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1 Overview

In this lecture, we turn our sight back to the gradient descent. We will show how to accelerate the
gradient descent by properly choosing the step size.

2 Introduction

Recall the gradient descent:

xt+1 = xt − η∇f(xt).

The gradient descent lemma tells us, if we pick η = 1/L, or at least η < 2/L. Then there is a
question: can we choose a larger η to make the gradient descent converge faster?

The answer to such a question varies. Here are two examples.

Example 1: Let f(x) = x2. It is trivial that f is 2-smooth. If we choose η = 2/L = 1, we
compute xt+1 = xt − 2xt = −xt. When x0 = 1, this means the sequence will be 1,−1,+1, . . . Then
the gradient descent will not converge.

Example 2: Consider the function f which is a smooth version of x 7→ |x|, i.e., f ≈ |x| with
L-smoothing around the origin for some large L. Around the origin, we see f is quite smooth so η
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Figure 1: f(x) ≈ |x| with smoothing around (0, 0).

will be very small. However, away from the origin, we show f is ∞-smooth (linear function), which
allows us to choose large η.

The observation gives rise to a natural question: how to adjust the step size automatically during
the gradient descent? The answer is momentum. Roughly speaking, we will use ‘weighted average
of the past gradients’, e.g., ηt =

1
w

∑t
s=t−q ∇f(xs).

Definition 1 (Nesterov’s acceleration gradient descent). Given f : Rd → R, each iteration of
Nesterov’s acceleration gradient descent is as follow:

Zt+1 = xt − η∇f(xt), xt+1 = (1− γt)Zt+1 + γtZt

where

γt =
1− λt

λt+1
, λ0 = 0, λt+1 =

1 +
√

1 + 4λ2
t

2
.

Definition 2 (Polyak’s heavy ball method). Given f : Rd → R, each iteration of Polyak’s heavy
ball method is

xt+1 = xt − ηgt

where

gt = (1− γ)gt−1 + γ∇f(xt) = γ
t∑

s=0

(1− γ)t−s∇f(xs).

Remark 1. To compare Algorithm 1 and Algorithm 2, one can see: it is natural to understand
Algorithm 2 intuitively (in fact, it is the default mode of PyTorch’s momentum), and Algorithm
1 seems to make no sense (and nobody use it nowadays). However, Algorithm 1 provides the
theoretically optimal convergence rate O(1/t2) for smooth convex functions while Algorithm 2
offers no theoretical guarantee.

3 Allen-Zhu and Orecchia’s Accelerated Gradient Descent

Consider the question why it is hard to understand Nesterov’s acceleration gradient descent. The
intuition is clear but it is not easy to choose the descent. In this lecture, we will introduce a variant
of the accelerated gradient descent introduced in [AZO14], which is easier to theoretically analyze.
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Recall that how momentum works:

1. Choose a large η ≫ 1/L.

2. If η is too large, it would be approximately equivalent to the phenomenon that xt will start
to bounce. The phenomenon implies the moving average gt will automatically shrink. The
shrink of g means the learning rate is decreasing.

Observe that, when xt starts to bounce, the gradient is large. Then we will immediately decrease
the learning rate.

Remark 2. We will not simply normalize the gradient or use the sign descent, since we need the
argument that xt close to a stationary point implies small ∇f(xt) for a uniform step size scheme
to converge.

3.1 Intuition of Allen-Zhu and Orecchia’s acceleration

To simulate the momentum, we use the gradient norm as an indicator.

• If the norm of gradient is small, we pick large η.

• If the norm of gradient is large, we pick small η.

Then it gives rise to some questions:

1. How to determine the threshold?

2. How to reason about GD with η ≫ 1/L.

3.2 A thought experiment

Now we do a thought experiment. Though the experiment and statements in it might be informal,
it inspires us to understand A-Z and O’s method. Without loss of generality assume that f(x∗) = 0.
Let K > 0 be a parameter to be chosen. Consider the following two extreme cases.

Case 1: The gradient is always large. That is to say, for all t, ∥∇f(xt)∥2 ≥ K. Then it is safe
for us to choose η = 1/L. By the gradient descent lemma,

f(xt+1) ≤ f(xt)−
η

2
∥∇f(xt)∥2

≤ f(xt)−
∥∇f(xt)∥2

2L

≤ f(xt)−
K

2L

≤ f(x0)−
tK

2L
.

