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1 Overview

In this lecture, we move to an advanced topic in optimization: how to escape the saddle points. The
existence of saddle points might make the algorithms of gradient descent fail to (approximately)
find a minimizer efficiently. We will show how to escape such kind of ‘bad’ points under some
conditions.

1.1 Preliminary

The following anti-concentration of ball volume will be of great significance in our analysis.

Lemma 1. Let x ~ Unif(rB?). For all § € (0,1), with probability at least 1 — §, we have

lz1| > 76/ (2V/d).

2 Introduction

To precisely describe the topic, firstly we introduce the local minimizer.

Definition 2. Given a function f : R* — R, we say = € R is a local minimizer of f if there
exists an open set U C RY such that x € U and f(z) < f(a') for all 2’ € U.

To show the local minimizer, it suffices to show the second-order condition holds.



Fact 3. Given a function f : R* = R, for a point x € RY, if
Vf(z) =0, V*f(z) >0,
then x s a strict local minimizer.

Remark 1. Note that, the condition Vf(x) = 0, V2f(x) = 0 does not necessarily imply the local
minimizer. We say such a point z is a second-order stationary point.

Example: Consider the function f(x) = 2? at the point 2 = 0. See Figure 1 as an illustration.

/

Figure 1: y = 23. At point x = 0, ¥ = y” = 0 but it is not a local minimizer.

Now we introduce the general stationary point.

Definition 4. Given a function f : R* — R, assume that f is p-Hessian Lipschitz (V2f is p-
Lipschitz). We say x is a e-second order stationary point of f if

||Vf($)|| <g, )\min(v2f(x)) > — PE.

Remark 2. The conditions means x is approximately stationary and its Hessian is approximately
positive semidefinite.

3 Noisy Gradient Descent

Unfortunately, it’s not guaranteed that we can always escape any arbitrary saddle point. In fact,
we will show, given f : R? — R, assume that it is f~smooth and p-Hessian Lipschitz. Then the noisy
gradient flow/descent can find an e-second order stationary point efficiently (in time O(poly (d))).

3.1 A quadratic case

Consider f(z) = 2" Az where A = diag (—1,1,...,1) € R¥?, Tt is trivial to see & = 0 is a saddle
point. We do gradient flow of f:

d
aﬂﬁt == —Vf(fl,‘t) == —2A.’Et
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Since A is a diagonal matrix, for each k € [d],

d
E(fﬁt)d = —2A; k()4

Solving these systems, we obtain

(z¢)k = (x0)r exp (=24 11) .

This means as t — 00, (zt)r — 0 for k # 1 and |(x¢)1] — oo. This means as long as |(zg)1] >
1/poly (d), |(z+)1] will become ©(1) in O(logd) time.

3.2 General loss function

Now we illustrate the high-level idea to show how to escape the saddle point. Due to Lemma 1,
to escape the saddle point, it might be possible to add a small perturbation ball if necessary. The
algorithm can be roughly stated as

Algorithm 1: noisy gradient descent
fort=0,1,... do
if some perturbation condition holds then
L & ~ Unif(rB%);

Ty < xp + &

Tpy1 = xp — NV f(24);

Since the analysis is quite technical, we will present the high-level idea here (for precise and detailed
analysis, refer [ ]). Suppose that x( is near a saddle point with at least one descent direction
(to ensure that it is possible to escape). Assume that, V f(x;) is small for all ¢t € [0,7]. Then z; is
near xg. Since f is Hessian Lipschitz, we know

V2 f () = V2 f(20).

Thus we compute

d d
V@I =2 (V). VI

= 2(Vf(xe), V2 f(r)dr)
~2(Vf (1), V2 f(20)V £ (1))
~ =2(V f(20), V2 (@0)V f (1)) -

This means V f(z;) will blow up along the descent direction. Thus we know it will escape the
saddle point (under some regularity conditions).

Theorem 5 (Theorem 2 in [ D). Let f : R* — R be an f-smooth, p-Hessian Lipschitz
function. For all n < 2/p, 6 € (0,1), with probability at least 1 — &, noisy gradient descent can
output an e-second order stationary point with

o (L)~ 1) (41520 1)

iterations.
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