CS2910 - Optimization

Summer 2023

Lecture C — Mean-Field Networks

Lecturer: Yunwei Ren Scribed by Zhidan Li

1 Overview

Nowadays, our course comes to an advanced topic in deep learning theory. In this lecture, we focus on the two-layer neural networks and the efficiency of them.

2 Introduction

Now we introduce the two-layer networks and mean-field networks.

2.1 Two-layer neural networks

Consider the following function called the *two-layer neural network*:

$$f(x;a,W) = a^{\top}\sigma(Wx) = \sum_{k=1}^{m} a_k \sigma(W_k \cdot x)$$

where $x \in \mathbb{R}^d$ is the input, $W \in \mathbb{R}^{m \times d}$ is the first weight, $a \in \mathbb{R}^m$ is the second weight and $\sigma : \mathbb{R} \to \mathbb{R}$ is the activation function. Then we call *m* the number of neurons and $a_k \sigma(W_k \cdot x)$ the *k*-th neuron.

To analyze the efficiency of such a network, for some technical reasons (under over-parameterization case), we might let $m \to \infty$ and use some infinite dimensional network to understand it.

2.2 Mean-field networks

Let $x \mapsto \phi(x; W_k)$ denote the k-th neuron. For the two-layer neural network, we have (with some scaling that does not really matter)

$$f(x; \{W_k\}_{k=1}^m) = \frac{1}{m} \sum_{k=1}^m \phi(x; W_k) = \int_{\mathbb{R}^d} \phi(x; w) \, d\hat{\mu}(w)$$

where the probability measure $\hat{\mu} = \frac{1}{m} \sum_{k=1}^{m} \delta_{W_k}$ is the empirical distribution of the first-layer neurons.

Now, if we allow $\hat{\mu}$ can be any (reasonably regular) distribution (not necessary discrete) over \mathbb{R}^d , we generalize

$$f(x;\mu) = \int_{\mathbb{R}^d} \phi(x;w) \, d\mu(w)$$

which is a network with potentially infinite neurons.

Example: If we initialize $W_k \sim \mathcal{N}(0, \sigma^2 I_d)$, as $m \to \infty$, the two-layer network f(x; W) will converges to $f(x; \mathcal{N}(0, \sigma^2 I_d))$.

3 Mean Squared Error

Now, we consider the population mean squared error (MSE)

$$L(\mu) = \frac{1}{2} \mathbb{E}_x \left[(f_*(x) - f(x;\mu))^2 \right].$$

We apply the gradient flow to (approximately) solve it. The following theorem relates the finite dimensional gradient flow to Wasserstein gradient flow.

Theorem 1 (informal statement of Theorem 2.6 in [CB18]). Under some regularity conditions, as the number of neurons m goes to ∞ , the classical gradient flow converges to the Wasserstein gradient flow with respect to L.

Remark 1. Consider the finite-width network

$$f(x; W) = \frac{1}{m} \sum_{k=0}^{m} \phi(x; W_k).$$

We run the classical gradient descent as:

$$\frac{d}{dt}W_k = -m\nabla_{W_k}L$$
$$= \mathbb{E}_x \left[(f_*(x) - f(x))\nabla_{W_k}\phi(x; W_k) \right]$$

Then let $\mu_{m,0} = \frac{1}{m} \sum_{k=1}^{m} \delta_{W_{k,0}}$ be the empirical distribution of the initialization of the neural network. At time t, let $\mu_{m,t}$ denote the distribution of neurons updated by the classical gradient flow.

On the other hand, let μ_0 be the infinite-width initialization (with $\mu_{m,0} \to \mu_0$ as $m \to \infty$). At time t, let μ_t be the distribution updated by the Wasserstein gradient flow. Then Theorem 1 shows $\mu_{m,t} \to \mu_t$ as $m \to \infty$.

Note that, to make sure the distance between $\mu_{m,t}$ and μ_t is small, we need exp (d) neurons.