Then it takes at most Lf(x0)
K to half the function value.
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Case 2: The gradient is always small. That is to say, for all t, ∥∇f(xt)∥2 ≤ K. By the mirror
descent lemma,

1

T

T−1∑
t=0

f(xt) ≤ f(x∗) +
1

2ηT
∥x∗ − x0∥2 +

η

2T

T−1∑
t=0

∥∥∇f(xt)
2
∥∥

≤ f(x∗) +
1

2ηT
∥x∗ − x0∥2 +

η

2
K.

Then we choose η such that 1
2ηT ∥x∗ − x0∥2 and η

2K are both not greater than f(x0)/4, precisely

η = f(x0)/2K and T = 4K∥x∗−x0∥2
f(x0)2

.

Now we want to determine K. Combining two cases, we have

T =


Lf(x0)

K
the gradient is always large;

4K∥x∗ − x0∥2

f(x0)2
the gradient is always small.

Make the two terms equal, and we set

K =
L1/2f(x0)

3/2

2∥x∗ − x0∥
, T =

2L1/2∥x∗ − x0∥
f(x0)1/2

.

Now we informally establish its convergence rate. Assume that f(x0) = C = Θ(1) and ∥x∗ − x0∥ =
O(1). Then after T = O(

√
L) iterations, the value will be halved. Then to achieve f(xT ) ≤ ε, we

need O(
√

L/ε) iterations, which is better than the bound O(L/ε) in the gradient descent.

3.3 Formal form of Allen-Zhu and Orecchia’s method

Definition 3 (Allen-Zhu and Orecchia’s accelerated GD). Suppose that we start at point x0. Set
s0 = ℓ0 = x0. We update xt, st, ℓt as follows

xt+1 = (1− τ)st+1 + τℓt+1,

st+1 = xt −
1

L
∇f(xt),

ℓt+1 = ℓt − η∇f(xt).

where τ ∈ (0, 1) is a hyperparameter and η ≫ 1/L is the step size for ℓt.

Remark 3. We give some rough interpretations to Definition 3. The update of st can be viewed as
the gradient descent with size η = 1

L , and ℓt can be viewed as the momentum update.

If f is flat, ℓt dominates (η ≫ 1/L). This decreases the function value. Otherwise, xt starts to
bounce. Then ℓt becomes small, which means st dominates. This becomes the usual gradient
descent update with a tight step size.

Now we formally establish the convergence rate of it.
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Lemma 4 (modified mirror descent lemma). Under the above settings,

f(xt)− f(x∗) ≤
1

2η

(
∥x∗ − ℓt∥2 − ∥x∗ − ℓt+1∥2 + ∥ℓt − ℓt+1∥2

)
+

1− τ

τ
(f(st)− f(xt)).

Based on Lemma 4, we will show the convergence rate of it.

Proposition 5. Choose η = ∥x∗−x0∥√
2Lf(x0)

and τ = 1
Lη+1 . Then we have

1

T

T−1∑
t=0

f(xt) ≤ f(x∗) +
1

T

√
Lf(x0)∥x∗ − x0∥

2
.

Proof. By Lemma 4, it holds that

f(xt)− f(x∗) ≤
1

2η

(
∥x∗ − ℓt∥2 − ∥x∗ − ℓt+1∥2 + ∥ℓt − ℓt+1∥2

)
+

1− τ

τ
(f(st)− f(xt))

=
1

2η

(
∥x∗ − ℓt∥2 − ∥x∗ − ℓt+1∥2 + η2∥∇f(xt)∥2

)
+

1− τ

τ
(f(st)− f(xt))

(i)

≤ 1

2η

(
∥x∗ − ℓt∥2 − ∥x∗ − ℓt+1∥2 + 2η2L(f(xt)− f(st+1))

)
+

1− τ

τ
(f(st)− f(xt))

where (i) comes from the update of gradient descent. Choose τ = 1
Lη+1 such that ηL = 1−τ

τ , and
we obtain

f(xt)− f(x∗) ≤
1

2η

(
∥x∗ − ℓt∥2 − ∥x∗ − ℓt+1∥2 + 2η2L(f(st)− f(st+1))

)
.

Summing over both sides, we obtain

1

T

T−1∑
t=0

f(xt) ≤ f(x∗) +
1

2ηT

(
∥x∗ − ℓ0∥+ 2η2Lf(s0)

)
=

1

2η
∥x∗ − ℓ0∥+

ηL

T
f(s0).

Choose η = ∥x∗−x0∥√
2Lf(x0)

and we prove the proposition.
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