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1 Overview

In this (advanced) lecture, we introduce a type of optimization problems called the optimal trans-
port. In this lecture, we focus on the optimal ‘cost’ of transporting one probability measure to
another. For a state space Ω, let B(Ω) be the collection of all Borel sets in Ω.

Definition 1 (probability measure). Given the state space Ω = Rd equipped with the Borel algebra
B(Rd), µ : B(Rd) → [0, 1] is said to be a probability measure if

• µ(∅) = 0.

• µ(Rd) = 1.

• For any disjoint measurable set A1, A2, . . .,

µ(A1 ∪A2 ∪ . . .) =
∞∑
i=1

µ(Ai).

We use P (Rd) to denote the space of all probability measures over Rd.

Also, for more concise and precise description, we introduce the coupling of two probability mea-
sures.

Definition 2 (coupling). For two probability measures µ, ν ∈ P (Rd), we say γ : Rd × Rd → [0, 1]
is a coupling of µ and ν if:

• For all measurable A ⊆ Rd,

µ(A) =

∫
y∈Rd

dγ(A, y).

• For all measurable B ⊆ Rd,

ν(B) =

∫
x∈Rd

dγ(x,B).
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2 Optimal Transport

Now we describe the optimal transport in details. For a transport map T : B(Rd) → B(Rd), define
the operator T# : P (Rd) → P (Rd) as: for all measurable set E ⊆ Rd,

T#µ(E) = µ(T−1(E)).

Definition 3 (Monge’s problem). Given two probability measures µ, ν ∈ Rd, a cost function c :
Rd × Rd → R≥0 meaning the cost of moving 1 unit of particles. Then, the Monge’s problem is
the following optimization problem:

min
T

∫
x∈Rd

c(x, T (x)) dµ(x)

s.t. T#µ = ν.

(1)

We also call this optimization problem (MP).

Figure 1: an illustration of Monge’s problem

However, note that, for general µ and ν, the feasible transport map T does not necessarily exist.
Here we give an example.

Let µ = δ0 and ν = 1
2δ−1+

1
2δ1, where δx is the Dirac measure at x (only has point mass at x). Since

the transport map cannot move particles from one position to multiple positions, it is impossible
to transport µ to ν.

Figure 2: an example that there is no feasible transport map.

To handle this case, we use the coupling of two probability measures instead of transport map.

Definition 4 (Kantorovich’s problem). Given two probability measures µ, ν ∈ Rd, a cost function
c : Rd × Rd → R≥0 meaning the cost of moving 1 unit of particles. Then, the Kantorovich’s
problem is the following optimization problem:

min
γ

∫
x∈Rd

∫
y∈Rd

c(x, y) dγ(x, y)

s.t. γ is a coupling of µ, ν.

(2)
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For convenience we call this optimization problem (KP).

The coupling γ is also named as a transport plan. Note that, under the assumptions in Definition
4, there always exists a feasible coupling, since γ = µ⊗ ν is always a coupling (µ⊗ ν is defined as,
for all measurable A,B ⊆ Rd, (µ⊗ ν)(A,B) = µ(A)ν(B)).

Though γ does always exist, it’s unfortunate that (KP) does not always admit a solution. We note
that, under some regular conditions, (KP) admits a solution.

2.1 Kantorovich duality

To establish a solution to (KP), similarly to the things we do in Lecture 3, we introduce a kind of
dual property called Kantorovich duality.

Let Π(µ, ν) be the collection of all couplings of µ and ν, andM+(Ω) be the collection of all measures
on Ω. Now we define the indicator function ιΠ(µ,ν) : M+(Rd × Rd) → R ∪ {∞},

ιΠ(µ,ν)(γ) =

{
0, γ ∈ Π(µ, ν)

∞ γ /∈ Π(µ, ν).

Additionally, let Cb(Rd) be the collection of continuous and bounded functions on Rd. Now we use
affine functions to express ιΠ(µ,ν).

Lemma 5. It holds that

ιΠ(µ,ν)(γ) = sup
φ,ψ∈Cb(Rd)

{∫
Rd

φ(x) dµ(x) +

∫
Rd

ψ(y) dν(y)−
∫
Rd×Rd

(φ(x) + ψ(y)) dγ(x, y)

}
.

Proof. Note that

L(γ, φ, ψ)
△
=

∫
Rd

φ(x) dµ(x) +

∫
Rd

ψ(y) dν(y)−
∫
Rd×Rd

(φ(x) + ψ(y)) dγ(x, y)

=

∫
Rd

φ(x) d

(
µ(x)−

∫
y∈Rd

γ(x, dy)

)
+

∫
Rd

ψ(y) d

(
ν(y)−

∫
x∈Rd

γ( dx, y)

)
.

When γ ∈ Π(µ, ν), it is clear that by definition L(γ, φ, ψ) = 0. When γ /∈ Π(µ, ν), since we can put
all ‘weights’ of function φ or ψ on any point x ∈ Rd, ιΠ(µ,ν)(γ) is larger than any arbitrary positive
real. Thus ιΠ(µ,ν)(γ) = ∞.

Now it is equivalent to solve the following optimization problem.

min
γ∈M+(Rd×Rd)

sup
φ,ψ∈Cb(Rd)

{∫
Rd×Rd

(c(x, y)− φ(x)− ψ(y)) dγ(x, y) +

∫
Rd

φ(x) dµ(x) +

∫
Rd

ψ(y) dν(y)

}
.

Interchanging the infimum and supremum, we obtain the following optimization problem

sup
φ,ψ∈Cb(Rd)

{∫
Rd

φ(x) dµ(x) +

∫
Rd

ψ(y) dν(y) + min
γ∈M+(Rd×Rd)

{∫
Rd×Rd

(c(x, y)− φ(x)− ψ(y)) dγ(x, y)

}}
.

(3)
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Now we focus on the term

min
γ∈M+(Rd×Rd)

{∫
Rd×Rd

(c(x, y)− φ(x)− ψ(y)) dγ(x, y)

}
.

Let (φ⊕ ψ) (x, y) = φ(x) + φ(y). It is clear that

min
γ∈M+(Rd×Rd)

{∫
Rd×Rd

(c(x, y)− φ(x)− ψ(y)) dγ(x, y)

}
=

{
0 φ⊕ ψ ≤ c,

−∞ otherwise.

Then we derive the dual problem

sup
φ,ψ∈Cb(Rd)

{∫
Rd

φ(x) dµ(x) +

∫
Rd

ψ(y) dν(y)

}
s.t. φ⊕ ψ ≤ c.

(4)

Theorem 6. Under some mild conditions the strong duality holds. When the strong duality holds,
the optimum can be attained by some c-concave pair.
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