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Lecture B. Wasserstein Gradient Flow
Lecturer: Yunwei Ren Scribed by Zhidan Li

1 Overview

Now we focus on how to solve the optimal transport problem, with the cost function c(z,y) =
1 2
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Given a state space  (in this lecture, we will assume Q = R?), let P»(Q2) be the collection of all
probability measures over ) with finite second moments, i.e.,

/ |z|? du(z) < oo} :
Q

Then we want to solve the following optimization problem, for u,v € Pg(Rd),
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In this lecture, we will define a method of gradient flow over a kind of metric space called
Wasserstein-2 space. This part might need a little of mathematical techniques to ensure the terms
we introduce and use in the lecture are well-defined.

2 Gradient Flow in Wasserstein Space

To solve the optimization problem (1), we want to employ a ‘gradient flow’-like algorithm to solve
it. However, since the space is not R?, it is necessary to define the ‘gradient’ specifically in P (R?).

2.1 Wasserstein-2 distance and Wasserstein-2 space

For two probability measures p, v € Po(R?), we define the Wasserstein-2 distance between p and
v as
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Informally speaking, W is some kind of ‘distance’ in the space P»(R?). Then it can shown that,
Wa(R?) 2 (P2(RY), W) is a metric space.



2.2 Gradient in Wasserstein-2 space

Now we construct the gradient in Wasserstein-2 space W»(R?). We put our eyes on gradient flow
over R%:

Zy = =V f(x).

This ODE means, at each time ¢, we look at the linear approximation of f, and we want to locally
minimize it. That is to say, when x is around ¢, we know

f(@) ~ f(z) + (V) 2 — ) .
To minimize the linear function, we choose the —V f(z;) as the ‘moving direction’. This interpre-
tation of gradient flow intuitively inspires us how to define gradient flow over Wasserstein metric
space Wa(R%):
(a) Firstly we will show how to locally minimize a ‘linear functional’ F' : Wh(R%) — R.

(b) Secondly we define the linear approximation of a non-linear functional F : Wh(R%) — R.

(c) Finally, based on the two things above, we can immediately define the Wasserstein gradient
flow.

2.2.1 Gradient for linear functionals

Before we discuss how to locally minimize a linear functional, it is of great necessity for us to answer
the question: which kind of functionals are called ‘linear’? To answer it, firstly we introduce some
notations.

Let M4 (R%) be the collection of signed measures on R%. It is trivial that My (R?%) can be made
into a vector space equipped with operation + : My (R%) x M4 (R?) — My(RY) as: for all
pv € Mi(RY) and a,b € R, for all measurable E C RY,

(ap + bv)(E) = au(E) + bv(E).

For a functional F' : M4 (R?) — R, F is said to be linear if for all u,v € M4 (R?), a,b € R, it
holds that
F(ap +bv) = aF(p) + bF (v).

Equivalent, if F' is a linear functional, there exists a function V : R¢ — R such that
FGo) = [ V(@) du(o). ¥ € Ma(R)

Intuitively, we can view V(x) as the cost of putting 1 unit of particles at x, p as the distribution
of the particles. Then F'(u) means the total cost of putting particles as p.

Now we focus on how to locally minimize F'. Note that, if we want to globally minimize F, we just
need to put all particles at x, = argmin, cpa {f(x)}. This is no meaning.



Roughly speaking, to locally minimize F' at uy, for small 1, we need to consider the probability
measure (4, such that the distance Wa(pu, pte4y) is small subject to there exists T : R? — R4,
TH#p = p+n- We put our eyes on the position of each particle.

It is not surprising that, the movement of particles at each position x € R? corresponds to the
movement of the probability measure, since the probability measure describes the distribution of
particles. For linear functional F(u) = [ 'V dpu, to locally minimize F', it suffices to locally minimize
the ‘cost’ of the movement of each particle. For a particle positioned at x;, the movement of it is
exactly the gradient flow, i.e.,

d
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Based on the discussion above, we formally define the flow of linear functionals on W, (R%).

Definition 1. Given a (time-dependent) velocity field vy : RT — R?, we define its associated flow
®:R% x [0,00) — R as

D(x,t) 2 Tt
where x; is the solution to the following ODE
Ty = ve(x4), X0 = .

Proposition 2. Given a (time-dependent) velocity field v; : RY — R?, and an initial configuration

po € P(RY), define pu 2 D, #1g. Then g satisfies the continuity equation
Otut + V- (Mtvt) = 0.

Remark 1. The term Oy means the change of the density, and the second term can be viewed as
the amount of out-flow particles.

Then we specify Wasserstein gradient flow.

Definition 3. We say p is the Wasserstein gradient flow with respect to F = [V du if po = p, it
holds

d
Vt >0,z € RY, = —VV (x).

Or equivalently,
8tut -V (/LtVV) =0.

Indeed, the Wasserstein gradient flow is just the specification of Definition 1 when vy = —VV.

2.2.2 First-order calculus in W,(R?)

Consider the space R%, to describe a point u € R, it is equivalent to describe the linear functional
v+ {u,v). Also, if we want to describe Vf(x) € R?, it suffices to describe the linear functional
v (Vf(2),0).



For some small £ > 0, we consider the curve z : (—¢,¢) — R? such that

Then by the chain rule,

i) = (Vi) = Vr@),0).
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Now we generalize the analogue things in the space Py(R?).

Definition 4 (first variation). Given a functional F : P,(RY) — R and p € P(R?), we say
G : R? — R is the first variation of F at u if for all perturbation x € My (R?) with u € ex € Py(RY)
for all small e > 0, we have
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Note that G does not necessarily exist. If G exists, we denote the first variation by %[u].
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Examples:
e For a linear functional F(u) = [V du, we compute
iF( vex) = o [ Via)dua) + ex(2)
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Thus,
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5u[ pl=V.
o For F(p) = [pa Jga W (2, y) du(x) du(y), by elementary calculation
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= % <€ /Rd /Rd(W(x,y) + Wy, z)) du(y) dx(z) + 0(52)>
/]Rd/ (z,y) + Wy, z)) du(y) dx ().

Then we show



2.2.3 Wasserstein gradient flow

Now we define the Wasserstein gradient flow in P»(R?). The key step is to locally ‘minimize’ F at
some p € Py(R?). Based on the first variation we define above, since [ ‘;—Z[u] dp + C' is the linear
approximation of F' at u, to achieve the local minimum of F, it suffices to locally minimize the
linear functional [ ‘;—Z[u] dp.

Definition 5. Given a functional F : Wo(RY) — R, we say ju; is the Wasserstein gradient flow
with respect to F' if it satisfies
d oF

= —Vé—m[ut](xt)Nt >0,z € R%

Or equivalently,

oF
Oy — V- (Mtvé[ﬂto =0.
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Now we establish the decay of F' during the Wasserstein gradient flow.

Proposition 6. Let y; be the Wasserstein gradient flow with respect to F : Wy — R®. Under some
reqularity conditions, we have
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Proof assuming all reqularity conditions. Now we prove the proposition assuming that all regularity
conditions we need. By elementary calculation,
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where the last two equalities hold under the assumption that F' has some good boundary conditions.
O
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