

The constraints of the LP are:

1. All 𝑝𝜎𝜎,𝜏,𝒔, 𝑝
𝜏
𝜎,𝜏,𝒔, 𝑝

𝜎
𝜎,𝜏,𝒔,𝑒 , 𝑝

𝜏
𝜎,𝜏,𝒔,𝑒 are in [0, 1]. In particular, 𝑝𝜎⊥𝜎⊥,𝜏⊥,∅ = 𝑝

𝜏⊥
𝜎⊥,𝜏⊥,∅ = 1.
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2. For each (𝜎, 𝜏, 𝒔) ∈ V \ L, let 𝑣 = 𝑣 (𝜎, 𝜏). Then

𝑝𝜎𝜎,𝜏,𝒔 =
∑︁
𝑒∈𝐸𝜎

𝑣

𝑝𝜎𝜎,𝜏,𝒔,𝑒 , 𝑝𝜏𝜎,𝜏,𝒔 =
∑︁
𝑒∈𝐸𝜎

𝑣

𝑝𝜏𝜎,𝜏,𝒔,𝑒 . (20)

3. For each (𝜎, 𝜏, 𝒔) ∈ V \ L and 𝑒 ∈ 𝐸𝜎𝑣 where 𝑣 = 𝑣 (𝜎, 𝜏), if Ham (𝜎, 𝐸𝑣) < Ham (𝜏, 𝐸𝑣), then

𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝
𝜎∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 , 𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝

𝜎∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←0),𝒔◦𝑒 + 𝑝

𝜎∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 , (21)

𝑝𝜏𝜎,𝜏,𝒔,𝑒 = 𝑝
𝜏∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 + 𝑝

𝜏∧(𝑒←0)
𝜎∧(𝑒←1),𝜏∧(𝑒←0),𝒔◦𝑒 , 𝑝𝜏𝜎,𝜏,𝒔,𝑒 = 𝑝

𝜏∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 . (22)

Otherwise,

𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝
𝜎∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 + 𝑝

𝜎∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←1),𝒔◦𝑒 , 𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝

𝜎∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 , (23)

𝑝𝜏𝜎,𝜏,𝒔,𝑒 = 𝑝
𝜏∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 , 𝑝𝜏𝜎,𝜏,𝒔,𝑒 = 𝑝

𝜏∧(𝑒←1)
𝜎∧(𝑒←0),𝜏∧(𝑒←1),𝒔◦𝑒 + 𝑝

𝜏∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 . (24)

4. For any (𝜎, 𝜏, 𝒔) ∈ Lgood ∩ V ,

𝜇 (𝜏)
𝜇 (𝜎) · 𝑟

− · 𝑝𝜏𝜎,𝜏,𝒔 ≤ 𝑝𝜎𝜎,𝜏,𝒔 ≤
𝜇 (𝜏)
𝜇 (𝜎) · 𝑟

+ · 𝑝𝜏𝜎,𝜏,𝒔 . (25)

5. For any (𝜎, 𝜏, 𝒔) ∈ V \ L and D ≜ D(𝜎, 𝜏, 𝒔),∑︁
(𝜎 ′,𝜏 ′,𝒔′ ) ∈D

𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ ≥ 𝐵 · 𝑝𝜎𝜎,𝜏,𝒔,
∑︁

(𝜎 ′,𝜏 ′,𝒔′ ) ∈D
𝑝𝜏
′

𝜎 ′,𝜏 ′,𝒔′ ≥ 𝐵 · 𝑝𝜏𝜎,𝜏,𝒔 . (26)

6. For each node (𝜎, 𝜏, 𝒔) in 𝑉 (T ) \ V , 𝑝𝜎𝜎,𝜏,𝒔 = 𝑝𝜏𝜎,𝜏,𝒔 = 0.

Unlike typical LPs in the literature [Moi19, GLLZ19, GGGY21, JPV22, WY24], we introduce a new set
of auxiliary constraints to mimic the fractional choice of edges in (20). Moreover, the above LP bounds the
error caused by the coupling in a few steps within a single constraint (26). These design reflects the nature
of the coupling in [CG24] and the structure of the extended coupling tree. As we shall see, the constraints
presented in (26) play a crucial role in bounding the deviation of our bootstrap paradigm from the coupling
procedure 𝑃cp, particularly in scenarios where the “wrong” edges may be selected.

4.2 The analysis of the linear program

Recall the definition of the marginal ratio 𝑅Φ(𝑒⊥) in (6). In this section, we demonstrate that the feasibility
of the LP in Definition 23 can be efficiently checked. Furthermore, if the LP is feasible, one can obtain a
good approximation of 𝑅Φ(𝑒⊥).

At first, we show the efficiency of constructing and verifying the feasibility of the LP.
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Lemma 24 (Cost for constructing LP). For any instance (Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) satisfying Condition 2, any non-
negative integer ℓ ≥ 0 and any two real numbers 0 ≤ 𝑟− ≤ 𝑟+, the LP in Definition 23 can be constructed in
time poly

(
ΔΔℓ

)
. Thus one can check the feasibility of the LP in time poly

(
ΔΔℓ

)
.

The following lemma ensures the feasibility of the LP by the coupling process.

Lemma 25 (Feasibility of LP). If 𝑟− ≤ 𝑅Φ(𝑒⊥) ≤ 𝑟+, a feasible solution to the LP in Definition 23 exists.

For completeness, we provide the full proofs of the above two lemmas in Appendix C.2.
To approximate themarginal ratio𝑅Φ(𝑒⊥), the key property is that a feasible solution to the LP provides

both upper and lower bounds for it.

Theorem 26. Assume that all the constraints of the LP in Definition 23 hold. Then it holds that

𝑟−
(
1 −

(
1 − 𝐵2) ℓ ) ≤ 𝑅Φ(𝑒⊥) ≤ 𝑟+

(
1 −

(
1 − 𝐵2) ℓ )−1 .

To prove Theorem 26, we show some properties of the feasible solution to the LP.

Lemma 27. Assume that all the constraints of the LP in Definition 23 hold. Then it holds that

𝜇𝑒⊥ (1) =
∑︁

(𝜎,𝜏,𝒔 ) ∈L
𝜇 (𝜎) · 𝑝𝜎𝜎,𝜏,𝒔,

𝜇𝑒⊥ (0) =
∑︁

(𝜎,𝜏,𝒔 ) ∈L
𝜇 (𝜏) · 𝑝𝜏𝜎,𝜏,𝒔 .

The following lemma is the key ingredient to prove Lemma 27.

Lemma 28. Assume that all the constraints of the LP in Definition 23 hold. Then it holds that

∀𝑥 ∈ 𝜎⊥,
∑︁

(𝜎,𝜏,𝒔 ) ∈L: 𝑥∈𝜎
𝑝𝜎𝜎,𝜏,𝒔 = 1, (27)

∀𝑦 ∈ 𝜏⊥,
∑︁

(𝜎,𝜏,𝒔 ) ∈L: 𝑦∈𝜏
𝑝𝜏𝜎,𝜏,𝒔 = 1. (28)

A formal proof of this lemma is in Appendix C.2. Here we give an intuitive explanation of (27). For
any 𝑥 ∈ 𝜎⊥, the collection of values 𝑝𝜎𝜎,𝜏,𝒔 and 𝑝𝜎𝜎,𝜏,𝒔,𝑒 induces a random walk starting from (𝜎⊥, 𝜏⊥,∅) on
the ℓ-truncated extended coupling tree:

• When the current node is (𝜎, 𝜏, 𝒔), move to (𝜎, 𝜏, 𝒔, 𝑒) with probability proportional to 𝑝𝜎𝜎,𝜏,𝒔,𝑒 accord-
ing to the rule in (20).

• When the current node is (𝜎, 𝜏, 𝒔, 𝑒), move to a node (𝜎 ′, 𝜏 ′, 𝒔′) such that 𝑥 ∈ 𝜎 ′ according to the rule
in (21) or (23), depending on whether Ham (𝜎, 𝐸𝑣) < Ham (𝜏, 𝐸𝑣) or not.

The (27) simply states that the random walk terminates at one of nodes in L with probability 1.
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Proof of Lemma 27. We have∑︁
(𝜎,𝜏,𝒔 ) ∈L

𝜇 (𝜎) · 𝑝𝜎𝜎,𝜏,𝒔 =
∑︁

(𝜎,𝜏,𝒔 ) ∈L
𝑝𝜎𝜎,𝜏,𝒔

∑︁
𝑥∈𝜎

𝜇 (𝑥) =
∑︁

(𝜎,𝜏,𝒔 ) ∈L
𝑝𝜎𝜎,𝜏,𝒔

∑︁
𝑥∈𝜎⊥
(𝜇 (𝑥) · 𝟙 [𝑥 ∈ 𝜎]) .

Swapping the summations, we obtain∑︁
(𝜎,𝜏,𝒔 ) ∈L

𝜇 (𝜎) · 𝑝𝜎𝜎,𝜏,𝒔 =
∑︁
𝑥∈𝜎⊥

𝜇 (𝑥)
∑︁

(𝜎,𝜏,𝒔 ) ∈L

(
𝑝𝜎𝜎,𝜏,𝒔 · 𝟙 [𝑥 ∈ 𝜎]

)
=

∑︁
𝑥∈𝜎⊥

𝜇 (𝑥)
∑︁

(𝜎,𝜏,𝒔 ) ∈L: 𝑥∈𝜎
𝑝𝜎𝜎,𝜏,𝒔

=
∑︁
𝑥∈𝜎⊥

𝜇 (𝑥) (by (27))

= 𝜇𝑒⊥ (1) .

Similarly, by (28), we also have ∑︁
(𝜎,𝜏,𝒔 ) ∈L

𝜇 (𝜏) · 𝑝𝜏𝜎,𝜏,𝒔 = 𝜇𝑒⊥ (0) .

The lemma is proved. □

By Lemma 27, to bound the marginal ratio 𝑅Φ(𝑒⊥) = 𝜇𝑒⊥ (1)/𝜇𝑒⊥ (0), it suffices to bound the ratio(
𝜇 (𝜎) · 𝑝𝜎𝜎,𝜏,𝒔

)
/
(
𝜇 (𝜏) · 𝑝𝜏𝜎,𝜏,𝒔

)
for each leaf (𝜎, 𝜏, 𝒔) ∈ L as in (25). For each good leaf (𝜎, 𝜏, 𝒔) ∈ Lgood, it is

straightforward to verify whether (25) holds, because 𝜇 (𝜎)/𝜇 (𝜏) can be calculated efficiently by Item (3)
in Proposition 18. However, for a bad leaf (𝜎, 𝜏, 𝒔) ∈ Lbad, it is challenging to determine whether (25) holds,
as we do not know how to estimate 𝜇 (𝜎)/𝜇 (𝜏). The following lemma allows us to disregard all bad leaves
at the cost of a small error.

Lemma 29. Assume that all the constraints of the LP in Definition 23 hold. Then it holds that∑︁
(𝜎,𝜏,𝒔 ) ∈Lbad

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎) ≤ (1 − 𝐵2)ℓ , (29)

∑︁
(𝜎,𝜏,𝒔 ) ∈Lbad

𝑝𝜏𝜎,𝜏,𝒔 · 𝜇𝜏⊥𝒔 (𝜏) ≤ (1 − 𝐵2)ℓ . (30)

The proof of Lemma 29 is via induction on ℓ and is provided in Appendix C.2. Here we provide an
intuitive explanation of (29). The collection of values 𝑝𝜎𝜎,𝜏,𝒔 and 𝑝𝜎𝜎,𝜏,𝒔,𝑒 induces a random walk starting
from (𝜎⊥, 𝜏⊥,∅) to a leaf node on the ℓ-truncated extended coupling tree:

• When the current node is (𝜎, 𝜏, 𝒔), move to (𝜎, 𝜏, 𝒔, 𝑒) with probability proportional to 𝑝𝜎𝜎,𝜏,𝒔,𝑒 accord-
ing to the rule in (20).

• When the current node is (𝜎, 𝜏, 𝒔, 𝑒), firstly sample the assignment 𝜎𝑒 on 𝑒 according to the marginal
distribution 𝜇𝜎𝑒 , and then move to (𝜎 ∧𝜎𝑒 , 𝜏 ∧ 𝜏𝑒 , 𝒔 ◦ 𝑒) with probability proportional to 𝑝𝜎∧𝜎𝑒𝜎∧𝜎𝑒 ,𝜏∧𝜏𝑒 ,𝒔◦𝑒
according to the rule in (21) or (23), depending on whether Ham (𝜎, 𝐸𝑣) < Ham (𝜏, 𝐸𝑣) or not.
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For any bad leaf (𝜎, 𝜏, 𝒔) ∈ Lbad, we have 𝐿(𝜎, 𝜏) = ℓ . Thus, before reaching any bad leaf from (𝜎⊥, 𝜏⊥,∅),
the random work will traverse at least ℓ internal node (𝜎 ′, 𝜏 ′, 𝒔′) ∈ V \ L along the path. At each in-
ternal node (𝜎 ′, 𝜏 ′, 𝒔′), after several rounds of two steps moving, the probability of arriving at a node in
D(𝜎 ′, 𝜏 ′, 𝒔′) ⊆ Lgood can be lower bounded by 𝐵2. Here, one 𝐵 is due to Constraint 5, and the other 𝐵 is
due to the marginal lower bound in Lemma 6. Thus, the probability of reaching a bad leaf is no more than
(1−𝐵2)ℓ . The left side of (29) represents the probability that the random walk arrives at a bad leaf. Hence,
we obtain the upper bound in (29).

Now we prove Theorem 26 with the above lemmas.

Proof of Theorem 26. By Lemma 27, it holds that

𝜇𝑒⊥ (1) =
∑︁

(𝜎,𝜏,𝒔 ) ∈L
𝑝𝜎𝜎,𝜏,𝒔 · 𝜇 (𝜎)

=
∑︁

(𝜎,𝜏,𝒔 ) ∈Lgood

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇 (𝜎) +
∑︁

(𝜎,𝜏,𝒔 ) ∈Lbad

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇 (𝜎)

=
∑︁

(𝜎,𝜏,𝒔 ) ∈Lgood

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇 (𝜎) + 𝜇𝑒⊥ (1)
∑︁

(𝜎,𝜏,𝒔 ) ∈Lbad

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎)

≤
∑︁

(𝜎,𝜏,𝒔 ) ∈Lgood

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇 (𝜎) +
(
1 − 𝐵2) ℓ 𝜇𝑒⊥ (1)

where the last inequality holds from Lemma 29. Thus we have∑︁
(𝜎,𝜏,𝒔 ) ∈Lgood

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇 (𝜎) ≤ 𝜇𝑒⊥ (1) ≤
1

1 − (1 − 𝐵2)ℓ
∑︁

(𝜎,𝜏,𝒔 ) ∈Lgood

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇 (𝜎) .

Similarly, we also have∑︁
(𝜎,𝜏,𝒔 ) ∈Lgood

𝑝𝜏𝜎,𝜏,𝒔 · 𝜇 (𝜏) ≤ 𝜇𝑒⊥ (0) ≤
1

1 − (1 − 𝐵2)ℓ
∑︁

(𝜎,𝜏,𝒔 ) ∈Lgood

𝑝𝜏𝜎,𝜏,𝒔 · 𝜇 (𝜏) .

Hence, by (25) we have

𝜇𝑒⊥ (1)
𝜇𝑒⊥ (0)

≤ 1
1 − (1 − 𝐵2)ℓ

∑
(𝜎,𝜏,𝒔 ) ∈Lgood

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇 (𝜎)∑
(𝜎,𝜏,𝒔 ) ∈Lgood

𝑝𝜏𝜎,𝜏,𝒔 · 𝜇 (𝜏)
≤ 𝑟+

1 − (1 − 𝐵2)ℓ
,

and

𝜇𝑒⊥ (1)
𝜇𝑒⊥ (0)

≥
(
1 −

(
1 − 𝐵2) ℓ ) ∑

(𝜎,𝜏,𝒔 ) ∈Lgood
𝑝𝜎𝜎,𝜏,𝒔 · 𝜇 (𝜎)∑

(𝜎,𝜏,𝒔 ) ∈Lgood
𝑝𝜏𝜎,𝜏,𝒔 · 𝜇 (𝜏)

≥
(
1 −

(
1 − 𝐵2) ℓ ) 𝑟− .