3.1 First variation of MSE

To apply the Wasserstein gradient flow, it is necessary to compute the first variation of MSE. We compute it by definition.

For $\varepsilon > 0$ and a perturbation χ , by elementary calculation

$$L(\mu + \varepsilon \chi) = \frac{1}{2} \mathbb{E}_x \left[(f_*(x) - f(x; \mu + \varepsilon \chi))^2 \right]$$

= $\frac{1}{2} \mathbb{E} \left[f_*(x)^2 \right] + \frac{1}{2} \mathbb{E} \left[f(x; \mu + \varepsilon \chi)^2 \right] - \mathbb{E} \left[f_*(x) f(x; \mu + \varepsilon \chi) \right]$

Then taking derivative, we obtain

$$\frac{d}{d\varepsilon}|_{\varepsilon=0}L(\mu+\varepsilon\chi) = \int \mathbb{E}_x \left[(f_*(x) - f(x;\mu))\phi(x;w) \right] d\chi(w).$$

Then we know

$$\frac{\delta L}{\delta \mu}[\mu](v) = \mathbb{E}_x\left[(f_*(x) - f(x;\mu))\phi(x;v)\right] = \langle f_*(\cdot) - f(\cdot;\mu), \phi(\cdot,v) \rangle_{L^2}$$

3.2 Global convergence

Now we show the convergence property of WGF. Firstly we introduce the universal approximation.

Definition 2. We say $\{\sigma(\cdot, v)\}_{v \in \mathbb{R}^d}$ satisfies the universal approximation property if its span is dense in L^2 .

Remark 2. The property means the two-layer neural networks can approximate everything.

Theorem 3 (Theorem 3.3 in [CB18]; Theorem 8 in [PN21]). Let μ_t be the Wasserstein gradient flow with respect to L from μ . Suppose that supp $(\mu_0) = \mathbb{R}^d$. Let $\mu_{\infty} \stackrel{\triangle}{=} \lim_{t \to \infty} \mu_t$. Suppose that σ is a universal approximation, and $\phi(\cdot; w) = w_0 \sigma(\cdot; w_{1:d})$. Then under some regularity conditions, μ_{∞} is a global minimizer of L.

Proof Idea. The whole proof is technically difficult, and we will only show the proof idea. For convenience, assume that supp $(\mu_{\infty}) = \mathbb{R}^d$ (this assumption is too strong and to remove it, we need some algebraic topological arguments). Then by descent lemma of WGF, $\phi(\cdot; 0) = 0$, we have for almost all $v \in \mathbb{R}^d$

$$\frac{\delta L}{\delta \mu}[\mu_{\infty}] = \langle f_*(\cdot) - f(\cdot; \mu_{\infty}), \phi(\cdot, v) \rangle_{L^2} = 0$$

By the universal approximation property, there exists $\{g_m\}$ such that

$$g_m = \sum_{k=1}^m \phi(\cdot, v_k), \quad \lim_{m \to \infty} g_m = f_* - f(\cdot; \mu_\infty).$$

Thus

$$0 = \sum_{k=1}^{m} \langle f_*(\cdot) - f(\cdot; \mu_{\infty}), \phi(\cdot, v_k) \rangle_{L^2}$$

= $\langle f_*(\cdot) - f(\cdot; \mu_{\infty}), g_m \rangle_{L^2} \rightarrow ||f(\cdot, \mu_{\infty}) - f_*(\cdot)||.$

This means μ_{∞} is the global minimizer.

References

- [CB18] Lénaïc Chizat and Francis Bach. On the Global Convergence of Gradient Descent for Over-Parameterized Models Using Optimal Transport. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS'18, page 3040–3050, Red Hook, NY, USA, 2018. Curran Associates Inc.
- [PN21] Huy Tuan Pham and Phan-Minh Nguyen. Global Convergence of Three-layer Neural Networks in the Mean Field Regime, 2021.