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1 Overview

Now we focus on how to solve the optimal transport problem, with the cost function c(x, y) =
1
2∥x− y∥2.

Given a state space Ω (in this lecture, we will assume Ω = Rd), let P2(Ω) be the collection of all
probability measures over Ω with finite second moments, i.e.,

P2(Ω)
△
=

{
µ

∣∣∣∣∣
∫
Ω
|x|2 dµ(x) < ∞

}
.

Then we want to solve the following optimization problem, for µ, ν ∈ P2(Rd),

min
γ∈Π(µ,ν)

∫
Rd×Rd

1

2
∥x− y∥2 dγ(x, y). (1)

In this lecture, we will define a method of gradient flow over a kind of metric space called
Wasserstein-2 space. This part might need a little of mathematical techniques to ensure the terms
we introduce and use in the lecture are well-defined.

2 Gradient Flow in Wasserstein Space

To solve the optimization problem (1), we want to employ a ‘gradient flow’-like algorithm to solve
it. However, since the space is not Rd, it is necessary to define the ‘gradient’ specifically in P2(Rd).

2.1 Wasserstein-2 distance and Wasserstein-2 space

For two probability measures µ, ν ∈ P2(Rd), we define the Wasserstein-2 distance between µ and
ν as

W2(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
Rd×Rd

1

2
∥x− y∥22 dγ(x, y)

)1/2

.

Informally speaking, W2 is some kind of ‘distance’ in the space P2(Rd). Then it can shown that,

W2(Rd)
△
=

(
P2(Rd),W2

)
is a metric space.
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2.2 Gradient in Wasserstein-2 space

Now we construct the gradient in Wasserstein-2 space W2(Rd). We put our eyes on gradient flow
over Rd:

ẋt = −∇f(xt).

This ODE means, at each time t, we look at the linear approximation of f , and we want to locally
minimize it. That is to say, when x is around xt, we know

f(x) ≈ f(xt) + ⟨∇f(xt), x− xt⟩ .

To minimize the linear function, we choose the −∇f(xt) as the ‘moving direction’. This interpre-
tation of gradient flow intuitively inspires us how to define gradient flow over Wasserstein metric
space W2(Rd):

(a) Firstly we will show how to locally minimize a ‘linear functional’ F : W2(Rd) → R.

(b) Secondly we define the linear approximation of a non-linear functional F : W2(Rd) → R.

(c) Finally, based on the two things above, we can immediately define the Wasserstein gradient
flow.

2.2.1 Gradient for linear functionals

Before we discuss how to locally minimize a linear functional, it is of great necessity for us to answer
the question: which kind of functionals are called ‘linear’? To answer it, firstly we introduce some
notations.

Let M±(Rd) be the collection of signed measures on Rd. It is trivial that M±(Rd) can be made
into a vector space equipped with operation + : M±(Rd) × M±(Rd) → M±(Rd) as: for all
µ, ν ∈ M±(Rd) and a, b ∈ R, for all measurable E ⊆ Rd,

(aµ+ bν)(E) = aµ(E) + bν(E).

For a functional F : M±(Rd) → R, F is said to be linear if for all µ, ν ∈ M±(Rd), a, b ∈ R, it
holds that

F (aµ+ bν) = aF (µ) + bF (ν).

Equivalent, if F is a linear functional, there exists a function V : Rd → R such that

F (µ) =

∫
Rd

V (x) dµ(x),∀µ ∈ M±(Rd).

Intuitively, we can view V (x) as the cost of putting 1 unit of particles at x, µ as the distribution
of the particles. Then F (µ) means the total cost of putting particles as µ.

Now we focus on how to locally minimize F . Note that, if we want to globally minimize F , we just
need to put all particles at x∗ = argminx∈Rd {f(x)}. This is no meaning.
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Roughly speaking, to locally minimize F at µt, for small η, we need to consider the probability
measure µt+η such that the distance W2(µt, µt+η) is small subject to there exists T : Rd → Rd,
T#µ = µt+η. We put our eyes on the position of each particle.

It is not surprising that, the movement of particles at each position x ∈ Rd corresponds to the
movement of the probability measure, since the probability measure describes the distribution of
particles. For linear functional F (µ) =

∫
V dµ, to locally minimize F , it suffices to locally minimize

the ‘cost’ of the movement of each particle. For a particle positioned at xt, the movement of it is
exactly the gradient flow, i.e.,

d

dt
xt = −∇V (xt).

Based on the discussion above, we formally define the flow of linear functionals on W2(Rd).

Definition 1. Given a (time-dependent) velocity field vt : Rd → Rd, we define its associated flow
Φ : Rd × [0,∞) → R as

Φ(x, t)
△
= xt

where xt is the solution to the following ODE

ẋt = vt(xt), x0 = x.

Proposition 2. Given a (time-dependent) velocity field vt : Rd → Rd, and an initial configuration

µ0 ∈ P (Rd), define µt
△
= Φt#µ0. Then µt satisfies the continuity equation

∂tµt +∇ · (µtvt) = 0.