□

4.3 The marginal ratio estimator

Given any instance satisfying Condition 1, we are now ready to complete the proof of Theorem 22 by
employing the linear program inDefinition 23. The key ingredient to Theorem 22 is the following estimator
for the marginal ratio of the half-edge based on the linear program.
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Lemma 30. There exists a deterministic algorithm A⊥ such that given as input any 𝜀 ∈ (0, 1/4) and any
instance (Φ = (𝐺,𝒇 ), 𝜎⊥, 𝜏⊥, 𝑣⊥) satisfying Condition 2, it outputs a number 𝑅 such that

(1 − 𝜀)𝑅Φ(𝑒⊥) ≤ 𝑅 ≤ (1 + 𝜀)𝑅Φ(𝑒⊥),

within time |𝑉 (𝐺) | · 𝜀−poly(Δ(𝐺 ),1/𝐵 (Φ) ) .

Proof. Recall the definition of 𝐵(Φ) in (3). For simplicity, let Δ ≜ Δ(𝐺), 𝐵 ≜ 𝐵(Φ) and 𝑟 = 𝑟max(Φ). Set

ℓ =

⌈
log 𝜀 − log 2
log (1 − 𝐵2)

⌉
(31)

The following binary search calculates 𝑅. Initially, set 𝑟 11 ← 0 and 𝑟 12 ← 𝑟 and 𝑖 ← 1. Then, repeat the
following steps:

(1) Let LP1 denote the LP in Definition 23 for the instance (Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) with parameters 𝑟− = 𝑟 𝑖1, 𝑟
+ =

(𝑟 𝑖1+𝑟 𝑖2)/2 and ℓ . Let LP2 denote the LP in Definition 23 for the instance (Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) with parameters
𝑟− = (𝑟 𝑖1 + 𝑟 𝑖2)/2, 𝑟+ = 𝑟 𝑖2 and ℓ . Decide the feasibility of LP1 and LP2.

(2) If both LP1 and LP2 are feasible or 𝑟 𝑖1 ≥ 𝑟 𝑖2

(
1 −

(
1 − 𝐵2) ℓ ) , let 𝑅 = (𝑟 𝑖1 + 𝑟 𝑖2)/2 and terminate the binary

search. Otherwise, proceed to the next step.

(3) If LP1 is feasible, let 𝑟 𝑖+12 ← (𝑟 𝑖1 + 𝑟 𝑖2)/2; otherwise, let 𝑟 𝑖+11 ← (𝑟 𝑖1 + 𝑟 𝑖2)/2. Let 𝑖 ← 𝑖 + 1.

We claim 𝑟 𝑖1 ≤ 𝑅Φ(𝑒⊥) ≤ 𝑟 𝑖2 for each 𝑖 > 0 in the binary search. We prove the claim by induction. For the
base case, by Lemma 8, we have 0 ≤ 𝑅Φ(𝑒⊥) ≤ 𝑟max(Φ) = 𝑟 . Thus, initially we have 𝑟 11 ≤ 𝑅Φ(𝑒⊥) ≤ 𝑟 12 . For
the induction step, by Lemma 25, if 𝑟− ≤ 𝑅Φ(𝑒⊥) ≤ 𝑟+, then a feasible solution to the LP exists. Combined
with the induction hypothesis, we have at least one of LP1 and LP2 is feasible in round 𝑖 . In Item 3, at
most one of LP1 and LP2 is feasible. Combined with that at least one of them is feasible, we have exactly
one of LP1 and LP2 is feasible in Item 3. Assume that LP1 is feasible in Item 3. Then LP2 is infeasible.
Combined with Lemma 25, we have either 𝑅Φ(𝑒⊥) > 𝑟 𝑖2 or 𝑅Φ(𝑒⊥) < (𝑟 𝑖1 + 𝑟 𝑖2)/2. Combined with the
induction hypothesis, we have 𝑟 𝑖1 ≤ 𝑅Φ(𝑒⊥) ≤ (𝑟 𝑖1 + 𝑟 𝑖2)/2. Thus, we have 𝑟 𝑖+11 ≤ 𝑅Φ(𝑒⊥) ≤ 𝑟 𝑖+12 . Similarly,
if LP1 is infeasible, we also have 𝑟 𝑖+11 ≤ 𝑅Φ(𝑒⊥) ≤ 𝑟 𝑖+12 .

When the binary research stops, we have either both LP1 and LP2 are feasible or 𝑟 𝑖1 ≥ 𝑟 𝑖2

(
1 −

(
1 − 𝐵2) ℓ ) .

If both LP1 and LP2 are feasible, by Theorem 26 we have

𝑟 𝑖1

(
1 −

(
1 − 𝐵2) ℓ ) ≤ 𝑅Φ(𝑒⊥) ≤

𝑟 𝑖1 + 𝑟 𝑖2
2

(
1 −

(
1 − 𝐵2) ℓ )−1 ,

𝑟 𝑖1 + 𝑟 𝑖2
2

(
1 −

(
1 − 𝐵2) ℓ ) ≤ 𝑅Φ(𝑒⊥) ≤ 𝑟 𝑖2

(
1 −

(
1 − 𝐵2) ℓ )−1 .

Combined with 𝑅 = (𝑟 𝑖1 + 𝑟 𝑖2)/2, we have

𝑅

(
1 −

(
1 − 𝐵2) ℓ ) ≤ 𝑅Φ(𝑒⊥) ≤ 𝑅

(
1 −

(
1 − 𝐵2) ℓ )−1 . (32)

If 𝑟 𝑖1 ≥ 𝑟 𝑖2

(
1 −

(
1 − 𝐵2) ℓ ) , we have

𝑟 𝑖2

(
1 −

(
1 − 𝐵2) ℓ ) ≤ 𝑟 𝑖1 + 𝑟 𝑖2

2 ≤ 𝑟 𝑖1

(
1 −

(
1 − 𝐵2) ℓ )−1 .
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Combined with 𝑟 𝑖1 ≤ 𝑅Φ(𝑒⊥) ≤ 𝑟 𝑖2 and 𝑅 = (𝑟 𝑖1 + 𝑟 𝑖2)/2, we also have (32). Moreover, by (31) one can verify(
1 −

(
1 − 𝐵2) ℓ ) ≥ 1 − 𝜀/2 (33)

Combined with (32), we have
(1 − 𝜀)𝑅Φ(𝑒⊥) ≤ 𝑅 ≤ (1 + 𝜀)𝑅Φ(𝑒⊥) .

Now we turn to the running time of the algorithm. Recall that we always assume that the signature
𝑓𝑣 = [𝑓𝑣 (0), · · · , 𝑓𝑣 (𝑑)] at 𝑣 satisfies 𝑑 = deg𝐺 (𝑣) ≤ Δ for each vertex 𝑣 ∈ 𝑉 (𝐺). Combining (3), (2) with
the the assumption, one can verify that 𝐵 and ℓ can be calculated within time𝑂 ( |𝑉 (𝐺) | · 2Δ). Recall that if
𝑟 𝑖1 ≥ 𝑟 𝑖2

(
1 −

(
1 − 𝐵2) ℓ ) = 𝑟 𝑖2(1 − 𝜀/2), the binary search stops. Then one can verify that the binary search

runs for at most 𝑂 (log 2
𝜀
) = 𝑂 (log 1

𝜀
) rounds. For each round of the binary search, by Lemma 24 we have

the time cost is poly
(
ΔΔℓ

)
. Meanwhile, we have

ΔΔℓ

(by (31)) ≤ exp
(
Δ logΔ

(
1 + log 𝜀 − log 2

log (1 − 𝐵2)

))
(by log (1 − 𝑥) ≤ −𝑥 for 𝑥 ∈ (0, 1)) ≤ exp

(
Δ logΔ

(
1 + (log 2 − log 𝜀)/𝐵2) )

= 𝜀−poly(Δ,1/𝐵) .

Hence, the total cost of the algorithm is

𝑂

(
2Δ |𝑉 (𝐺) | + log 1

𝜀
· poly

(
ΔΔℓ

))
= 𝑂

(
2Δ |𝑉 (𝐺) | + log 1

𝜀
· 𝜀−poly(Δ,1/𝐵)

)
= |𝑉 (𝐺) | · 𝜀−poly(Δ,1/𝐵) .

The theorem is proved. □

Now we can prove Theorem 22.

Proof of Theorem 22. Given any instanceΦ = (𝐺 = (𝑉 , 𝐸),𝒇 ) satisfying Condition 1, for each 𝑒 = {𝑢, 𝑣} ∈ 𝐸,
if 𝑓𝑢 (1) = 0 or 𝑓𝑣 (1) = 0, by (1), we have Pr𝑋∼𝜇Φ [𝑋 (𝑒) = 1] = 0. Combining with (6), we have 𝑅Φ(𝑒) = 0.
Thus, if 𝑓𝑢 (1) = 0 or 𝑓𝑣 (1) = 0, the algorithm A can simply output 𝑅 = 0, satisfying both the error bound
and the time complexity stated in the theorem.

In the following, we assume 𝑓𝑢 (1) > 0 and 𝑓𝑣 (1) > 0. Let 𝑒𝑢 = {𝑢} and 𝑒𝑣 = {𝑣} be two half-edges
obtained by splitting the edge 𝑒 . See Figure 1 for an example. Define three instances as follows:

𝑒

𝑢 𝑣
split 𝑒
=⇒ 𝑒𝑢𝑢 𝑒𝑣 𝑣

Figure 1: An example of splitting the edge 𝑒 = {𝑢, 𝑣}. 𝑒𝑢, 𝑒𝑣 are the half-edges after splitting 𝑒 = {𝑢, 𝑣}.

• Let 𝐺0 = (𝑉 , 𝐸0 = 𝐸 \ {𝑒} ∪ {𝑒𝑢, 𝑒𝑣}). Let Φ0 = (𝐺0,𝒇 ).

• Let Φ1 = Φ𝑒𝑢←1
0 . Denote its underlying graph by 𝐺1 = (𝑉 , 𝐸1 = 𝐸 \ {𝑒} ∪ {𝑒𝑣}) and its signatures by

𝒇 ′ =
{
𝑓 ′𝑤

}
𝑤∈𝑉 .
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• Let Φ2 = Φ𝑒𝑣←0
0 . Denote its underlying graph by 𝐺2 = (𝑉 , 𝐸2 = 𝐸 \ {𝑒} ∪ {𝑒𝑢}).

Moreover, we have the following properties:

• All of Δ (𝐺0) ,Δ (𝐺1) and Δ (𝐺2) are no more than Δ(𝐺);

• By 𝑓𝑢 (1) > 0, we have 𝑓 ′𝑢 (0) > 0. Combined with Φ = (𝐺,𝒇 ) satisfies Condition 1, one can verify
that (Φ1, (𝑒𝑣 ← 1), (𝑒𝑣 ← 0), 𝑣) satisfies Condition 2. Similarly, we have (Φ2, (𝑒𝑢 ← 1), (𝑒𝑢 ← 0), 𝑢)
satisfies Condition 2;

• Recall the definition of 𝑟max in (4) and 𝐵 in (3). For the instance Φ0, we have 𝑟max(Φ0) = 𝑟max(Φ) and
𝐵(Φ0) = 𝐵(Φ). By Lemma 5, we have

𝑟max(Φ1) ≤ 𝑟max(Φ0) = 𝑟max(Φ), 𝐵(Φ1) ≥ 𝐵(Φ0) = 𝐵(Φ),
𝑟max(Φ2) ≤ 𝑟max(Φ0) = 𝑟max(Φ), 𝐵(Φ2) ≥ 𝐵(Φ0) = 𝐵(Φ).

(34)

Set 𝜀1 = 𝜀2 = 𝜀/3. Combined these properties with Lemma 30, we have that 𝑅1 can be obtained within
time

|𝑉 (𝐺1) | · 𝜀−poly(Δ(𝐺1 ),1/𝐵 (Φ1 ) )
1 = |𝑉 | · 𝜀−poly(Δ(𝐺 ),1/𝐵 (Φ) )

where

(1 − 𝜀1)𝑅Φ1 (𝑒𝑣) ≤ 𝑅1 ≤ (1 + 𝜀1)𝑅Φ1 (𝑒𝑣), (35)

Similarly, 𝑅2 can be obtained within time

|𝑉 (𝐺2) | · 𝜀−poly(Δ(𝐺2 ),1/𝐵 (Φ2 ) )
1 = |𝑉 | · 𝜀−poly(Δ(𝐺 ),1/𝐵 (Φ) )

where

(1 − 𝜀2)𝑅Φ2 (𝑒𝑢) ≤ 𝑅2 ≤ (1 + 𝜀2)𝑅Φ2 (𝑒𝑢). (36)

Let 𝑅 = 𝑅1 · 𝑅2. Note that

𝑅Φ(𝑒) =
Pr𝑋∼𝜇Φ [𝑋 (𝑒) = 1]
Pr𝑋∼𝜇Φ [𝑋 (𝑒) = 0]

=
Pr𝑋∼𝜇Φ0 [𝑋 (𝑒𝑢) = 𝑋 (𝑒𝑣) = 1 | 𝑋 (𝑒𝑢) = 𝑋 (𝑒𝑣)]
Pr𝑋∼𝜇Φ0 [𝑋 (𝑒𝑢) = 𝑋 (𝑒𝑣) = 0 | 𝑋 (𝑒𝑢) = 𝑋 (𝑒𝑣)]

=
Pr𝑋∼𝜇Φ0 [𝑋 (𝑒𝑢) = 𝑋 (𝑒𝑣) = 1]
Pr𝑋∼𝜇Φ0 [𝑋 (𝑒𝑢) = 𝑋 (𝑒𝑣) = 0]

=
Pr𝑋∼𝜇Φ0 [𝑋 (𝑒𝑢) = 1 ∧ 𝑋 (𝑒𝑣) = 1]
Pr𝑋∼𝜇Φ0 [𝑋 (𝑒𝑢) = 1 ∧ 𝑋 (𝑒𝑣) = 0] ·

Pr𝑋∼𝜇Φ0 [𝑋 (𝑒𝑢) = 1 ∧ 𝑋 (𝑒𝑣) = 0]
Pr𝑋∼𝜇Φ0 [𝑋 (𝑒𝑢) = 0 ∧ 𝑋 (𝑒𝑣) = 0] (37)

=
Pr𝑋∼𝜇Φ0 [𝑋 (𝑒𝑣) = 1 | 𝑋 (𝑒𝑢) = 1]
Pr𝑋∼𝜇Φ0 [𝑋 (𝑒𝑣) = 0 | 𝑋 (𝑒𝑢) = 1] ·

Pr𝑋∼𝜇Φ0 [𝑋 (𝑒𝑢) = 1 | 𝑋 (𝑒𝑣) = 0]
Pr𝑋∼𝜇Φ0 [𝑋 (𝑒𝑢) = 0 | 𝑋 (𝑒𝑣) = 0]

=
Pr𝑋∼𝜇Φ1 [𝑋 (𝑒𝑣) = 1]
Pr𝑋∼𝜇Φ1 [𝑋 (𝑒𝑣) = 0] ·

Pr𝑋∼𝜇Φ2 [𝑋 (𝑒𝑢) = 1]
Pr𝑋∼𝜇Φ2 [𝑋 (𝑒𝑢) = 0]
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= 𝑅Φ1 (𝑒𝑣) · 𝑅Φ2 (𝑒𝑢).

Weemphasize that all the denominators in above inequalities are not 0 because all of 𝑓𝑢 (0), 𝑓𝑣 (0), 𝑓𝑢 (1), 𝑓𝑣 (1)
are larger than 0. Thus, we have

𝑅 = 𝑅1 · 𝑅2
(by (35) and (35)) ≥ (1 − 𝜀1) · (1 − 𝜀2) · 𝑅Φ(1) (𝑒𝑣) · 𝑅Φ(2) (𝑒𝑢)
(by 𝜀1 = 𝜀2 = 𝜀/3) = (1 − 𝜀/3)2 · 𝑅Φ(1) (𝑒𝑣) · 𝑅Φ(2) (𝑒𝑢)

(by 𝜖 ∈ (0, 1/4) and (37)) ≥ (1 − 𝜀)𝑅Φ(𝑒).

