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1 Overview

In this lecture, we move to an advanced topic in optimization: how to escape the saddle points. The
existence of saddle points might make the algorithms of gradient descent fail to (approximately)
find a minimizer efficiently. We will show how to escape such kind of ‘bad’ points under some
conditions.

1.1 Preliminary

The following anti-concentration of ball volume will be of great significance in our analysis.

Lemma 1. Let x ∼ Unif(rBd). For all δ ∈ (0, 1), with probability at least 1− δ, we have

|x1| ≥ rδ/(2
√
d).

2 Introduction

To precisely describe the topic, firstly we introduce the local minimizer.

Definition 2. Given a function f : Rd → R, we say x ∈ Rd is a local minimizer of f if there
exists an open set U ⊆ Rd such that x ∈ U and f(x) ≤ f(x′) for all x′ ∈ U .

To show the local minimizer, it suffices to show the second-order condition holds.
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Fact 3. Given a function f : Rd → R, for a point x ∈ Rd, if

∇f(x) = 0, ∇2f(x) ≻ 0,

then x is a strict local minimizer.

Remark 1. Note that, the condition ∇f(x) = 0, ∇2f(x) ⪰ 0 does not necessarily imply the local
minimizer. We say such a point x is a second-order stationary point.

Example: Consider the function f(x) = x3 at the point x = 0. See Figure 1 as an illustration.

Figure 1: y = x3. At point x = 0, y′ = y′′ = 0 but it is not a local minimizer.

Now we introduce the general stationary point.

Definition 4. Given a function f : Rd → R, assume that f is ρ-Hessian Lipschitz (∇2f is ρ-
Lipschitz). We say x is a ε-second order stationary point of f if

∥∇f(x)∥ ≤ ε, λmin(∇2f(x)) ≥ −√ρε.

Remark 2. The conditions means x is approximately stationary and its Hessian is approximately
positive semidefinite.

3 Noisy Gradient Descent

Unfortunately, it’s not guaranteed that we can always escape any arbitrary saddle point. In fact,
we will show, given f : Rd → R, assume that it is ℓ-smooth and ρ-Hessian Lipschitz. Then the noisy
gradient flow/descent can find an ε-second order stationary point efficiently (in time O(poly (d))).

3.1 A quadratic case

Consider f(x) = x⊤Ax where A = diag (−1, 1, . . . , 1) ∈ Rd×d. It is trivial to see x̂ = 0 is a saddle
point. We do gradient flow of f :

d

dt
xt = −∇f(xt) = −2Axt.
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Since A is a diagonal matrix, for each k ∈ [d],

d

dt
(xt)d = −2Ak,k(xt)d.

Solving these systems, we obtain

(xt)k = (x0)k exp (−2Ak,kt) .

This means as t → ∞, (xt)k → 0 for k ̸= 1 and |(xt)1| → ∞. This means as long as |(x0)1| ≥
1/poly (d), |(xt)1| will become Ω(1) in O(log d) time.

3.2 General loss function

Now we illustrate the high-level idea to show how to escape the saddle point. Due to Lemma 1,
to escape the saddle point, it might be possible to add a small perturbation ball if necessary. The
algorithm can be roughly stated as

Algorithm 1: noisy gradient descent

1 for t = 0, 1, . . . do
2 if some perturbation condition holds then
3 ξt ∼ Unif(rBd);
4 xt ← xt + ξt;

5 xt+1 = xt − η∇f(xt);

Since the analysis is quite technical, we will present the high-level idea here (for precise and detailed
analysis, refer [JGN+17]). Suppose that x0 is near a saddle point with at least one descent direction
(to ensure that it is possible to escape). Assume that, ∇f(xt) is small for all t ∈ [0, T ]. Then xt is
near x0. Since f is Hessian Lipschitz, we know

∇2f(xt) ≈ ∇2f(x0).

Thus we compute

d

dt
∥∇f(xt)∥2 = 2

〈
∇f(xt),

d

dt
∇f(xt)

〉
= 2

〈
∇f(xt),∇2f(xt)ẋt

〉
= −2

〈
∇f(xt),∇2f(xt)∇f(xt)

〉
≈ −2

〈
∇f(xt),∇2f(x0)∇f(xt)

〉
.

This means ∇f(xt) will blow up along the descent direction. Thus we know it will escape the
saddle point (under some regularity conditions).

Theorem 5 (Theorem 2 in [JGN+17]). Let f : Rd → R be an ℓ-smooth, ρ-Hessian Lipschitz
function. For all η < ℓ2/ρ, δ ∈ (0, 1), with probability at least 1 − δ, noisy gradient descent can
output an ε-second order stationary point with

O

(
ℓ(f(x0)− f∗)

ε2
log4

(
dℓ(f(x0)− f∗)

η2δ

))
iterations.
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