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1 Overview

Nowadays, our course comes to an advanced topic in deep learning theory. In this lecture, we focus
on the two-layer neural networks and the efficiency of them.

2 Introduction

Now we introduce the two-layer networks and mean-field networks.

2.1 Two-layer neural networks

Consider the following function called the two-layer neural network :

f(x; a,W ) = a⊤σ(Wx) =

m∑
k=1

akσ(Wk · x)

where x ∈ Rd is the input, W ∈ Rm×d is the first weight, a ∈ Rm is the second weight and σ : R → R
is the activation function. Then we call m the number of neurons and akσ(Wk ·x) the k-th neuron.

To analyze the efficiency of such a network, for some technical reasons (under over-parameterization
case), we might let m → ∞ and use some infinite dimensional network to understand it.

2.2 Mean-field networks

Let x 7→ ϕ(x;Wk) denote the k-th neuron. For the two-layer neural network, we have (with some
scaling that does not really matter)

f(x; {Wk}mk=1) =
1

m

m∑
k=1

ϕ(x;Wk) =

∫
Rd

ϕ(x;w) dµ̂(w)

where the probability measure µ̂ = 1
m

∑m
k=1 δWk

is the empirical distribution of the first-layer
neurons.

Now, if we allow µ̂ can be any (reasonably regular) distribution (not necessary discrete) over Rd,
we generalize

f(x;µ) =

∫
Rd

ϕ(x;w) dµ(w)

which is a network with potentially infinite neurons.
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Example: If we initialize Wk ∼ N (0, σ2Id), as m → ∞, the two-layer network f(x;W ) will
converges to f(x;N (0, σ2Id)).

3 Mean Squared Error

Now, we consider the population mean squared error (MSE)

L(µ) =
1

2
Ex

[
(f∗(x)− f(x;µ))2

]
.

We apply the gradient flow to (approximately) solve it. The following theorem relates the finite
dimensional gradient flow to Wasserstein gradient flow.

Theorem 1 (informal statement of Theorem 2.6 in [CB18]). Under some regularity conditions,
as the number of neurons m goes to ∞, the classical gradient flow converges to the Wasserstein
gradient flow with respect to L.

Remark 1. Consider the finite-width network

f(x;W ) =
1

m

m∑
k=0

ϕ(x;Wk).

We run the classical gradient descent as:

d

dt
Wk = −m∇Wk

L

= Ex [(f∗(x)− f(x))∇Wk
ϕ(x;Wk)]

Then let µm,0 = 1
m

∑m
k=1 δWk,0

be the empirical distribution of the initialization of the neural
network. At time t, let µm,t denote the distribution of neurons updated by the classical gradient
flow.

On the other hand, let µ0 be the infinite-width initialization (with µm,0 → µ0 as m → ∞). At
time t, let µt be the distribution updated by the Wasserstein gradient flow. Then Theorem 1 shows
µm,t → µt as m → ∞.

Note that, to make sure the distance between µm,t and µt is small, we need exp (d) neurons.

3.1 First variation of MSE

To apply the Wasserstein gradient flow, it is necessary to compute the first variation of MSE. We
compute it by definition.

For ε > 0 and a perturbation χ, by elementary calculation

L(µ+ εχ) =
1

2
Ex

[
(f∗(x)− f(x;µ+ εχ))2

]
=

1

2
E
[
f∗(x)

2
]
+

1

2
E
[
f(x;µ+ εχ)2

]
− E [f∗(x)f(x;µ+ εχ)]
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Then taking derivative, we obtain

d

dε
|ε=0L(µ+ εχ) =

∫
Ex [(f∗(x)− f(x;µ))ϕ(x;w)] dχ(w).

Then we know

δL

δµ
[µ](v) = Ex [(f∗(x)− f(x;µ))ϕ(x; v)] = ⟨f∗(·)− f(·;µ), ϕ(·, v)⟩L2 .

3.2 Global convergence

Now we show the convergence property of WGF. Firstly we introduce the universal approximation.

Definition 2. We say {σ(·, v)}v∈Rd satisfies the universal approximation property if its span
is dense in L2.

Remark 2. The property means the two-layer neural networks can approximate everything.

Theorem 3 (Theorem 3.3 in [CB18]; Theorem 8 in [PN21]). Let µt be the Wasserstein gradient

flow with respect to L from µ. Suppose that supp (µ0) = Rd. Let µ∞
△
= limt→∞ µt. Suppose that σ

is a universal approximation, and ϕ(·;w) = w0σ(·;w1:d). Then under some regularity conditions,
µ∞ is a global minimizer of L.

Proof Idea. The whole proof is technically difficult, and we will only show the proof idea. For
convenience, assume that supp (µ∞) = Rd (this assumption is too strong and to remove it, we need
some algebraic topological arguments). Then by descent lemma of WGF, ϕ(·; 0) = 0, we have for
almost all v ∈ Rd

δL

δµ
[µ∞] = ⟨f∗(·)− f(·;µ∞), ϕ(·, v)⟩L2 = 0.

By the universal approximation property, there exists {gm} such that

gm =
m∑
k=1

ϕ(·, vk), lim
m→∞

gm = f∗ − f(·;µ∞).

Thus

0 =

m∑
k=1

⟨f∗(·)− f(·;µ∞), ϕ(·, vk)⟩L2

= ⟨f∗(·)− f(·;µ∞), gm⟩L2 → ∥f(·, µ∞)− f∗(·)∥.

This means µ∞ is the global minimizer.
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