Similarly, we also have 𝑅 ≤ (1 + 𝜀)𝑅Φ(𝑒). In summary, we have (1 − 𝜀)𝑅Φ(𝑒) ≤ 𝑅 ≤ (1 + 𝜀)𝑅Φ(𝑒).
Nowwe consider the time cost for calculating 𝑅. One can verify that the time cost for constructing Φ(1)

and Φ(2) is𝑂 ( |𝑉 | · Δ(𝐺)). Recall that the time cost for calculating 𝑅1 and 𝑅2 is𝑂
(
|𝑉 | · 𝜀−poly(Δ(𝐺 ),1/𝐵 (Φ) )

)
.

In summary, the total time cost for calculating 𝑅 is 𝑂
(
|𝑉 | · 𝜀−poly(Δ(𝐺 ),1/𝐵 (Φ) )

)
. Hence the theorem is

proved. □

5 Approximate Counting

In this section, we present our deterministic algorithm for approximating the partition functions of in-
stances satisfying Condition 1. This algorithm is based on the marginal ratio estimator in Theorem 22.

Theorem 31. There is a deterministic algorithm such that given as input any 𝜀 > 0 and any instance Φ =(
𝐺 = (𝑉 , 𝐸),𝒇 = {𝑓𝑣}𝑣∈𝑉

)
satisfying Condition 1, it outputs a number 𝑍 such that

(1 − 𝜀)𝑍Φ ≤ 𝑍 ≤ (1 + 𝜀)𝑍Φ

within time 𝑂
(
|𝑉 | · ( |𝐸 | · 𝜀−1)poly(Δ(𝐺 ),1/𝐵 (Φ) )

)
.

Proof. Without loss of generality, assume that 𝜀 < 1/4, |𝐸 | = 𝑚 and 𝐸 = {𝑒1, . . . , 𝑒𝑚}. Let Φ1 = Φ and for
each 2 ≤ 𝑖 ≤ 𝑚 + 1, define Φ𝑖 = Φ𝑒𝑖←0

𝑖−1 . Note that the underlying graph in Φ𝑚+1 contains no edges and thus
by the definition of the partition function 𝑍Φ𝑚+1 ,

𝑍Φ𝑚+1 =
∏
𝑣∈𝑉

𝑓𝑣 (0) . (38)

By the assumption Φ satisfies Condition 1, we also have Φ𝑖 satisfies Condition 1 for each 𝑖 ∈ [𝑚 + 1]. Since
Φ𝑖 is a pinning of Φ𝑖−1 for 2 ≤ 𝑖 ≤ 𝑚 + 1, by Lemma 5, 𝐵(Φ) = 𝐵(Φ1) ≤ 𝐵(Φ2) ≤ . . . ≤ 𝐵(Φ𝑚+1). Thus, we
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have
𝑍Φ = 𝑍

𝑒1←0
Φ + 𝑍𝑒1←1

Φ

(by (6)) = (1 + 𝑅Φ(𝑒1)) 𝑍𝑒1←0
Φ

(by definitions of Φ1,Φ2) =
(
1 + 𝑅Φ1 (𝑒1)

)
𝑍Φ2

=
(
1 + 𝑅Φ1 (𝑒1)

) (
𝑍
𝑒2←0
Φ2

+ 𝑍𝑒2←1
Φ2

)
(by (6)) =

(
1 + 𝑅Φ1 (𝑒1)

) (
1 + 𝑅Φ2 (𝑒2)

)
𝑍
𝑒2←0
Φ2

(by definitions of Φ2,Φ3) =
(
1 + 𝑅Φ1 (𝑒1)

) (
1 + 𝑅Φ2 (𝑒2)

)
𝑍Φ3

= · · ·

= 𝑍Φ𝑚+1

𝑚∏
𝑖=1

(
1 + 𝑅Φ𝑖

(𝑒𝑖)
)

(by (38)) =
∏
𝑣∈𝑉

𝑓𝑣 (0)
𝑚∏
𝑖=1

(
1 + 𝑅Φ𝑖

(𝑒𝑖)
)
.

(39)

For each 1 ≤ 𝑖 ≤ 𝑚, we run the algorithmA in Theorem 22 with tolerance error 𝜀/(2𝑚) on the input Φ𝑖 , 𝑒𝑖
to obtain an 𝑅𝑖 where

(1 − 𝜀/(2𝑚))𝑅Φ𝑖
(𝑒𝑖) ≤ 𝑅𝑖 ≤ (1 + 𝜀/(2𝑚))𝑅Φ𝑖

(𝑒𝑖) . (40)

Define

𝑍 ≜
∏
𝑣∈𝑉

𝑓𝑣 (0)
𝑚∏
𝑖=1
(1 + 𝑅𝑖). (41)

Thus, we have

𝑍

𝑍Φ

(by (39) and (41)) =

𝑚∏
𝑖=1

(
1 + 𝑅𝑖

1 + 𝑅Φ𝑖
(𝑒𝑖)

)
(by (40)) ≥

𝑚∏
𝑖=1

(
1 + (1 − 𝜀/(2𝑚))𝑅Φ𝑖

(𝑒𝑖)
1 + 𝑅Φ𝑖

(𝑒𝑖)

)
≥

𝑚∏
𝑖=1

(
1 −

𝜀 · 𝑅Φ𝑖
(𝑒𝑖)

2𝑚(1 + 𝑅Φ𝑖
(𝑒𝑖))

)
≥

𝑚∏
𝑖=1

(
1 − 𝜀

2𝑚

)
(by 𝜀 ∈ (0, 1/4)) ≥ 1 − 𝜀.

Similarly, we also have

𝑍

𝑍Φ
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(by (39) and (41)) =

𝑚∏
𝑖=1

(
1 + 𝑅𝑖

1 + 𝑅Φ𝑖
(𝑒𝑖)

)
(by (40)) ≤

𝑚∏
𝑖=1

(
1 + (1 + 𝜀/(2𝑚))𝑅Φ𝑖

(𝑒𝑖)
1 + 𝑅Φ𝑖

(𝑒𝑖)

)
≤

𝑚∏
𝑖=1

(
1 +

𝜀 · 𝑅Φ𝑖
(𝑒𝑖)

2𝑚(1 + 𝑅Φ𝑖
(𝑒𝑖))

)
≤

𝑚∏
𝑖=1

(
1 + 𝜀

2𝑚

)
(by 𝜀 ∈ (0, 1/4)) ≤ 1 + 𝜀.

Now we turn to the running time of the algorithm. Firstly we can obtain
∏

𝑣∈𝑉 𝑓𝑣 (0) in time 𝑂 ( |𝑉 |).
For every 𝑖 ∈ [𝑚], by Theorem 22, we can obtain 𝑅𝑖 in time

𝑂

(
|𝑉 (𝐺𝑖) | (𝑚/𝜀)poly(Δ(𝐺𝑖 ),1/𝐵 (Φ𝑖 ) )

)
= 𝑂

(
|𝑉 | · (𝑚/𝜀)poly(Δ(𝐺 ),1/𝐵 (Φ) )

)
,

where 𝐺𝑖 denotes the underlying graph of Φ𝑖 and we use the fact 𝐵(Φ) ≤ 𝐵(Φ𝑖) due to Lemma 5. Hence
we can calculate 𝑍 in time

𝑂

(
|𝑉 | + |𝑉 | ·𝑚 · (𝑚/𝜀)poly(Δ(𝐺 ),1/𝐵 (Φ) )

)
= 𝑂

(
|𝑉 | · (𝑚 · 𝜀−1)poly(Δ(𝐺 ),1/𝐵 (Φ) )

)
.

The theorem is proved. □

The main result for counting 𝒃-matchings is an immediate corollary of Theorem 31.

Theorem 32. There exists a deterministic algorithm such that given any graph 𝐺 = (𝑉 , 𝐸) with maximum
degree Δ, any positive integer 𝑏, any vector 𝒃 = {𝑏𝑣}𝑣∈𝑉 satisfying 1 ≤ 𝑏𝑣 ≤ 𝑏 for every 𝑣 ∈ 𝑉 and any
𝜀 ∈ (0, 1) as input, it outputs a number 𝑍 such that

(1 − 𝜀)𝑍𝐺,𝒃 ≤ 𝑍 ≤ (1 + 𝜀)𝑍𝐺,𝒃

within time 𝑂
(
|𝑉 | · ( |𝐸 | · 𝜀−1)poly(Δ𝑏 )

)
where 𝑍𝐺,𝒃 is the number of 𝒃-matchings on 𝐺 .

Proof. Given any graph𝐺 = (𝑉 , 𝐸), any positive integer𝑏 and any vector 𝒃 = {𝑏𝑣}𝑣∈𝑉 satisfying 1 ≤ 𝑏𝑣 ≤ 𝑏,
for each 𝑣 ∈ 𝑉 , define a signature 𝑓𝑣 ≜ [𝑓𝑣 (0), 𝑓𝑣 (1), · · · , 𝑓𝑣 (deg𝐺 (𝑣))] where 𝑓𝑣 (𝑖) = 𝟙 [𝑖 ≤ 𝑏𝑣] for every
0 ≤ 𝑖 ≤ deg𝐺 (𝑣). Consider theHolant instanceΦ𝐺,𝒃 ≜ (𝐺,𝒇 ). One can verify thatΦ𝐺,𝒃 satisfies Condition 1
and 𝑍Φ𝐺,𝒃 = 𝑍𝐺,𝒃 . Moreover, by (3) and (4), it holds that 𝑟max(Φ𝐺,𝒃) = 1 and 𝐵(Φ𝐺,𝒃) ≥ 1/

(∑𝑏
𝑖=0

(Δ
𝑖

) )
=

Δ−poly(𝑏 ) . Thus, by Theorem 31, there is a deterministic algorithm such that given as input 𝜀 and Φ𝐺,𝒃 , it
outputs a number 𝑍 where (1 − 𝜀)𝑍𝐺,𝒃 ≤ 𝑍 ≤ (1 + 𝜀)𝑍𝐺,𝒃 within time

𝑂

(
|𝑉 | · ( |𝐸 | · 𝜀−1)poly(Δ(𝐺 ),1/𝐵 (Φ𝐺,𝒃 ) )

)
= 𝑂

(
|𝑉 | · ( |𝐸 | · 𝜀−1)poly(Δ𝑏 )

)
.

The theorem is proved. □
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A Counterexample

In this section, we give a counterexample to show that for general Holant instances, an arbitrary unpinned
edge in 𝐸𝜎𝑣 is not necessarily amendable in the coupling process Couple(Φ, 𝜎, 𝜏, 𝑣).

Consider theHolant instanceΦ = (𝐺,𝒇 )where the graph𝐺 = (𝑉 = {𝑣⊥, 𝑣1, 𝑣2, . . . , 𝑣5} , 𝐸 = {𝑒1, . . . , 𝑒5}∪
{𝑒⊥}) is shown as Figure 2 and the signatures 𝒇 = {𝑓𝑣}𝑣∈𝑉 are defined as 𝑓𝑣⊥ = [1, 1, 1, 0], 𝑓𝑣2 = [1, 1] and
𝑓𝑣1 = 𝑓𝑣3 = 𝑓𝑣4 = 𝑓𝑣5 = [1, 10, 0].

𝑣⊥

𝑣1 𝑣2 𝑣3

𝑣4 𝑣5

𝑒⊥

𝑒1 𝑒2 𝑒3

𝑒4 𝑒5

𝑒6

Figure 2: A counterexample against the arbitrary choice of edges.

Define two partial assignments 𝜎, 𝜏 on {𝑒⊥} as 𝜎 = (𝑒⊥ ← 1) and 𝜏 = (𝑒⊥ ← 0). One can easily verify
that the tuple (Φ, 𝜎, 𝜏, 𝑣⊥) satisfies Condition 2 and for 𝑒2 = {𝑣⊥, 𝑒2}, it holds that Ham(𝜎, 𝐸𝑣⊥) > Ham(𝜏, 𝐸𝑣⊥).
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However, by calculation,
𝜇𝜎𝑒2 (1) =

10301
24622 >

14321
38742 = 𝜇𝜏𝑒2 (1)

meaning that 𝑒2 is not an amendable edge. This phenomenon indicates that the choice of the edge in Line 4
and Line 7 through the coupling process cannot be arbitrary.

B Proofs for Properties of Holant Instances

In this section, we complete the deferred proofs for properties of Holant instances. Recall that Φ = (𝐺 =

(𝑉 , 𝐸 = 𝐸1 ∪ 𝐸2),𝒇 = {𝑓𝑣}) is a Boolean domain symmetric log-concave Holant instance satisfying Condi-
tion 1 and 𝜇 = 𝜇Φ is its Gibbs distribution.

B.1 Monotonicity under pinnings

We prove the monotonicity of quantities 𝑟max and 𝐵 under the pinnings.

Lemma 5 (Observation 15 in [CG24]). Given a Holant instance Φ = (𝐺 = (𝑉 , 𝐸 = 𝐸1 ∪ 𝐸2),𝒇 ) satisfy-
ing Condition 1, for an edge 𝑒 ∈ 𝐸 and 𝑐 ∈ {0, 1}, if 𝑍𝑒←𝑐

Φ > 0, then the following inequalities hold for 𝑟max
and 𝐵:

𝑟max(Φ) ≥ 𝑟max(Φ𝑒←𝑐), 𝐵(Φ) ≤ 𝐵(Φ𝑒←𝑐) .

Proof. First of all, since𝑍𝑒←𝑐
Φ > 0, 𝑓 𝑒←𝑐

𝑣 (0) > 0 for every 𝑣 ∈ 𝑉 and thus quantities 𝑟max(Φ𝑒←𝑐) and𝐵(Φ𝑒←𝑐)
are well-defined. By the assumption Φ satisfies Condition 1, it holds that for every 𝑣 ∈ 𝑉 , 𝑓𝑣 (0) > 0 and 𝑓𝑣
is log-concave. For convenience, assume that 𝑓𝑣 (𝑘) = 0 for 𝑘 > deg𝐺 (𝑣). By log-concavity, it holds that

𝑓𝑣 (𝑖)
𝑓𝑣 (0)

≥ 𝑓𝑣 (ℓ + 𝑖)
𝑓𝑣 (ℓ)

, ∀𝑖, ℓ ∈ ℕ (42)

with convention 0/0 = 0. Recall the definition of 𝑟max in (4). It holds that

𝑟max (Φ𝑒←𝑐) = max
𝑣∈𝑉

𝑓 𝑒←𝑐
𝑣 (1)
𝑓 𝑒←𝑐
𝑣 (0)

= max
{
max
𝑣∈𝑒

𝑓 𝑒←𝑐
𝑣 (1)
𝑓 𝑒←𝑐
𝑣 (0) , max

𝑣∈𝑉 \𝑒

𝑓 𝑒←𝑐
𝑣 (1)
𝑓 𝑒←𝑐
𝑣 (0)

}
(by definition of 𝒇𝑒←𝑐) = max

{
max
𝑣∈𝑒

𝑓𝑣 (1 + 𝑐)
𝑓𝑣 (𝑐)

, max
𝑣∈𝑉 \𝑒

𝑓𝑣 (1)
𝑓𝑣 (0)

}
(by (42)) ≤ max

{
max
𝑣∈𝑒

𝑓𝑣 (1)
𝑓𝑣 (0)

, max
𝑣∈𝑉 \𝑒

𝑓𝑣 (1)
𝑓𝑣 (0)

}
= 𝑟max(Φ) .