Remark 1. The term ∂tµt means the change of the density, and the second term can be viewed as
the amount of out-flow particles.

Then we specify Wasserstein gradient flow.

Definition 3. We say µt is the Wasserstein gradient flow with respect to F =
∫
V dµ if µ0 = µ, it

holds

∀t ≥ 0, x ∈ Rd,
d

dt
xt = −∇V (xt).

Or equivalently,

∂tµt −∇ · (µt∇V ) = 0.

Indeed, the Wasserstein gradient flow is just the specification of Definition 1 when vt ≡ −∇V .

2.2.2 First-order calculus in W2(Rd)

Consider the space Rd, to describe a point u ∈ Rd, it is equivalent to describe the linear functional
v 7→ ⟨u, v⟩. Also, if we want to describe ∇f(x) ∈ Rd, it suffices to describe the linear functional
v 7→ ⟨∇f(x), v⟩.
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For some small ε > 0, we consider the curve x : (−ε, ε) → Rd such that

x(0) = x,
d

dt
x(t)

∣∣∣
t=0

= v.

Then by the chain rule,

d

dt
f(x(t))

∣∣∣
t=0

=
〈
∇f(x(t)), ˙x(t)

〉 ∣∣∣
t=0

= ⟨∇f(x), v⟩ .

Now we generalize the analogue things in the space P2(Rd).

Definition 4 (first variation). Given a functional F : P2(Rd) → R and µ ∈ P2(Rd), we say
G : Rd → R is the first variation of F at µ if for all perturbation χ ∈ M±(Rd) with µ ∈ εχ ∈ P2(Rd)
for all small ε > 0, we have

d

dε
F (µ+ εχ)

∣∣∣
ε=0

=

∫
Gdχ.

Note that G does not necessarily exist. If G exists, we denote the first variation by δF
δµ [µ].

Examples:

• For a linear functional F (µ) =
∫
V dµ, we compute

d

dε
F (µ+ εχ) =

d

dε

∫
Rd

V (x) d(µ(x) + εχ(x))

=
d

dε
ε

∫
Rd

V (x) dχ(x)

=

∫
Rd

V (x) dχ(x).

Thus,

δF

δµ
[µ] = V.

• For F (µ) =
∫
Rd

∫
Rd W (x, y) dµ(x) dµ(y), by elementary calculation

d

dε
F (µ+ εχ) =

d

dε

∫
Rd

∫
Rd

W (x, y)( dµ(x) + ε dχ(x))( dµ(y) + ε dχ(y))

=
d

dε

(
ε

∫
Rd

∫
Rd

(W (x, y) +W (y, x)) dµ(y) dχ(x) +O(ε2)

)
=

∫
Rd

∫
Rd

(W (x, y) +W (y, x)) dµ(y) dχ(x).

Then we show

δF

δµ
[µ](x) =

∫
Rd

(W (x, y) +W (y, x)) dµ(y).
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2.2.3 Wasserstein gradient flow

Now we define the Wasserstein gradient flow in P2(Rd). The key step is to locally ‘minimize’ F at
some µ ∈ P2(Rd). Based on the first variation we define above, since

∫
δF
δµ [µ] dµ + C is the linear

approximation of F at µ, to achieve the local minimum of F , it suffices to locally minimize the
linear functional

∫
δF
δµ [µ] dµ.

Definition 5. Given a functional F : W2(Rd) → R, we say µt is the Wasserstein gradient flow
with respect to F if it satisfies

d

dt
xt = −∇ δF

δµt
[µt](xt), ∀t ≥ 0, x ∈ Rd.

Or equivalently,

∂tµt −∇ ·
(
µt∇

δF

δµ
[µt]

)
= 0.

Now we establish the decay of F during the Wasserstein gradient flow.

Proposition 6. Let µt be the Wasserstein gradient flow with respect to F : W2 → Rd. Under some
regularity conditions, we have

d

dt
F (µt) = −

∫ ∥∥∥∥∇δF

δµ
[µt](x)

∥∥∥∥2
2

dµt(x).

Proof assuming all regularity conditions. Now we prove the proposition assuming that all regularity
conditions we need. By elementary calculation,

d

dt
F (µt) =

∫
δF

δµ
[µt](x)∂tµt(x) dx

=

∫
δF

δµ
[µt](x)∇ ·

(
µt(x)∇

δF

δµ
[µt](x)

)
dx

=
d∑

k=1

∫
δF

δµ
[µt](x)∂k

[
µt(x)∂k

δF

δµ
[µt](x)

]
dx

= −
d∑

k=1

∫
∂k

δF

δµ
[µt](x)µt(x)∂k

δF

δµ
[µt](x) dx

= −
∫ ∥∥∥∥∇δF

δµ
[µt](x)

∥∥∥∥2
2

dµt(x)

where the last two equalities hold under the assumption that F has some good boundary conditions.
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