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1 Overview

In this (advanced) lecture, we introduce a type of optimization problems called the optimal trans-
port. In this lecture, we focus on the optimal ‘cost’ of transporting one probability measure to
another. For a state space , let B(Q2) be the collection of all Borel sets in .

Definition 1 (probability measure). Given the state space Q@ = R? equipped with the Borel algebra
B(RY), p: B(RY) — [0,1] is said to be a probability measure if

e u(@)=0.
o (R =1.

e For any disjoint measurable set Ay, As, ...,

MATUA UL ) =) p(4y).
=1

We use P(R?) to denote the space of all probability measures over RY.

Also, for more concise and precise description, we introduce the coupling of two probability mea-
sures.

Definition 2 (coupling). For two probability measures p,v € P(R?), we say v : R x RY — [0, 1]
is a coupling of p and v if:

e For all measurable A C RY,

e For all measurable B C R?,



2 Optimal Transport

Now we describe the optimal transport in details. For a transport map 7' : B(Rd) — B(]Rd), define
the operator Ty : P(R?) — P(RY) as: for all measurable set £ C RY,

Typu(E) = p(T~H(E)).

Definition 3 (Monge’s problem). Given two probability measures u,v € R?, a cost function c :

R? x R% — R>o meaning the cost of moving 1 unit of particles. Then, the Monge’s problem is

the following optimization problem:

min / oz, T(z)) dpu(x)
zERd

T

(1)

st Tup = v.
We also call this optimization problem (MP).
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Figure 1: an illustration of Monge’s problem

However, note that, for general p and v, the feasible transport map T does not necessarily exist.
Here we give an example.

Let y =dpand v = %5,1 + %61, where 0, is the Dirac measure at z (only has point mass at x). Since
the transport map cannot move particles from one position to multiple positions, it is impossible
to transport p to v.
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Figure 2: an example that there is no feasible transport map.

To handle this case, we use the coupling of two probability measures instead of transport map.

Definition 4 (Kantorovich’s problem). Given two probability measures ju,v € R%, a cost function
c: R xR — R>o meaning the cost of moving 1 unit of particles. Then, the Kantorovich’s
problem is the following optimization problem:

mwin /a:ERd /yERd z.y) drle,y) 2)

s.t. v is a coupling of u, v.



For convenience we call this optimization problem (KP).

The coupling v is also named as a transport plan. Note that, under the assumptions in Definition
4, there always exists a feasible coupling, since v = 4 ® v is always a coupling (u ® v is defined as,
for all measurable A, B C R, (u® v)(A, B) = u(A)v(B)).

Though ~ does always exist, it’s unfortunate that (KP) does not always admit a solution. We note
that, under some regular conditions, (KP) admits a solution.

2.1 Kantorovich duality

To establish a solution to (KP), similarly to the things we do in Lecture 3, we introduce a kind of
dual property called Kantorovich duality.

Let II(u, v) be the collection of all couplings of p and v, and M (€2) be the collection of all measures
on ). Now we define the indicator function tyy(,, ) : M (R x RY) — R U {oo},

, () = 0, ~ell(u,v)
) oo 7 ¢ ().

Additionally, let Cy(R?) be the collection of continuous and bounded functions on R?. Now we use
affine functions to express try(,,.)-

Lemma 5. It holds that

o= s A @+ [ vwan - [ e+ o) den).

0, peCy(RY)

Proof. Note that

o) 2 [ c@au@)+ [ swat) = [ (o) +vw) )

= /Rd o(z)d (,u(:r) —/yERdv(a:, dy)> +/Rd¢(y)d (V(y) —/meRdv(d%y))

When v € TI(u, v), it is clear that by definition L(vy, p,1) = 0. When v ¢ II(u, v), since we can put
all ‘weights’ of function ¢ or 1 on any point = € R?, UT(pu,) () 18 larger than any arbitrary positive
real. Thus ¢ry,,.)(y) = oo. O

Now it is equivalent to solve the following optimization problem.

min sup ){/Rded(C(fv,y) —p(z) —Y(y)) dy(z,y) +/Rd o(r) dpu(z) + Rdwy) dV(y)}'

YEM4(RIXRY) o, ey (RE

Interchanging the infimum and supremum, we obtain the following optimization problem

o ([ [ vwaw s min L[ et o) - v @@ |
®



Now we focus on the term

min {/Rded(C(x,y) —p(z) — w(y))dv(x,y)}-

YEM 4 (REXRY)

Let (¢ ® ¢) (z,y) = ¢(x) + ¢(y). It is clear that

0 pdY <c
. , _ _ d , —
veMﬁﬁ%%de){/Rded(c(x y) — el@) = $y)) dy(@ y)} {—oo otherwise.
Then we derive the dual problem
s { [ e+ [ v}
ppeCy(RY) LR Ré (4)

st.pdv <ec.

Theorem 6. Under some mild conditions the strong duality holds. When the strong duality holds,
the optimum can be attained by some c-concave pair.
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