To show the inequality for 𝐵, by (3), it suffices to show that for every 𝑣 ∈ 𝑉 , we have

𝑃𝑓 𝑒←𝑐
𝑣
(0)

𝑃𝑓 𝑒←𝑐
𝑣
(𝑟max(Φ𝑒←𝑐)) ≥

𝑃𝑓𝑣 (0)
𝑃𝑓𝑣 (𝑟max(Φ))

. (43)

By (2), 𝑃𝑓 𝑒←𝑐
𝑣
(𝑥) is increasing on 𝑥 ≥ 0. Recall that 0 ≤ 𝑟max(Φ𝑒←𝑐) ≤ 𝑟max(Φ). To prove (43), we only need

to show
𝑃𝑓 𝑒←𝑐

𝑣
(0)

𝑃𝑓 𝑒←𝑐
𝑣
(𝑟max(Φ))

≥
𝑃𝑓𝑣 (0)

𝑃𝑓𝑣 (𝑟max(Φ))
. (44)
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For every 𝑣 ∈ 𝑉 \ {𝑢}, by the definition of 𝒇𝑒←𝑐 , we have 𝑓 𝑒←𝑐
𝑣 = 𝑓𝑣 and (44) holds trivially. For 𝑣 ∈ 𝑒 , let

𝑑 = deg𝐺 (𝑣) and thus deg𝐺𝑒←𝑐 (𝑣) = 𝑑 − 1. Since 𝑍𝑒←𝑐
Φ > 0, it holds that 𝑓𝑣 (𝑐) = 𝑓 𝑒←𝑐

𝑣 (0) > 0. By (2), we
have

𝑃𝑓 𝑒←𝑐
𝑣
(0)

𝑃𝑓 𝑒←𝑐
𝑣
(𝑟max(Φ))

(by (2)) =

∑𝑑−1
𝑖=0

(
𝑑−1
𝑖

)
𝑓 𝑒←𝑐
𝑣 (𝑖)0𝑖∑𝑑−1

𝑖=0
(
𝑑−1
𝑖

)
𝑓 𝑒←𝑐
𝑣 (𝑖)𝑟max(Φ)𝑖

=
𝑓 𝑒←𝑐
𝑣 (0)∑𝑑−1

𝑖=0
(
𝑑−1
𝑖

)
𝑓 𝑒←𝑐
𝑣 (𝑖)𝑟max(Φ)𝑖(

by definition of 𝑓 𝑒←𝑐
𝑣

)
=

𝑓𝑣 (𝑐)∑𝑑−1
𝑖=0

(
𝑑−1
𝑖

)
𝑓𝑣 (𝑖 + 𝑐)𝑟max(Φ)𝑖

=
1∑𝑑−1

𝑖=0
(
𝑑−1
𝑖

)
(𝑓𝑣 (𝑖 + 𝑐)/𝑓𝑣 (𝑐))𝑟max(Φ)𝑖(

by
(
𝑑
𝑖

)
≥

(
𝑑−1
𝑖

)
and (42)

)
≥ 1∑𝑑−1

𝑖=0
(
𝑑
𝑖

)
(𝑓𝑣 (𝑖)/𝑓𝑣 (0))𝑟max(Φ)𝑖

(by 𝑓𝑣 (𝑑) ≥ 0) ≥ 𝑓𝑣 (0)∑𝑑
𝑖=0

(
𝑑
𝑖

)
𝑓𝑣 (𝑖)𝑟max(Φ)𝑖

=
𝑃𝑓𝑣 (0)

𝑃𝑓𝑣 (𝑟max(Φ))
.

Combining all of the above arguments, we conclude the lemma. □

B.2 Feasibility of partial assignments

We recall the theorem for the feasibility of partial assignments.

Lemma 7. Given any instance Φ = (𝐺 = (𝑉 , 𝐸 = 𝐸1 ∪ 𝐸2),𝒇 ) satisfying Condition 1 with any partial assign-
ment 𝜎 , there is an algorithm deciding whether 𝜎 is feasible in time 𝑂 ( |Λ(𝜎) |).

To show the feasibility of a partial assignment 𝜎 , we first make the following claim.

Claim 33. A partial assignment 𝜎 is feasible if and only if the assignment 𝜎 ′ on 𝐸 is feasible where 𝜎 ′ is
defined as

𝜎 ′(𝑒) =
{
𝜎 (𝑒) 𝜎 ∈ Λ(𝜎)
0 otherwise

. (45)

Proof. When 𝜎 ′ is feasible, obviously 𝜎 is feasible since 𝜎 ′ ∈ 𝜎 . To see the other side, when 𝜎 is feasible,
there exists 𝜏 : 𝐸 → {0, 1}, 𝜏 ∈ 𝜎 such that 𝜇 (𝜏) > 0. Hence we have

∏
𝑣∈𝑉 𝑓𝑣 ( |𝜏 (𝐸𝑣) |) > 0 meaning that

𝑓𝑣 ( |𝜏 (𝐸𝑣) |) > 0 for every 𝑣 ∈ 𝑉 . Since 𝑓𝑣 is log-concave, 𝑓𝑣 (0) > 0 and |𝜎 ′(𝐸𝑣) | ≤ |𝜏 (𝐸𝑣) |, it holds that
𝑓𝑣 ( |𝜎 ′(𝐸𝑣) |) > 0. Therefore we obtain that 𝜇 (𝜎 ′) > 0 by the definition of 𝜇 (𝜎 ′). □

Proof of Lemma 7. By Claim 33, we check the feasibility of 𝜎 ′ defined as (45). In other words, we check
whether 𝑓 ( |𝜎 ′(𝐸𝑣) |) > 0 for every 𝑣 ∈ 𝑉 . By definition, for every 𝑣 ∈ 𝑉 , |𝜎 ′(𝐸𝑣) | = Ham(𝜎, 𝑣) and thus
𝑓 ( |𝜎 ′(𝐸𝑣) |) = 𝑓 (Ham(𝜎, 𝑣)). When Λ(𝜎) ∩ 𝐸𝑣 = ∅, we need to do nothing from the assumption 𝑓𝑣 (0) > 0.
Let𝑉 (𝜎) ≜ {𝑣 ∈ 𝑉 : Λ(𝜎) ∩ 𝐸𝑣 ≠ ∅}. It is not hard to see that we can find𝑉 (𝜎) and compute Ham(𝜎, 𝑣) for
every 𝑣 ∈ 𝑉 (𝜎) in time𝑂 ( |Λ(𝜎) |) by enumerating all edges in Λ(𝜎). Hence we can check the feasibility of
a partial assignment 𝜎 in time 𝑂 ( |Λ(𝜎) |). □
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B.3 Marginal ratio bounds

In this part, we prove the upper bound for marginal ratios.

Lemma 8. Given any Holant instance Φ = (𝐺 = (𝑉 , 𝐸 = 𝐸1 ∪ 𝐸2),𝒇 ) satisfying Condition 1 , for each half-
edge 𝑒 ∈ 𝐸2, it holds that

𝑅Φ(𝑒) ≤ 𝑟max(Φ) .

Proof. Let 𝑣 be the unique vertex incident to 𝑒 . Since 𝑓𝑣 is log-concave and 𝑓𝑣 (0) > 0, it holds that
𝑓𝑣 (𝑖 + 1) ≤ 𝑟max(Φ) 𝑓𝑣 (𝑖). Hence we have, for every 𝜎 ∈ {0, 1}𝐸 with 𝜎 (𝑒) = 1,

∏
𝑢∈𝑉 𝑓𝑢 ( |𝜎 (𝐸𝑢) |) ≤

𝑟max(Φ)
∏

𝑢∈𝑉 𝑓𝑢 ( |𝜎 ′(𝐸𝑢) |) where 𝜎 ′(𝑒′) = 𝜎 (𝑒′) for every 𝑒′ ∈ 𝐸 \ {𝑒} and 𝜎 ′(𝑒) = 0. Then by direct
calculation,

𝑅Φ(𝑒) =
𝑍𝑒←1
Φ

𝑍𝑒←0
Φ

=

∑
𝜎∈{0,1}𝐸 :𝜎 (𝑒 )=1

∏
𝑢∈𝑉 𝑓𝑢 ( |𝜎 (𝐸𝑢) |)∑

𝜎∈{0,1}𝐸 :𝜎 (𝑒 )=0
∏

𝑢∈𝑉 𝑓𝑢 ( |𝜎 (𝐸𝑢) |)

≤
𝑟max(Φ)

∑
𝜎∈{0,1}𝐸 :𝜎 (𝑒 )=0

∏
𝑢∈𝑉 𝑓𝑢 ( |𝜎 (𝐸𝑢) |)∑

𝜎∈{0,1}𝐸 :𝜎 (𝑒 )=0
∏

𝑢∈𝑉 𝑓𝑢 ( |𝜎 (𝐸𝑢) |)
≤ 𝑟max(Φ).

Then we conclude the upper bound. □

C Omitted Proofs

C.1 Omitted proofs in the coupling process and tree

Lemma 13. In Definition 10, the following properties hold:

1. For each (𝜎, 𝜏, 𝒔, 𝑣, 𝐿), we have

Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿)] ≤ 𝜇𝜎⊥𝒔 (𝜎), Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿)] ≤ 𝜇𝜏⊥𝒔 (𝜏) . (9)

2. For each (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) and 𝑒 ∈ 𝐸𝜎𝑣 , we have

Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿, 𝑒)] ≤ 𝜇𝜎⊥𝒔 (𝜎), Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿, 𝑒)] ≤ 𝜇𝜏⊥𝒔 (𝜏). (10)

Proof. To prove this lemma, it is sufficient to prove that for each (𝜎, 𝜏, 𝒔, 𝑣, 𝑡),

Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝑡)] ≤ 𝜇𝜎⊥𝒔 (𝜎) . (46)

Similarly, one can also prove that Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿)] ≤ 𝜇
𝜏⊥
𝒔 (𝜏). Thus, (9) is proved. Meanwhile, for each

𝑒 ∈ 𝐸𝜎𝑣 , by Definition 12 and (46), we have

Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿, 𝑒)] ≤ Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿)] ≤ 𝜇𝜎⊥𝒔 (𝜎).

Similarly, one can also prove that Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿, 𝑒)] ≤ 𝜇
𝜏⊥
𝒔 (𝜏). Thus, (10) is also proved and the lemma

is immediate.
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In the following, we prove (46) by induction on the length of 𝒔. The induction basis is when 𝒔 = ∅. In
this case, by (7) we have

Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿)] = Pr [(𝑇 ≥ 0) ∧ ((𝜎, 𝜏, 𝒔, 𝑣, 𝐿) = (𝜎⊥, 𝜏⊥,∅, 𝑣⊥, 0))] ≤ 1 = 𝜇𝜎⊥𝒔 (𝜎).

The base case is proved. For the induction step, assume |𝒔 | = 𝑡 > 0, 𝒔 = 𝒔′ ◦ 𝑒 , 𝜎 = 𝜎 ′ ∧ (𝑒 ← 𝑎),
𝜏 = 𝜏 ′ ∧ (𝑒 ← 𝑏) for some 𝑒 ∈ 𝐸 (𝐺), 𝑎, 𝑏 ∈ {0, 1}. By (7) we have

Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿)] = Pr [(𝑇 ≥ 𝑡) ∧ ((𝜎, 𝜏, 𝒔, 𝑣, 𝐿) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 ))] .

In addition, by Definition 10, we have the event (𝑇 ≥ 𝑡) ∧ ((𝜎, 𝜏, 𝒔, 𝑣, 𝐿) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 )) happens only if

• the event E ≜ (𝑇 ≥ 𝑡 − 1) ∧ ((𝜎 ′, 𝜏 ′, 𝒔′, 𝑣 (𝜎 ′, 𝜏 ′), 𝐿(𝜎 ′, 𝜏 ′)) = (𝜎𝑡−1, 𝜏𝑡−1, 𝒔𝑡−1, 𝑣𝑡−1, 𝐿𝑡−1)) happens;

• the chosen edge in the state (𝜎𝑡−1, 𝜏𝑡−1, 𝒔𝑡−1, 𝑣𝑡−1, 𝐿𝑡−1) is 𝑒 and the sample (𝜎𝑒 , 𝜏𝑒) from an optimal
coupling of (𝜇𝜎𝑡−1𝑒 , 𝜇

𝜏𝑡−1
𝑒 ) is (𝑎, 𝑏).

Thus, we have

Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿)]
= Pr [(𝑇 ≥ 𝑡) ∧ ((𝜎, 𝜏, 𝒔, 𝑣, 𝐿) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 ))]
≤ Pr [E] · Pr [(𝜎𝑒 , 𝜏𝑒) = (𝑎, 𝑏) | E]
≤ Pr [(𝑇 ≥ 𝑡 − 1) ∧ ((𝜎 ′, 𝜏 ′, 𝒔′, 𝑣 (𝜎 ′, 𝜏 ′), 𝐿(𝜎 ′, 𝜏 ′)) = (𝜎𝑡−1, 𝜏𝑡−1, 𝒔𝑡−1, 𝑣𝑡−1, 𝐿𝑡−1))] · Pr [(𝜎𝑒 , 𝜏𝑒) = (𝑎, 𝑏) | E]
≤ 𝜇

𝜎⊥
𝒔′ (𝜎

′) · Pr [(𝜎𝑒 , 𝜏𝑒) = (𝑎, 𝑏) | E] ,

where the last inequality is by the induction hypothesis. Moreover, we have

Pr [(𝜎𝑒 , 𝜏𝑒) = (𝑎, 𝑏) | E] ≤ Pr [𝜎𝑒 = 𝑎 | E] = 𝜇𝜎𝑡−1𝑒 (𝑎 | E) = 𝜇𝜎
′

𝑒 (𝑎),

where the first equality is by (𝜎𝑒 , 𝜏𝑒) is a coupling of (𝜇𝜎𝑡−1𝑒 , 𝜇
𝜏𝑡−1
𝑒 ) and the second equality is by 𝜎𝑡−1 = 𝜎 ′

if E happens. Therefore, we have

Prcp [(𝜎, 𝜏, 𝒔, 𝑣, 𝐿)] ≤ 𝜇
𝜎⊥
𝒔′ (𝜎

′) · 𝜇𝜎 ′𝑒 (𝑎) = 𝜇𝜎⊥𝒔 (𝜎) .

This completes the induction step. Then (46) is proved and the lemma is immediate. □

Proposition 18. The following holds for the ℓ-truncated extended coupling tree T :

(1) 𝑉 (T ) \ L = V \ L.

(2) T is of degree at most 3Δ, of depth at most Δℓ . Thus, |𝑉 (T ) | ≤ (3Δ)Δℓ+1. In addition, for each node
(𝜎, 𝜏, 𝒔, 𝑣, 𝐿) ∈ T , we have |Λ(𝜎) | = |Λ(𝜏) | ≤ Δℓ + 1.

(3) For each node (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) ∈ Lgood ∩ V , we have 𝜇𝜎 = 𝜇𝜏 . Thus,

𝜇 (𝜏)
𝜇 (𝜎) =

𝑓𝑣 ( |𝜏 (𝐸𝑣) |)
𝑓𝑣 ( |𝜎 (𝐸𝑣) |)

.
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Proof. Proof of (1). By Definition 14, each infeasible node is a leaf in T . Formally, 𝑉 (T ) \ V ⊆ L. Thus,
𝑉 (T ) \ L ⊆ V . Therefore, 𝑉 (T ) \ L ⊆ V \ L. Combined with V ⊆ 𝑉 (T ), we have 𝑉 (T ) \ L = V \ L.

Proof of (2). Let (𝜎0, 𝜏0, 𝒔0, 𝑣0, 𝐿0), · · · , (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 ) be a path from the root to any leaf in T , where
(𝜎0, 𝜏0, 𝒔0, 𝑣0, 𝐿0) is the root (𝜎⊥, 𝜏⊥,∅, 𝑣⊥, 0) and (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 ) is the leaf. At first, we prove the bound on
the depth of T . According to Definition 14, for each 0 ≤ 𝑖 < 𝑡 , one can verify that either 𝐿𝑖+1 = 𝐿𝑖 + 1 or
the following holds:

𝐿𝑖+1 = 𝐿𝑖 , 𝑣𝑖+1 = 𝑣𝑖 ,Λ(𝜎𝑖+1) = Λ(𝜎𝑖) ∪ {𝑒𝑖+1}, 𝑒𝑖 ∈ Λ(𝜎𝑖) for some 𝑒𝑖 ∈ 𝐸𝑣𝑖 , 𝑒𝑖+1 ∈ 𝐸𝜎𝑖𝑣𝑖 .

Thus, for any 𝑗 > 𝑖 where 𝐿 𝑗 = 𝐿𝑖 , by induction one can verify that Λ(𝜎 𝑗 ) = Λ(𝜎𝑖) ∪𝑆 where |𝑆 | = 𝑗 − 𝑖 and
𝑆 ⊆ 𝐸

𝜎𝑖
𝑣𝑖 . In addition, by 𝐸

𝜎𝑖
𝑣𝑖 ⊆ 𝐸𝑣𝑖 \{𝑒𝑖}, we have

��𝐸𝜎𝑖𝑣𝑖 �� ≤ ��𝐸𝑣𝑖 \ {𝑒𝑖}�� = Δ−1. Thus, we have 𝑗−𝑖 = |𝑆 | ≤ Δ−1.
Therefore, 𝑗 ≤ 𝑖 + Δ − 1. Thus, for each 0 ≤ 𝑖 < 𝑡 and each 𝑖 + Δ ≤ 𝑘 ≤ 𝑡 , we have 𝐿𝑘 > 𝐿𝑖 . Therefore,
𝐿𝑡 ≥ 0 + ⌊𝑡/Δ⌋. In addition, by Definition 14 we have 𝐿𝑡 ≤ ℓ . Thus, we have 𝑡 ≤ Δℓ . Therefore, the depth
of T is no more than Δℓ .

Now we prove the conclusion |Λ(𝜎) | = |Λ(𝜏) | ≤ Δℓ + 1 for each node (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) ∈ T . By |Λ(𝜎0) | = 1
and |Λ(𝜎𝑖+1) | = |Λ(𝜎𝑖) |+1 for each 0 ≤ 𝑖 < 𝑡 ≤ Δℓ , we have |Λ(𝜎𝑖+1) | ≤ Δℓ+1. Combined with Condition 3,
we also have |Λ(𝜏𝑖+1) | = |Λ(𝜎𝑖+1) | ≤ Δℓ + 1. The conclusion is proved.

In the next, we prove the bound on the degree of T . For each 0 ≤ 𝑖 < 𝑡 , assume w.l.o.g. Ham
(
𝜎𝑖 , 𝐸𝑣𝑖

)
<

Ham
(
𝜏𝑖 , 𝐸𝑣𝑖

)
. According to Definition 14, one can verify that there exists some 𝑒 ∈ 𝐸𝜎𝑖𝑣𝑖 such that

𝒔𝑖+1 = 𝒔𝑖◦𝑒, (𝜎𝑖+1, 𝜏𝑖+1) ∈ {(𝜎𝑖∧(𝑒 ← 0), 𝜏𝑖∧(𝑒 ← 0)), (𝜎𝑖∧(𝑒 ← 1), 𝜏𝑖∧(𝑒 ← 0)), (𝜎𝑖∧(𝑒 ← 1), 𝜏𝑖∧(𝑒 ← 1))}.

Moreover, by Condition 3 we have 𝑣𝑖+1 = 𝑣 (𝜎𝑖+1, 𝜏𝑖+1) and 𝐿𝑖+1 = 𝐿(𝜎𝑖+1, 𝜏𝑖+1). Thus, by
��𝐸𝜎𝑖𝑣𝑖 �� ≤ ��𝐸𝑣𝑖 �� ≤ Δ,

we have (𝜎𝑖+1, 𝜏𝑖+1, 𝒔𝑖+1, 𝑣𝑖+1, 𝐿𝑖+1) has at most 3Δ possibilities for each fixed (𝜎𝑖 , 𝜏𝑖 , 𝒔𝑖 , 𝑣𝑖 , 𝐿𝑖). Therefore, the
degree of T is no more than 3Δ.

Finally, |𝑉 (T ) | ≤ (3Δ)Δℓ+1 is immediate by the depth of T is at most Δℓ and the degree is at most 3Δ.

Proof of (3). For each node (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) ∈ Lgood ∩ V , define a mapping 𝑔 : {𝑥 | 𝑥 ∈ 𝜎} → {0, 1}𝐸 as
follows. For every 𝑥 ∈ 𝜎 ,

(𝑔(𝑥)) (𝑒) ≜
{
𝜏 (𝑒) 𝑒 ∈ Λ(𝜏)
𝑥 (𝑒) otherwise

. (47)

We claim that 𝑔(·) is a bijection between {𝑥 | 𝑥 ∈ 𝜎} and {𝑦 | 𝑥 ∈ 𝜏}. Because for each 𝑥 ∈ 𝜎 , by (47) we
have 𝑔(𝑥) ∈ 𝜏 . In addition, by Condition 3 we have Λ(𝜎) = Λ(𝜏). Thus, one can also verify that for each
𝑦 ∈ 𝜏 , there exists a unique 𝑥 ∈ 𝜎 such that 𝑔(𝑥) = 𝑦.

By Condition 3, we have |𝜎 (𝐸𝑢) | = Ham(𝜎, 𝐸𝑢) = Ham(𝜏, 𝐸𝑢) = |𝜏 (𝐸𝑢) | for each 𝑢 ∈ 𝑉 \ {𝑣}. Thus, we
have

|𝑥 (𝐸𝑢) |
(by 𝑥 ∈ 𝜎) = |𝜎 (𝐸𝑢) | +

∑︁
𝑒∈𝐸𝑢\Λ(𝜎 )

𝑥 (𝑒)

(by |𝜎 (𝐸𝑢) | = |𝜏 (𝐸𝑢) | ,Λ(𝜎) = Λ(𝜏)) = |𝜏 (𝐸𝑢) | +
∑︁

𝑒∈𝐸𝑢\Λ(𝜏 )
𝑥 (𝑒)

(by (47)) = | (𝑔(𝑥)) (𝐸𝑢) | .
Therefore, we have∑︁

𝑥∈𝜎

∏
𝑢∈𝑉 \{𝑣}

𝑓𝑢 ( |𝑥 (𝐸𝑢) |) =
∑︁
𝑥∈𝜎

∏
𝑢∈𝑉 \{𝑣}

𝑓𝑢 ( | (𝑔(𝑥)) (𝐸𝑢) |) =
∑︁
𝑦∈𝜏

∏
𝑢∈𝑉 \{𝑣}

𝑓𝑢 ( |𝑦 (𝐸𝑢) |) , (48)
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where the last equality is by that 𝑔(·) is a bijection between {𝑥 | 𝑥 ∈ 𝜎} and {𝑦 | 𝑦 ∈ 𝜏}.
Meanwhile, by (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) ∈ Lgood∩V , we have 𝐿 < ℓ and (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) is a feasible leaf in T . Combing

with Definition 14, we have 𝐸𝜎𝑣 = ∅. Therefore, 𝑥 (𝐸𝑣) = 𝜎 (𝐸𝑣) for each 𝑥 ∈ 𝜎 . Thus, by (1) we have

𝑍 · 𝜇 (𝜎) =
∑︁
𝑥∈𝜎

∏
𝑢∈𝑉

𝑓𝑢 ( |𝑥 (𝐸𝑢) |) =
∑︁
𝑥∈𝜎

𝑓𝑣 ( |𝑥 (𝐸𝑣) |)
∏

𝑢∈𝑉 \𝑣
𝑓𝑢 ( |𝑥 (𝐸𝑢) |)

= 𝑓𝑣 ( |𝜎 (𝐸𝑣) |)
∑︁
𝑥∈𝜎

∏
𝑢∈𝑉 \{𝑣}

𝑓𝑢 ( |𝑥 (𝐸𝑢) |) .
(49)

Similarly, by 𝐸𝜎𝑣 = ∅ and Λ(𝜎) = Λ(𝜏), we have 𝐸𝜏𝑣 = ∅. Therefore, 𝑦 (𝐸𝑣) = 𝜏 (𝐸𝑣) for each 𝑦 ∈ 𝜏 . Thus, by
(1) we have

𝑍 · 𝜇 (𝜏) =
∑︁
𝑦∈𝜏

∏
𝑢∈𝑉

𝑓𝑢 ( |𝑦 (𝐸𝑢) |) =
∑︁
𝑦∈𝜏

𝑓𝑣 ( |𝑦 (𝐸𝑣) |)
∏

𝑢∈𝑉 \𝑣
𝑓𝑢 ( |𝑦 (𝐸𝑢) |)

= 𝑓𝑣 ( |𝜏 (𝐸𝑣) |)
∑︁
𝑦∈𝜏

∏
𝑢∈𝑉 \{𝑣}

𝑓𝑢 ( |𝑦 (𝐸𝑢) |) .
(50)

Moreover, recall that (𝜎, 𝜏, 𝒔, 𝑣, 𝐿) is feasible. We have 𝜇 (𝜎) > 0. Combined with (48), (49) and (50), we have

𝜇 (𝜏)
𝜇 (𝜎) =

𝑓𝑣 ( |𝜏 (𝐸𝑣) |)
𝑓𝑣 ( |𝜎 (𝐸𝑣) |)

.

□

Proposition 20. The following holds for the ratios in Definition 19:

(1) All 𝑝𝜎𝜎,𝜏,𝒔, 𝑝
𝜏
𝜎,𝜏,𝒔, 𝑝

𝜎
𝜎,𝜏,𝒔,𝑒 , 𝑝

𝜏
𝜎,𝜏,𝒔,𝑒 are in [0, 1]. In particular, 𝑝𝜎⊥𝜎⊥,𝜏⊥,∅ = 𝑝

𝜏⊥
𝜎⊥,𝜏⊥,∅ = 1.

(2) For each (𝜎, 𝜏, 𝒔) ∈ V \ L, let 𝑣 = 𝑣 (𝜎, 𝜏). Then

𝑝𝜎𝜎,𝜏,𝒔 =
∑︁
𝑒∈𝐸𝜎

𝑣

𝑝𝜎𝜎,𝜏,𝒔,𝑒 , 𝑝𝜏𝜎,𝜏,𝒔 =
∑︁
𝑒∈𝐸𝜎

𝑣

𝑝𝜏𝜎,𝜏,𝒔,𝑒 . (13)

(3) For each (𝜎, 𝜏, 𝒔) ∈ V \ L and 𝑒 ∈ 𝐸𝜎𝑣 where 𝑣 = 𝑣 (𝜎, 𝜏), if Ham (𝜎, 𝐸𝑣) < Ham (𝜏, 𝐸𝑣), we have

𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝
𝜎∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 , 𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝

𝜎∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←0),𝒔◦𝑒 + 𝑝

𝜎∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 , (14)

𝑝𝜏𝜎,𝜏,𝒔,𝑒 = 𝑝
𝜏∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 + 𝑝

𝜏∧(𝑒←0)
𝜎∧(𝑒←1),𝜏∧(𝑒←0),𝒔◦𝑒 , 𝑝𝜏𝜎,𝜏,𝒔,𝑒 = 𝑝

𝜏∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 . (15)

Otherwise, we have

𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝
𝜎∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 + 𝑝

𝜎∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←1),𝒔◦𝑒 , 𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝

𝜎∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 , (16)

𝑝𝜏𝜎,𝜏,𝒔,𝑒 = 𝑝
𝜏∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 , 𝑝𝜏𝜎,𝜏,𝑆,𝑒 = 𝑝

𝜏∧(𝑒←1)
𝜎∧(𝑒←0),𝜏∧(𝑒←1),𝒔◦𝑒 + 𝑝

𝜏∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 . (17)

(4) For each (𝜎, 𝜏, 𝒔) ∈ V , we have

𝑝𝜎𝜎,𝜏,𝒔 = 𝑝𝜏𝜎,𝜏,𝒔 ·
𝜇𝑒⊥ (1)
𝜇𝑒⊥ (0)

· 𝜇 (𝜏)
𝜇 (𝜎) . (18)
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Proof. Proof of (1). We prove 𝑝𝜎𝜎,𝜏,𝒔 ∈ [0, 1] by considering two separate cases:

• (𝜎, 𝜏, 𝒔) ∈ V . By (11) and (9), we have

𝑝𝜎𝜎,𝜏,𝒔 =
Prcp [(𝜎, 𝜏, 𝒔)]

𝜇
𝜎⊥
𝒔 (𝜎)

≤ 1.

Moreover, by Prcp [(𝜎, 𝜏, 𝒔)] ≥ 0 and 𝜇
𝜎⊥
𝒔 (𝜎) > 0, we also have 𝑝𝜎𝜎,𝜏,𝒔 ≥ 0. Therefore, we have

𝑝𝜎𝜎,𝜏,𝒔 ∈ [0, 1]. Similarly, we also have 𝑝𝜏𝜎,𝜏,𝒔 ∈ [0, 1].

• (𝜎, 𝜏, 𝒔) ∈ 𝑉 (T ) \ V . we have 𝑝𝜎𝜎,𝜏,𝒔 = 𝑝𝜏𝜎,𝜏,𝒔 = 0.

In summary, we always have 𝑝𝜎𝜎,𝜏,𝒔 ∈ [0, 1]. Similarly, one can also prove that 𝑝𝜏𝜎,𝜏,𝒔, 𝑝𝜎𝜎,𝜏,𝒔,𝑒 , 𝑝𝜏𝜎,𝜏,𝒔,𝑒 ∈ [0, 1].
Moreover, note that Prcp [(𝜎⊥, 𝜏⊥,∅)] = 1. Combining with 𝜇

𝜎⊥
∅ (𝜎⊥) = 1, we have

𝑝
𝜎⊥
𝜎⊥,𝜏⊥,∅ =

Prcp [(𝜎⊥, 𝜏⊥,∅)]
𝜇
𝜎⊥
∅ (𝜎⊥)

=
1
1 = 1.

Similarly, we also have 𝑝𝜏⊥𝜎⊥,𝜏⊥,∅ = 1.
Proof of (2). It is sufficient to prove

𝑝𝜎𝜎,𝜏,𝒔 =
∑︁
𝑒∈𝐸𝜎

𝑣

𝑝𝜎𝜎,𝜏,𝒔,𝑒 . (51)

Similarly, one can also prove
𝑝𝜏𝜎,𝜏,𝒔 =

∑︁
𝑒∈𝐸𝜎

𝑣

𝑝𝜏𝜎,𝜏,𝒔,𝑒 .

Then (13) is immediate. In the following, we prove (51). For each (𝜎, 𝜏, 𝒔) in V \ L and 𝑒 ∈ 𝐸𝜎𝑣 where
𝑣 = 𝑣 (𝜎, 𝜏), we claim that

Prcp [(𝜎, 𝜏, 𝒔)] =
∑︁
𝑒∈𝐸𝜎

𝑣

Prcp [(𝜎, 𝜏, 𝒔, 𝑒)] . (52)

Combining with (11) and (12), (51) is immediate. At last, we prove (52), which completes the proof of (51).
We prove (52) by considering two separate cases.

• Prcp [(𝜎, 𝜏, 𝒔)] = 0. By (7) and (8) we have

∀𝑒 ∈ 𝐸𝜎𝑣 , Prcp [(𝜎, 𝜏, 𝒔, 𝑒)] ≤ Prcp [(𝜎, 𝜏, 𝒔)] = 0.

Therefore,

Prcp [(𝜎, 𝜏, 𝒔)] = 0 =
∑︁
𝑒∈𝐸𝜎

𝑣

Prcp [(𝜎, 𝜏, 𝒔, 𝑒)] .

Thus, (52) is immediate.

• Prcp [(𝜎, 𝜏, 𝒔)] > 0. Assume w.l.o.g. that Ham (𝜎, 𝐸𝑣) < Ham (𝜏, 𝐸𝑣). By Definition 10, if 𝑒 is the first
edge in 𝐸𝜎𝑣 with 𝜇𝜎𝑒 (1) ≥ 𝜇𝜏𝑒 (1), then

Prcp [(𝜎, 𝜏, 𝒔, 𝑒)] = Pr [(𝑇 > 𝑡) ∧ ((𝜎, 𝜏, 𝒔) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 )) ∧ (𝒔𝑡+1 = 𝒔 ◦ 𝑒)]
= Pr [(𝑇 > 𝑡) ∧ ((𝜎, 𝜏, 𝒔) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 ))]
= Prcp [(𝜎, 𝜏, 𝒔)] .

Otherwise, Prcp [(𝜎, 𝜏, 𝒔, 𝑒)] = 0. Thus, (52) is immediate.
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Proof of (3). It is sufficient to prove (14). Then (15), (16) and (17) can be proved similarly. In the follow-
ing, we prove (14).

Assume Ham (𝜎, 𝐸𝑣) < Ham (𝜏, 𝐸𝑣) and |𝒔 | = 𝑡 . Let 𝜎0 = 𝜎 ∧ (𝑒 ← 0), 𝜎1 = 𝜎 ∧ (𝑒 ← 1), 𝜏0 = 𝜏 ∧ (𝑒 ← 0),
𝜏1 = 𝜏 ∧ (𝑒 ← 1), 𝒔′ = 𝒔 ◦ 𝑒 . By Definition 10, under the condition that (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 ) = (𝜎, 𝜏, 𝒔) and the chosen
edge at this state is 𝑒 , we have 𝜇𝜎𝑡𝑒 (1) ≥ 𝜇

𝜏𝑡
𝑒 (1). Thus, for each (𝜎𝑒 , 𝜏𝑒) sampling from an optimal coupling

of (𝜇𝜎𝑡𝑒 , 𝜇
𝜏𝑡
𝑒 ), we have

Pr [𝜎𝑒 = 𝜏𝑒 = 0] = 𝜇𝜎𝑡𝑒 (0) = 𝜇𝜎𝑒 (0), Pr [(𝜎𝑒 = 𝜏𝑒 = 1) ∨ (𝜎𝑒 = 1, 𝜏𝑒 = 0)] = 𝜇𝜎𝑡𝑒 (1) = 𝜇𝜎𝑒 (1) .

Formally,

Pr
[
(𝜎𝑡+1, 𝜏𝑡+1) = (𝜎0, 𝜏0)

�� (𝑇 > 𝑡) ∧ ((𝜎, 𝜏, 𝒔) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 )) ∧ (𝒔𝑡+1 = 𝒔 ◦ 𝑒)
]
= 𝜇𝜎𝑒 (0),

Pr
[
(𝜎𝑡+1, 𝜏𝑡+1) is (𝜎1, 𝜏1) or (𝜎1, 𝜏0)

�� (𝑇 > 𝑡) ∧ ((𝜎, 𝜏, 𝒔) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 )) ∧ (𝒔𝑡+1 = 𝒔 ◦ 𝑒)
]
= 𝜇𝜎𝑒 (1) .

Therefore, we have

Pr
[
(𝑇 > 𝑡) ∧

(
(𝜎0, 𝜏0, 𝒔′) = (𝜎𝑡+1, 𝜏𝑡+1, 𝒔𝑡+1)

) ]
= Pr [(𝑇 > 𝑡) ∧ ((𝜎, 𝜏, 𝒔) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 )) ∧ (𝒔𝑡+1 = 𝒔 ◦ 𝑒)] · 𝜇𝜎𝑒 (0),

(53)

Pr
[
(𝑇 > 𝑡) ∧

(
(𝜎𝑡+1, 𝜏𝑡+1, 𝒔𝑡+1) is (𝜎1, 𝜏1, 𝒔′) or (𝜎1, 𝜏0, 𝒔′

) ]
= Pr [(𝑇 > 𝑡) ∧ ((𝜎, 𝜏, 𝒔) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 )) ∧ (𝒔𝑡+1 = 𝒔 ◦ 𝑒)] · 𝜇𝜎𝑒 (1),

(54)

At first, we prove
𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝

𝜎∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 .

Note that
Prcp

[
(𝜎0, 𝜏0, 𝒔′)

]
(by (7)) = Pr

[
(𝑇 ≥ 𝑡 + 1) ∧

(
(𝜎0, 𝜏0, 𝒔′) = (𝜎𝑡+1, 𝜏𝑡+1, 𝒔𝑡+1)

) ]
(by (53)) = Pr [(𝑇 > 𝑡) ∧ ((𝜎, 𝜏, 𝒔) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 )) ∧ (𝒔𝑡+1 = 𝒔 ◦ 𝑒)] · 𝜇𝜎𝑒 (0)
(by (8)) = Prcp [(𝜎, 𝜏, 𝒔, 𝑒)] · 𝜇𝜎𝑒 (0) .

(55)

Moreover, we also have

𝜇
𝜎⊥
𝒔′ (𝜎

0) = 𝜇𝜎⊥𝒔 (𝜎) · 𝜇𝜎𝑒 (0) . (56)

Thus, we have

𝑝𝜎𝜎,𝜏,𝒔,𝑒

(by (12)) = Prcp [(𝜎, 𝜏, 𝒔, 𝑒)] /𝜇𝜎⊥𝒔 (𝜎)
(by (55)) = Prcp

[
(𝜎0, 𝜏0, 𝒔′)

]
/
(
𝜇𝜎⊥𝒔 (𝜎0) · 𝜇𝜎𝑒 (0)

)
(by (56)) = Prcp

[
(𝜎0, 𝜏0, 𝒔′)

]
/𝜇𝜎⊥𝒔′ (𝜎

0)
(by (11)) = 𝑝𝜎

0

𝜎0,𝜏0,𝒔′

= 𝑝
𝜎∧(𝑒←0)
𝜎∧(𝑒←0),𝜏∧(𝑒←0),𝒔◦𝑒 .

In the next, we prove

𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝
𝜎∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←0),𝒔◦𝑒 + 𝑝

𝜎∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 .
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By (7), we have

Prcp
[
(𝜎1, 𝜏1, 𝒔′)

]
= Pr

[
(𝑇 ≥ 𝑡 + 1) ∧

(
(𝜎1, 𝜏1, 𝒔′) = (𝜎𝑡+1, 𝜏𝑡+1, 𝒔𝑡+1)

) ]
(57)

Similarly, we also have

Prcp
[
(𝜎1, 𝜏0, 𝒔′)

]
= Pr

[
(𝑇 ≥ 𝑡 + 1) ∧

(
(𝜎1, 𝜏0, 𝒔′) = (𝜎𝑡+1, 𝜏𝑡+1, 𝒔𝑡+1)

) ]
(58)

Thus, we have

Prcp
[
(𝜎1, 𝜏1, 𝒔′)

]
+ Prcp

[
(𝜎1, 𝜏0, 𝒔′)

]
(by (57), (58) and (54)) = Pr [(𝑇 > 𝑡) ∧ ((𝜎, 𝜏, 𝒔) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 )) ∧ (𝒔𝑡+1 = 𝒔 ◦ 𝑒)] · 𝜇𝜎𝑒 (1)

(by (8)) = Prcp [(𝜎, 𝜏, 𝒔, 𝑒)] · 𝜇𝜎𝑒 (1) .
(59)

Moreover, we also have

𝜇
𝜎⊥
𝒔′ (𝜎

1) = 𝜇𝜎⊥𝒔 (𝜎) · 𝜇𝜎𝑒 (1) . (60)

Thus, we have

𝑝𝜎𝜎,𝜏,𝒔,𝑒

(by (12)) = Prcp [(𝜎, 𝜏, 𝒔, 𝑒)] /𝜇𝜎⊥𝒔 (𝜎)
(by (59)) =

(
Prcp

[
(𝜎1, 𝜏1, 𝒔′)

]
+ Prcp

[
(𝜎1, 𝜏0, 𝒔′)

] )
/
(
𝜇𝜎⊥𝒔 (𝜎) · 𝜇𝜎𝑒 (1)

)
(by (60)) =

(
Prcp

[
(𝜎1, 𝜏1, 𝒔′)

]
+ Prcp

[
(𝜎1, 𝜏0, 𝒔′)

] )
/𝜇𝜎⊥𝒔′ (𝜎

1)
(by (11)) = 𝑝𝜎

1

𝜎1,𝜏1,𝒔′ + 𝑝
𝜎1

𝜎1,𝜏0,𝒔′

= 𝑝
𝜎∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←0),𝒔◦𝑒 + 𝑝

𝜎∧(𝑒←1)
𝜎∧(𝑒←1),𝜏∧(𝑒←1),𝒔◦𝑒 .

Proof of (4). By (11), we have

𝑝𝜏𝜎,𝜏,𝒔 ·
𝜇𝑒⊥ (1)
𝜇𝑒⊥ (0)

· 𝜇 (𝜏)
𝜇 (𝜎) =

Prcp [(𝜎, 𝜏, 𝒔)] · 𝜇𝑒⊥ (1) · 𝜇 (𝜏)
𝜇
𝜏⊥
𝒔 (𝜏) · 𝜇𝑒⊥ (0) · 𝜇 (𝜎)

=
Prcp [(𝜎, 𝜏, 𝒔)] · 𝜇𝑒⊥ (1)

𝜇 (𝜎) =
Prcp [(𝜎, 𝜏, 𝒔)]

𝜇
𝜎⊥
𝒔 (𝜎)

= 𝑝𝜎𝜎,𝜏,𝒔 .

□

Lemma 21. For each (𝜎, 𝜏, 𝒔) ∈ V \ L, let D ≜ D(𝜎, 𝜏, 𝒔). Then D ≠ ∅. In addition,∑︁
(𝜎 ′,𝜏 ′,𝒔′ ) ∈D

𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ ≥ 𝐵 · 𝑝𝜎𝜎,𝜏,𝒔,
∑︁

(𝜎 ′,𝜏 ′,𝒔′ ) ∈D
𝑝𝜏
′

𝜎 ′,𝜏 ′,𝒔 ≥ 𝐵 · 𝑝𝜏𝜎,𝜏,𝒔 . (19)

Proof. Given any (𝜎, 𝜏, 𝒔) ∈ V \ L, let 𝑣 = 𝑣 (𝜎, 𝜏). By Definition 14 and (𝜎, 𝜏, 𝒔) ∉ L, we have (𝜎, 𝜏, 𝒔) is
feasible and 𝐸𝜎𝑣 ≠ ∅. Assume w.l.o.g. Ham (𝜎, 𝐸𝑣) < Ham (𝜏, 𝐸𝑣). Let 𝑡 denote |𝒔 | and 𝑟 denote

��𝐸𝜎𝑣 ��. Define a
sequence of edges 𝑒1, 𝑒2, · · · , 𝑒𝑟 ∈ 𝐸𝜎𝑣 recursively as follows. For each 0 ≤ 𝑖 < 𝑟 , let 𝑒𝑖+1 be the first edge in
𝐸𝜎

𝑖

𝑣 with 𝜇𝜎
𝑖

𝑒𝑖+1 (1) ≥ 𝜇𝜏
𝑖

𝑒𝑖+1 (1) where

𝜎𝑖 ≜ 𝜎 ∧ (𝑒1 ← 0) ∧ · · · ∧ (𝑒𝑖 ← 0), 𝜏𝑖 ≜ 𝜏 ∧ (𝑒1 ← 0) ∧ · · · ∧ (𝑒𝑖 ← 0).

Specifically, we have𝜎0 = 𝜎 and 𝜏0 = 𝜏 . We remark that theremust be an edge 𝑒 ∈ 𝐸𝜎𝑖

𝑣 with 𝜇𝜎𝑖

𝑒 (1) ≥ 𝜇𝜏
𝑖

𝑒 (1),
by Ham

(
𝜎𝑖 , 𝐸𝑣

)
= Ham (𝜎, 𝐸𝑣) < Ham (𝜏, 𝐸𝑣) = Ham

(
𝜏𝑖 , 𝐸𝑣

)
,
���𝐸𝜎𝑖

𝑣

��� = ��𝐸𝜎𝑣 �� − 𝑖 = 𝑟 − 𝑖 > 0 and the third item of
Proposition 9. Thus, 𝑒𝑖+1 is well-defined. For each 0 ≤ 𝑖 < 𝑟 , Define

𝒔𝑖 ≜ 𝒔 ◦ 𝑒1 ◦ · · · ◦ 𝑒𝑖−1.
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Specifically, we have 𝒔0 = 𝒔.
We claim that

Prcp [(𝜎𝑟 , 𝜏𝑟 , 𝒔𝑟 )] ≥ Prcp [(𝜎, 𝜏, 𝒔)] · 𝐵. (61)

Meanwhile, by (𝜎, 𝜏, 𝒔) is feasible and (𝜎, 𝜏, 𝒔) ∈ 𝑉 (T ), we have (𝜎, 𝜏, 𝒔) ∈ V . By (𝜎, 𝜏, 𝒔) is feasible, 𝜎𝑟 =

𝜎∧(𝐸𝜎𝑣 ← 0), 𝜏𝑟 = 𝜏∧(𝐸𝜎𝑣 ← 0) and Lemma 6, one can also verify that (𝜎𝑟 , 𝜏𝑟 , 𝒔𝑟 ) is also feasible. Moreover,
by the condition of this lemma, we have (𝜎, 𝜏, 𝒔) ∈ 𝑉 (T ) and 𝐿(𝜎, 𝜏) < ℓ . Combined with Definition 14,
one can also verify that (𝜎𝑟 , 𝜏𝑟 , 𝒔𝑟 ) ∈ 𝑉 (T ) by induction. Therefore, we also have (𝜎𝑟 , 𝜏𝑟 , 𝒔𝑟 ) ∈ V . Thus,
we have

𝑝𝜎
𝑟

𝜎𝑟 ,𝜏𝑟 ,𝒔𝑟

(by (𝜎𝑟 , 𝜏𝑟 , 𝒔𝑟 ) ∈ V and (11)) = Prcp [(𝜎𝑟 , 𝜏𝑟 , 𝒔𝑟 )] /𝜇𝜎⊥𝒔𝑟 (𝜎
𝑟 )

≥ Prcp [(𝜎𝑟 , 𝜏𝑟 , 𝒔𝑟 )] /𝜇𝜎⊥𝒔 (𝜎)
(by (61)) ≥ 𝐵 · Prcp [(𝜎, 𝜏, 𝒔)] /𝜇𝜎⊥𝒔 (𝜎)

(by (𝜎, 𝜏, 𝒔) ∈ V and (11)) = 𝐵 · 𝑝𝜎𝜎,𝜏,𝒔

In addition, by (𝜎𝑟 , 𝜏𝑟 , 𝒔𝑟 ) ∈ 𝑉 (T ) and 𝜎𝑟 = 𝜎 ∧ (𝐸𝜎𝑣 ← 0), 𝜏𝑟 = 𝜏 ∧ (𝐸𝜎𝑣 ← 0), we have (𝜎𝑟 , 𝜏𝑟 , 𝒔𝑟 ) ∈ D by
Definition 17. Thus, we have D ≠ ∅ and∑︁

(𝜎 ′,𝜏 ′,𝒔′ ) ∈D
𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ ≥ 𝑝𝜎
𝑟

𝜎𝑟 ,𝜏𝑟 ,𝒔𝑟 ≥ 𝐵 · 𝑝𝜎𝜎,𝜏,𝒔 .

Similarly, one can also prove ∑︁
(𝜎 ′,𝜏 ′,𝒔′ ) ∈D

𝑝𝜏
′

𝜎 ′,𝜏 ′,𝒔 ≥ 𝐵 · 𝑝𝜏𝜎,𝜏,𝒔 .

Therefore, the lemma is immediate.
In the following, we prove (61), which completes the proof of the lemma. Recall the ℓ-truncated ran-

dom process 𝑃cp ≜ 𝑃
cp
ℓ
(Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) = {(𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 , 𝑣𝑡 , 𝐿𝑡 )}0≤𝑡≤𝑇 . Let E𝑖 denote the event (𝑇 ≥ 𝑡 + 𝑖) ∧(

(𝜎𝑡+𝑖 , 𝜏𝑖+𝑖 , 𝒔𝑡+𝑖) = (𝜎𝑖 , 𝜏𝑖 , 𝒔𝑖)
)
. Assume E𝑖 happens. We have 𝐿(𝜎𝑡+𝑖 , 𝜏𝑡+𝑖) = 𝐿(𝜎𝑖 , 𝜏𝑖) = 𝐿(𝜎, 𝜏) < ℓ . Mean-

while, recalling that
���𝐸𝜎𝑖

𝑣

��� > 0, we have 𝐸
𝜎𝑡+𝑖
𝑣 = 𝐸𝜎

𝑖

𝑣 ≠ ∅. Combining 𝐿(𝜎𝑡+𝑖 , 𝜏𝑡+𝑖) < ℓ, 𝐸
𝜎𝑡+𝑖
𝑣 ≠ ∅ with

Definition 10, we have

◦ 𝑇 > 𝑡 + 𝑖 ,

◦ 𝑒𝑖+1 is the selected edge at the state (𝜎𝑡+𝑖 , 𝜏𝑡+𝑖 , 𝒔𝑡+𝑖) = (𝜎𝑖 , 𝜏𝑖 , 𝒔𝑖),

◦ (𝜎𝑡+𝑖+1(𝑒𝑖+1), 𝜏𝑡+𝑖+1(𝑒𝑖+1)) is sampled from an optimal coupling of
(
𝜇
𝜎𝑡+𝑖
𝑒𝑖+1 , 𝜇

𝜏𝑡+𝑖
𝑒𝑖+1

)
=

(
𝜇𝜎

𝑖

𝑒𝑖+1, 𝜇
𝜏𝑖

𝑒𝑖+1

)
.

Thus, under the condition that E𝑖 happens, E𝑖+1 happens only if 𝜎𝑡+𝑖+1(𝑒𝑖+1) = 𝜏𝑡+𝑖+1(𝑒𝑖+1) = 0. Formally,

Pr [E𝑖+1 | E𝑖] =Pr [(𝜎𝑡+𝑖+1(𝑒𝑖+1) = 𝜏𝑡+𝑖+1(𝑒𝑖+1) = 0) | E𝑖] = min
{
𝜇𝜎

𝑖

𝑒𝑖+1 (0), 𝜇
𝜎𝑖

𝑒𝑖+1 (0)
}
= 𝜇𝜎

𝑖

𝑒𝑖+1 (0),

where the last inequality is by 𝜇𝜎
𝑖

𝑒𝑖+1 (1) ≥ 𝜇𝜏
𝑖

𝑒𝑖+1 (1). Thus, we have

Pr [E𝑟 ] = Pr [E0] ·
𝑟−1∏
𝑖=0

Pr [E𝑖+1 | E𝑖] =Pr [E0] ·
𝑟−1∏
𝑖=0

𝜇𝜎
𝑖

𝑒𝑖+1 (0) = Pr [E0] · 𝜇𝜎𝐸𝜎
𝑣
(0) ≥ Pr [E0] · 𝐵, (62)
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where the last inequality is by Lemma 6. In addition, by Definition 12 we have

Prcp [(𝜎, 𝜏, 𝒔)] = Pr [(𝑇 ≥ 𝑡) ∧ ((𝜎, 𝜏, 𝒔) = (𝜎𝑡 , 𝜏𝑡 , 𝒔𝑡 ))] = Pr [E0] , (63)

Prcp [(𝜎𝑟 , 𝜏𝑟 , 𝒔𝑟 )] = Pr [(𝑇 ≥ 𝑡 + 𝑟 ) ∧ ((𝜎𝑟 , 𝜏𝑟 , 𝒔𝑟 ) = (𝜎𝑡+𝑟 , 𝜏𝑡+𝑟 , 𝒔𝑡+𝑟 ))] = Pr [E𝑟 ] . (64)

Therefore, (61) is immediate by (62), (63) and (64). □

C.2 Omitted proofs for properties of LP

Lemma 24 (Cost for constructing LP). For any instance (Φ, 𝜎⊥, 𝜏⊥, 𝑣⊥) satisfying Condition 2, any non-
negative integer ℓ ≥ 0 and any two real numbers 0 ≤ 𝑟− ≤ 𝑟+, the LP in Definition 23 can be constructed in
time poly

(
ΔΔℓ

)
. Thus one can check the feasibility of the LP in time poly

(
ΔΔℓ

)
.

Proof. To prove this lemma, it is sufficient to show that the LP can be constructed in time poly
(
ΔΔℓ

)
.

Thus, the total number of variables and constraints in the LP is no more than poly
(
ΔΔℓ

)
. Therefore, the

feasibility of the LP can be checked in time poly
(
ΔΔℓ

)
, because LP has polynomial-time algorithms.

In the following, we show the LP can be constructed in time poly
(
ΔΔℓ

)
. By Lemma 7, the feasibility

of each node (𝜎, 𝜏, 𝒔) ∈ 𝑉 (T ) can be checked within time 𝑂 ( |Λ(𝜎) | + |Λ(𝜏) |). Combined with Item (2)
in Proposition 18, we have 𝑂 ( |Λ(𝜎) | + |Λ(𝜏) |) ≤ 𝑂 (Δℓ). Thus, the feasibility of each node in T can be
checked within time 𝑂 (Δℓ). In addition, by Item (2) of Proposition 18, we have |𝑉 (T ) | ≤ (3Δ)Δℓ+1. Thus,
by Definition 14, T can be constructed within cost 𝑂

(
Δℓ · poly

(
ΔΔℓ

) )
= poly

(
ΔΔℓ

)
, where the term Δℓ is

due to the cost of checking the feasibility of a node, and the term poly
(
ΔΔℓ

)
is due to the size of T . In the

process of constructing T , one can also obtain the set 𝑉 (T ),V,L and Lgood.
Note that the number of variables in the LP is no more than 4 |𝑉 (T ) |, because each pair of variables

𝑝𝜎𝜎,𝜏,𝒔 and 𝑝𝜏𝜎,𝜏,𝒔 are corresponding to a node (𝜎, 𝜏, 𝒔) ∈ 𝑉 (T ), and each pair of variables 𝑝𝜎𝜎,𝜏,𝒔,𝑒 and 𝑝𝜏𝜎,𝜏,𝒔,𝑒
where 𝑒 ∈ 𝐸𝜎

𝑣 (𝜎,𝜏 ) are corresponding to a node (𝜎 ∧ (𝑒 ← 0), 𝜏 ∧ (𝑒 ← 0), 𝒔 ◦ 𝑒) ∈ 𝑉 (T ). Combined with
|𝑉 (T ) | ≤ (3Δ)Δℓ+1, we have Constraint 1 can be constructed in time poly

(
ΔΔℓ

)
. Similarly, one can also

verify that Constraints 2, 3 and 6 can be constructed in time poly
(
ΔΔℓ

)
. Now we turn to Constraint 4.

For any (𝜎, 𝜏, 𝒔) ∈ Lgood ∩ V , by Item (3) in Proposition 18, we have 𝜇 (𝜏)/𝜇 (𝜎) = 𝑓𝑣 ( |𝜏 (𝐸𝑣) |) /𝑓𝑣 ( |𝜎 (𝐸𝑣) |).
Thus, one can verify that 𝜇 (𝜏)/𝜇 (𝜎) can be calculated in time 𝑂 ( |𝐸𝑣 |) = 𝑂 (Δ). Thus Constraint 4 can
be constructed in time 𝑂 (Δ) · |𝑉 (T ) | = poly

(
ΔΔℓ

)
. At last, we consider Constraint 5. For each node

(𝜎, 𝜏, 𝒔) ∈ V \ L, we claim that the set D(𝜎, 𝜏, 𝒔) can be constructed in time 𝑂 (Δℓ · 𝑉 (T )) = poly
(
ΔΔℓ

)
.

Thus, Constraints 5 can be constructed in time poly
(
ΔΔℓ

)
· poly

(
ΔΔℓ

)
= poly

(
ΔΔℓ

)
. In the following, we

prove the claim that D(𝜎, 𝜏, 𝒔) can be constructed in time 𝑂 (Δℓ · 𝑉 (T )). Note that D(𝜎, 𝜏, 𝒔) ⊆ 𝑉 (T ).
In addition, for each (𝜎 ′, 𝜏 ′, 𝒔′) ∈ 𝑉 (T ), by Definition 17 and Item (2) in Proposition 18, one can check
whether (𝜎 ′, 𝜏 ′, 𝒔′) ∈ D(𝜎, 𝜏, 𝒔) within time 𝑂 (Λ(𝜎) + Λ(𝜏) + Λ(𝜎 ′) + Λ(𝜏 ′) + 2Δ) = 𝑂 (Δℓ). Therefore,
the time cost for constructing D(𝜎, 𝜏, 𝒔) is 𝑂 (Δℓ · 𝑉 (T )). In summary, the LP can be constructed in time
poly

(
ΔΔℓ

)
. The lemma is proved. □

Lemma 25 (Feasibility of LP). If 𝑟− ≤ 𝑅Φ(𝑒⊥) ≤ 𝑟+, a feasible solution to the LP in Definition 23 exists.

Proof. Set the variables of the LP as follows:

• For each (𝜎, 𝜏, 𝒔) ∈ 𝑉 (T ), let 𝑝𝜎𝜎,𝜏,𝒔 = 𝑝𝜎𝜎,𝜏,𝒔 and 𝑝𝜏𝜎,𝜏,𝒔 = 𝑝𝜏𝜎,𝜏,𝒔 .

• For each (𝜎, 𝜏, 𝒔) in V \ L and 𝑒 ∈ 𝐸𝜎𝑣 where 𝑣 = 𝑣 (𝜎, 𝜏), let 𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝𝜎𝜎,𝜏,𝒔,𝑒 , and 𝑝𝜏𝜎,𝜏,𝒔,𝑒 = 𝑝𝜏𝜎,𝜏,𝒔,𝑒 .
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By Proposition 20, Items 1-4 of the constraints are satisfied. By Lemma 21, Item 5 of the constraints is also
satisfied. In addition, by Definition 19, we have 𝑝𝜎𝜎,𝜏,𝒔 = 𝑝𝜏𝜎,𝜏,𝒔 = 0 for each node (𝜎, 𝜏, 𝒔) ∈ 𝑉 (T ) \V . Thus,
Item 6 of the constraints is also satisfied. In summary, all the constraints of the LP are satisfied. The lemma
is proved. □

Lemma 28. Assume that all the constraints of the LP in Definition 23 hold. Then it holds that

∀𝑥 ∈ 𝜎⊥,
∑︁

(𝜎,𝜏,𝒔 ) ∈L: 𝑥∈𝜎
𝑝𝜎𝜎,𝜏,𝒔 = 1, (27)

∀𝑦 ∈ 𝜏⊥,
∑︁

(𝜎,𝜏,𝒔 ) ∈L: 𝑦∈𝜏
𝑝𝜏𝜎,𝜏,𝒔 = 1. (28)

Proof. To prove this lemma, it is sufficient to prove (27). Similarly, one can also prove (28). In the following,
we prove (27). Recall that L is the set of leaf nodes in𝑉 (T ), where T is the ℓ-truncated extended coupling
tree. Let T 𝑖 be the subtree of T obtained by deleting all nodes at a depth greater than 𝑖 and L𝑖 be the leaf
nodes of T 𝑖 . We will prove

∀𝑥 ∈ 𝜎⊥, 0 ≤ 𝑖 ≤ ℓ,
∑︁

(𝜎,𝜏,𝒔 ) ∈L𝑖 : 𝑥∈𝜎
𝑝𝜎𝜎,𝜏,𝒔 = 1, (65)

Then (27) is immediate. We prove (65) by induction on 𝑖 . The induction basis is when 𝑖 = 0. In this case, by
Definition 14 we have T 0 is a tree with a unique node (𝜎⊥, 𝜏⊥,∅). In addition, by Definition 23, we have
𝑝
𝜎⊥
𝜎⊥,𝜏⊥,∅ = 1. Therefore,

∀𝑥 ∈ 𝜎⊥,
∑︁

(𝜎,𝜏,𝒔 ) ∈L0: 𝑥∈𝜎
𝑝𝜎𝜎,𝜏,𝒔 = 𝑝

𝜎⊥
𝜎⊥,𝜏⊥,∅ = 1.

The base case is proved. For the induction step, we fix an 𝑥 ∈ 𝜎⊥. For each node (𝜎, 𝜏, 𝒔) ∈ L𝑖 , let
C ≜ C ((𝜎, 𝜏, 𝒔)) be the children of (𝜎, 𝜏, 𝒔) in T 𝑖+1. By (𝜎, 𝜏, 𝒔) ∈ L𝑖 , we have C ⊆ L𝑖+1. Define

C+ ≜ C+((𝜎, 𝜏, 𝒔)) = (C ∪ {(𝜎, 𝜏, 𝒔)}) ∩ L𝑖+1. (66)

We claim that

∀(𝜎, 𝜏, 𝒔) ∈ L𝑖 , 𝑝𝜎𝜎,𝜏,𝒔 · 𝟙 [𝑥 ∈ 𝜎] =
∑︁

(𝜎 ′,𝜏 ′,𝒔′ ) ∈C+
𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ · 𝟙 [ 𝑥 ∈ 𝜎 ′] . (67)

Thus, we have ∑︁
(𝜎,𝜏,𝒔 ) ∈L𝑖+1

𝑝𝜎𝜎,𝜏,𝒔 · 𝟙 [ 𝑥 ∈ 𝜎] =
∑︁
𝑢∈L𝑖

∑︁
(𝜎 ′,𝜏 ′,𝒔′ ) ∈C+ (𝑢 )

𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ · 𝟙 [𝑥 ∈ 𝜎 ′]

=
∑︁

(𝜎,𝜏,𝒔 ) ∈L𝑖

𝑝𝜎𝜎,𝜏,𝒔 · 𝟙 [𝑥 ∈ 𝜎]

=
∑︁

(𝜎,𝜏,𝒔 ) ∈L𝑖 : 𝑥∈𝜎
𝑝𝜎𝜎,𝜏,𝒔

= 1,
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where the second equality is by (67) and the last equality is by the induction hypothesis. This completes
the induction step and (65) is immediate.

In the following, we prove (67), which completes the proofs of (65) and the lemma. Fix a (𝜎, 𝜏, 𝒔) ∈ L𝑖 .
Let 𝑣 = 𝑣 (𝜎, 𝜏) and 𝐿 = 𝐿(𝜎, 𝜏). If 𝑥 ∉ 𝜎 , we have 𝑥 ∉ 𝜎 ′ for each (𝜎 ′, 𝜏 ′, 𝒔′) ∈ C. Thus,∑︁

(𝜎 ′,𝜏 ′,𝒔′ ) ∈C+
𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ · 𝟙 [𝑥 ∈ 𝜎 ′] =
∑︁

(𝜎 ′,𝜏 ′,𝒔′ ) ∈C
𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ · 𝟙 [𝑥 ∈ 𝜎 ′] = 0 = 𝑝𝜎𝜎,𝜏,𝒔 · 𝟙 [𝑥 ∈ 𝜎] .

Then (67) is proved. Otherwise, 𝑥 ∈ 𝜎 . By Definition 14, there are only two possibilities.

• If 𝐿 ≥ ℓ or 𝐸𝜎𝑣 = ∅ or (𝜎, 𝜏, 𝒔) is infeasible, then (𝜎, 𝜏, 𝒔) is a leaf node in T . Therefore, we have
(𝜎, 𝜏, 𝒔) ∈ L𝑖+1 and C = ∅. Thus, C+ = (𝜎, 𝜏, 𝒔). We have∑︁

(𝜎 ′,𝜏 ′,𝒔′ ) ∈C+
𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ · 𝟙 [𝑥 ∈ 𝜎 ′] = 𝑝𝜎𝜎,𝜏,𝒔 = 𝑝𝜎𝜎,𝜏,𝒔 · 𝟙 [𝑥 ∈ 𝜎] .

Then (67) is proved.

• Otherwise, (𝜎, 𝜏, 𝒔) is not a leaf node in T . Combining with (𝜎, 𝜏, 𝒔) ∈ L𝑖 , we have (𝜎, 𝜏, 𝒔) ∉ L𝑖+1.
Thus, by (66) we have (𝜎, 𝜏, 𝒔) ∉ C+. We claim that

∀𝑒 = {𝑢, 𝑣} ∈ 𝐸𝜎𝑣 , 𝑝𝜎𝜎,𝜏,𝒔,𝑒 · 𝟙 [𝑥 ∈ 𝜎] =
∑︁

(𝜎 ′,𝜏 ′,𝒔◦𝑒 ) ∈C
𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔◦𝑒 · 𝟙 [𝑥 ∈ 𝜎 ′] . (68)

In addition, by (𝜎, 𝜏, 𝒔) is not a leaf node in T and Proposition 18, we have (𝜎, 𝜏, 𝒔) ∈ V \L. Moreover,
by Definition 14, we have each (𝜎 ′, 𝜏 ′, 𝒔′) ∈ C satisfies 𝒔′ = 𝒔 ◦ 𝑒 for some 𝑒 ∈ 𝐸𝜎𝑣 . Formally,

C =
{
(𝜎 ′, 𝜏 ′, 𝒔 ◦ 𝑒)

�� (𝜎 ′, 𝜏 ′, 𝒔 ◦ 𝑒) ∈ C, 𝑒 ∈ 𝐸𝜎𝑣 } . (69)

Thus, we have

𝑝𝜎𝜎,𝜏,𝒔 · 𝟙 [𝑥 ∈ 𝜎]
(by (𝜎, 𝜏, 𝒔) ∈ V \ L and (20)) =

∑︁
𝑒∈𝐸𝜎

𝑣

(
𝑝𝜎𝜎,𝜏,𝒔,𝑒 · 𝟙 [𝑥 ∈ 𝜎]

)
(by (68)) =

∑︁
𝑒∈𝐸𝜎

𝑣

∑︁
(𝜎 ′,𝜏 ′,𝒔◦𝑒 ) ∈C

𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔◦𝑒 · 𝟙 [𝑥 ∈ 𝜎 ′]

(by (69)) =
∑︁

(𝜎 ′,𝜏 ′,𝒔′ ) ∈C
𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ · 𝟙 [𝑥 ∈ 𝜎 ′]

(by (𝜎, 𝜏, 𝒔) ∉ C+) =
∑︁

(𝜎 ′,𝜏 ′,𝒔′ ) ∈C+
𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ · 𝟙 [𝑥 ∈ 𝜎 ′] .

Then (67) is immediate.
In the following, we prove (68), which completes the proof of (67). Recall that 𝑥 ∈ 𝜎 , (𝜎, 𝜏, 𝒔) is
not a leaf node in T , (𝜎, 𝜏, 𝒔) ∈ L𝑖 , 𝑣 = 𝑣 (𝜎, 𝜏) and 𝐿 = 𝐿(𝜎, 𝜏). Fix an edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸𝜎𝑣 . Let
𝜎𝑎 = 𝜎 ∧ (𝑒 ← 𝑎) and 𝜏𝑎 = 𝜏 ∧ (𝑒 ← 𝑎) for each 𝑎 ∈ {0, 1}. We prove (68) by considering two
separate cases.
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(i) Ham (𝜎, 𝐸𝑣) < Ham (𝜏, 𝐸𝑣). In this case, by Definition 14, (𝜎, 𝜏, 𝒔) has three children related to 𝑒
in L𝑖+1, i.e., (𝜎0, 𝜏0, 𝒔 ◦ 𝑒), (𝜎1, 𝜏0, 𝒔 ◦ 𝑒), and (𝜎1, 𝜏1, 𝒔 ◦ 𝑒) . Assume w.l.o.g. 𝑥 (𝑒) = 0. We have

{(𝜎 ′, 𝜏 ′, 𝒔 ◦ 𝑒) | (𝜎 ′, 𝜏 ′, 𝒔 ◦ 𝑒) ∈ C, 𝑥 ∈ 𝜎 ′} = {(𝜎0, 𝜏0, 𝒔 ◦ 𝑒)}.

Combining with (21), we have

𝑝𝜎𝜎,𝜏,𝒔,𝑒 · 𝟙 [𝑥 ∈ 𝜎] = 𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝𝜎
0

𝜎0,𝜏0,𝒔◦𝑒 =
∑︁

(𝜎 ′,𝜏 ′,𝒔◦𝑒 ) ∈C
𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔◦𝑒 · 𝟙 [𝑥 ∈ 𝜎 ′] .

Then (68) is proved.
(ii) Ham (𝜎, 𝐸𝑣) ≥ Ham (𝜏, 𝐸𝑣). In this case, by Definition 14, (𝜎, 𝜏, 𝒔) has three children related to 𝑒

in L𝑖+1, i.e., (𝜎0, 𝜏0, 𝒔 ◦ 𝑒), (𝜎0, 𝜏1, 𝒔 ◦ 𝑒), and (𝜎1, 𝜏1, 𝒔 ◦ 𝑒). Assume w.l.o.g. 𝑥 (𝑒) = 0. We have

{(𝜎 ′, 𝜏 ′, 𝒔 ◦ 𝑒) | (𝜎 ′, 𝜏 ′, 𝒔 ◦ 𝑒) ∈ C, 𝑥 ∈ 𝜎 ′} = {(𝜎0, 𝜏0, 𝒔 ◦ 𝑒), (𝜎0, 𝜏1, 𝒔 ◦ 𝑒)}.

Combining with (23), we have

𝑝𝜎𝜎,𝜏,𝒔,𝑒 · 𝟙 [𝑥 ∈ 𝜎] = 𝑝𝜎𝜎,𝜏,𝒔,𝑒 = 𝑝𝜎
0

𝜎0,𝜏0,𝒔◦𝑒 + 𝑝
𝜎0

𝜎0,𝜏1,𝒔◦𝑒 =
∑︁

(𝜎 ′,𝜏 ′,𝒔◦𝑒 ) ∈C
𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔◦𝑒 · 𝟙 [𝑥 ∈ 𝜎 ′] .

Then (68) is proved.

□

Lemma 29. Assume that all the constraints of the LP in Definition 23 hold. Then it holds that∑︁
(𝜎,𝜏,𝒔 ) ∈Lbad

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎) ≤ (1 − 𝐵2)ℓ , (29)

∑︁
(𝜎,𝜏,𝒔 ) ∈Lbad

𝑝𝜏𝜎,𝜏,𝒔 · 𝜇𝜏⊥𝒔 (𝜏) ≤ (1 − 𝐵2)ℓ . (30)

Proof. To prove this lemma, it is sufficient to prove (29). Similarly, one can also prove (30). In the following,
we prove (29). Recall the ℓ-truncated extended coupling tree Tℓ in Definition 14, and theL,Lgood,Lbad,D(·)
related to Tℓ in Definition 17. In the following proof, we will use L(ℓ),Lgood(ℓ),Lbad(ℓ),Dℓ (·) to denote
L,Lgood,Lbad,D(·), such that these concepts related to different ℓ can be distinguished. To prove (29), it is
equivalent to prove

∀ℓ ≥ 0,
∑︁

(𝜎,𝜏,𝒔 ) ∈Lbad (ℓ )
𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎) ≤ (1 − 𝐵2)ℓ . (70)

In the following, we prove (70) by induction on ℓ . The induction basis is when ℓ = 0. In this case, by
Definition 14 we have T0 is a tree with a unique node (𝜎⊥, 𝜏⊥,∅). In addition, by Definition 23, we have
𝑝
𝜎⊥
𝜎⊥,𝜏⊥,∅ = 1. Therefore, ∑︁

(𝜎,𝜏,𝒔 ) ∈Lbad (ℓ )
𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎) = 𝑝

𝜎⊥
𝜎⊥,𝜏⊥,∅ = 1 = (1 − 𝐵2)0.
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The base case is proved. For the induction step, let S denote Lbad(ℓ) \ L(ℓ + 1). We have

S ⊆ 𝑉 (Tℓ+1) \ L(ℓ + 1) = Vℓ+1 \ L(ℓ + 1),

where the last equality is by Proposition 18. Thus, by Definition 17, Dℓ+1(𝜎, 𝜏, 𝒔) is well-defined for each
(𝜎, 𝜏, 𝒔) ∈ S . we claim that

L(ℓ) \ Lgood(ℓ + 1) ⊆ S, (71)

∀(𝜎, 𝜏, 𝒔) ∈ S, Dℓ+1(𝜎, 𝜏, 𝒔) ⊆ Lgood(ℓ + 1) \ L(ℓ), (72)

∀𝑢 = (𝜎, 𝜏, 𝒔) ∈ S, 𝑝𝜎𝜎,𝜏,𝒔𝜇
𝜎⊥
𝒔 (𝜎) −

©«
∑︁

(𝜎 ′,𝜏 ′,𝒔′ ) ∈Dℓ+1 (𝑢 )
𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ · 𝜇
𝜎⊥
𝒔′ (𝜎

′)ª®¬ ≤
(
1 − 𝐵2) · 𝑝𝜎𝜎,𝜏,𝒔𝜇𝜎⊥𝒔 (𝜎). (73)

Thus, by (71), (72), (73) and the induction hypothesis (I.H.), we have∑︁
(𝜎,𝜏,𝒔 ) ∈L(ℓ )

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎) −
∑︁

(𝜎,𝜏,𝒔 ) ∈Lgood (ℓ+1)
𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎)

(by (71) and (72)) ≤
∑︁

(𝜎,𝜏,𝒔 ) ∈S
𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎) −

∑︁
𝑢∈S

∑︁
(𝜎 ′,𝜏 ′,𝒔′ ) ∈Dℓ+1 (𝑢 )

𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ · 𝜇
𝜎⊥
𝒔′ (𝜎

′)

(by (73)) ≤
(
1 − 𝐵2) · ∑︁

(𝜎,𝜏,𝒔 ) ∈S
𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎)

(by S ⊆ Lbad(ℓ)) ≤
(
1 − 𝐵2) · ∑︁

(𝜎,𝜏,𝒔 ) ∈Lbad (ℓ )
𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎)

(by I.H.) ≤
(
1 − 𝐵2) ℓ+1 .

(74)

Moreover, by Lemma 27, we have∑︁
(𝜎,𝜏,𝒔 ) ∈L(ℓ )

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎) =
∑︁

(𝜎,𝜏,𝒔 ) ∈L(ℓ )
𝑝𝜎𝜎,𝜏,𝒔 · 𝜇 (𝜎)/𝜇𝑒⊥ (1) = 1

=
∑︁

(𝜎,𝜏,𝒔 ) ∈L(ℓ+1)
𝑝𝜎𝜎,𝜏,𝒔 · 𝜇 (𝜎)/𝜇𝑒⊥ (1) =

∑︁
(𝜎,𝜏,𝒔 ) ∈L(ℓ+1)

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎)
(75)

Therefore, we have∑︁
(𝜎,𝜏,𝒔 ) ∈Lbad (ℓ+1)

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎) =
∑︁

(𝜎,𝜏,𝒔 ) ∈L(ℓ+1)
𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎) −

∑︁
(𝜎,𝜏,𝒔 ) ∈Lgood (ℓ+1)

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎)

(by (75)) =
∑︁

(𝜎,𝜏,𝒔 ) ∈L(ℓ )
𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎) −

∑︁
(𝜎,𝜏,𝒔 ) ∈Lgood (ℓ+1)

𝑝𝜎𝜎,𝜏,𝒔 · 𝜇𝜎⊥𝒔 (𝜎)

(by (74)) ≤
(
1 − 𝐵2) ℓ+1 .

This completes the induction step and (70) is immediate.
In the following, we prove (71), (72) and (73), which completes the proofs of (70) and the lemma. At

first, we prove (71). Given any (𝜎, 𝜏, 𝒔) ∈ Lgood(ℓ), let 𝑣 = 𝑣 (𝜎, 𝜏) and 𝐿 = 𝐿(𝜎, 𝜏). By Definition 17, we have
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𝐿 < ℓ . Combining (𝜎, 𝜏, 𝒔) is a leaf node in Tℓ , 𝐿 < ℓ with Definition 14, we have either 𝐸𝜎𝑣 = ∅ or (𝜎, 𝜏, 𝒔) is
infeasible. Thus, (𝜎, 𝜏, 𝒔) is also a leaf node in Tℓ+1. Formally, (𝜎, 𝜏, 𝒔) ∈ L(ℓ + 1). Combined with 𝐿 < ℓ , we
have (𝜎, 𝜏, 𝒔) ∈ Lgood(ℓ+1) . Thus, we haveLgood(ℓ) ⊆ Lgood(ℓ+1). Therefore,L(ℓ)\Lgood(ℓ+1) ⊆ Lbad(ℓ).
In addition, given any (𝜎, 𝜏, 𝒔) ∈ L(ℓ) \Lgood(ℓ+1), we have 𝐿(𝜎, 𝜏) ≤ ℓ < ℓ+1 by Definition 17. Combined
with (𝜎, 𝜏, 𝒔) ∉ Lgood(ℓ+1), we have (𝜎, 𝜏, 𝒔) ∉ L(ℓ+1). Therefore, we have (L(ℓ) \Lgood(ℓ+1))∩L(ℓ+1) =
∅. In summary, we have L(ℓ) \ Lgood(ℓ + 1) ⊆ Lbad(ℓ) \ L(ℓ + 1). Then, (71) is proved.

In the next, we prove (72). Given any (𝜎, 𝜏, 𝒔) ∈ S , let Dℓ+1 denote Dℓ+1(𝜎, 𝜏, 𝒔) and 𝑣 denote 𝑣 (𝜎, 𝜏).
By (𝜎, 𝜏, 𝒔) ∈ S ⊆ Lbad(ℓ), we have 𝐿(𝜎, 𝜏) = ℓ . Recall that Dℓ+1 ≠ ∅ by Lemma 21. Fix an arbitrary
(𝜎 ′, 𝜏 ′, 𝒔′) ∈ Dℓ+1. By Condition 3 and Definition 17, we have

𝑣 ′ = 𝑣 (𝜎 ′, 𝜏 ′) = 𝑣 (𝜎 ∧ (𝐸𝜎𝑣 ← 0), 𝜏 ∧ (𝐸𝜎𝑣 ← 0)) = 𝑣 (𝜎, 𝜏) = 𝑣,

𝐿′ = |{𝑒 ∈ Λ(𝜎 ′) | (𝑒 ≠ 𝑒⊥) ∧ (𝜎 ′(𝑒) ≠ 𝜏 ′(𝑒))}| = |{𝑒 ∈ Λ(𝜎) | (𝑒 ≠ 𝑒⊥) ∧ (𝜎 (𝑒) ≠ 𝜏 (𝑒))}| = 𝐿(𝜎, 𝜏) = ℓ .

Thus, we have 𝐸𝜎
′

𝑣′ = 𝐸𝜎
′

𝑣 = ∅. Combined with Definition 14, we have (𝜎 ′, 𝜏 ′, 𝒔′) is a leaf node in Tℓ+1.
Formally, (𝜎 ′, 𝜏 ′, 𝒔′) ∈ L(ℓ + 1). Combined with 𝐿′ = ℓ < ℓ + 1, we have (𝜎 ′, 𝜏 ′, 𝒔′) ∈ Lgood(ℓ + 1). Recall
that (𝜎 ′, 𝜏 ′, 𝒔′) is an arbitrary node in Dℓ+1. We have Dℓ+1 ⊆ Lgood(ℓ + 1). Moreover, by (𝜎, 𝜏, 𝒔) ∈ S =

Lbad(ℓ) \ L(ℓ + 1), we have (𝜎, 𝜏, 𝒔) is not a leaf in Tℓ+1. Combined with Definition 14, we have 𝐸𝜎𝑣 ≠ ∅.
Recalling that 𝐸𝜎 ′𝑣 = ∅, we have 𝜎 ′ ≠ 𝜎 . Thus, (𝜎 ′, 𝜏 ′, 𝒔′) ≠ (𝜎, 𝜏, 𝒔). Combining with Definition 14 and
(𝜎, 𝜏, 𝒔) ∈ Lbad(ℓ), we have (𝜎 ′, 𝜏 ′, 𝒔′) ∉ Tℓ . Therefore, (𝜎 ′, 𝜏 ′, 𝒔′) ∉ L(ℓ). Thus, we have Dℓ+1 ∩ L(ℓ) = ∅.
In summary, we have Dℓ+1 ⊆ Lgood(ℓ + 1) \ L(ℓ). Then, (72) is proved.

At last, we prove (73). Fix arbitrary (𝜎, 𝜏, 𝒔) ∈ S and (𝜎 ′, 𝜏 ′, 𝒔′) ∈ Dℓ+1. Recall that S ⊆ Vℓ+1 \L(ℓ + 1).
Thus, we have (𝜎, 𝜏, 𝒔) is in Vℓ+1 and feasible. Combined with Lemma 6, we have 𝜇

𝜎⊥
𝒔′ (𝜎 ′) = 𝜇

𝜎⊥
𝒔 (𝜎) ·

𝜇𝜎
𝐸𝜎
𝑣
(0) ≥ 𝐵 · 𝜇𝜎⊥𝒔 (𝜎). Therefore, we have∑︁

(𝜎 ′,𝜏 ′,𝒔′ ) ∈Dℓ+1

𝑝𝜎
′

𝜎 ′,𝜏 ′,𝒔′ · 𝜇
𝜎⊥
𝒔′ (𝜎

′) ≥
∑︁

(𝜎 ′,𝜏 ′,𝒔′ ) ∈Dℓ+1

𝐵 · 𝑝𝜎 ′𝜎 ′,𝜏 ′,𝒔′ · 𝜇𝜎⊥𝒔 (𝜎) ≥ 𝐵2 · 𝑝𝜏𝜎,𝜏,𝒔𝜇𝜎⊥𝒔 (𝜎),

where the last inequality is by (𝜎, 𝜏, 𝒔) ∈ S ⊆ Vℓ+1 \ L(ℓ + 1) and (26). Thus, (73) is proved. □
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