CS2910 - Optimization	Summer 2023
Lecture 8 — Escaping Saddle Points	3
Lecturer: Yunwei Ren	Scribed by Zhidan Li

Contents

1	Overview	1
	1.1 Preliminary	1
2	Introduction	1
3	Noisy Gradient Descent	2
	3.1 A quadratic case	2
	3.2 General loss function	3

1 Overview

In this lecture, we move to an advanced topic in optimization: how to escape the saddle points. The existence of saddle points might make the algorithms of gradient descent fail to (approximately) find a minimizer efficiently. We will show how to escape such kind of 'bad' points under some conditions.

1.1 Preliminary

The following anti-concentration of ball volume will be of great significance in our analysis.

Lemma 1. Let $x \sim \text{Unif}(r\mathbb{B}^d)$. For all $\delta \in (0,1)$, with probability at least $1 - \delta$, we have

$$|x_1| \ge r\delta/(2\sqrt{d}).$$

2 Introduction

To precisely describe the topic, firstly we introduce the *local minimizer*.

Definition 2. Given a function $f : \mathbb{R}^d \to \mathbb{R}$, we say $x \in \mathbb{R}^d$ is a **local minimizer** of f if there exists an open set $U \subseteq \mathbb{R}^d$ such that $x \in U$ and $f(x) \leq f(x')$ for all $x' \in U$.

To show the local minimizer, it suffices to show the *second-order condition* holds.

Fact 3. Given a function $f : \mathbb{R}^d \to \mathbb{R}$, for a point $x \in \mathbb{R}^d$, if

$$\nabla f(x) = 0, \ \nabla^2 f(x) \succ 0,$$

then x is a strict local minimizer.

Remark 1. Note that, the condition $\nabla f(x) = 0$, $\nabla^2 f(x) \succeq 0$ does not necessarily imply the local minimizer. We say such a point x is a second-order stationary point.

Example: Consider the function $f(x) = x^3$ at the point x = 0. See Figure 1 as an illustration.

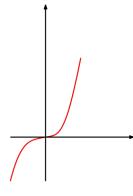


Figure 1: $y = x^3$. At point x = 0, y' = y'' = 0 but it is not a local minimizer.

Now we introduce the general stationary point.

Definition 4. Given a function $f : \mathbb{R}^d \to \mathbb{R}$, assume that f is ρ -Hessian Lipschitz ($\nabla^2 f$ is ρ -Lipschitz). We say x is a ε -second order stationary point of f if

$$\|\nabla f(x)\| \le \varepsilon, \ \lambda_{\min}(\nabla^2 f(x)) \ge -\sqrt{\rho\varepsilon}.$$

Remark 2. The conditions means x is approximately stationary and its Hessian is approximately positive semidefinite.

3 Noisy Gradient Descent

Unfortunately, it's not guaranteed that we can always escape any arbitrary saddle point. In fact, we will show, given $f : \mathbb{R}^d \to \mathbb{R}$, assume that it is ℓ -smooth and ρ -Hessian Lipschitz. Then the noisy gradient flow/descent can find an ε -second order stationary point efficiently (in time O(poly(d))).

3.1 A quadratic case

Consider $f(x) = x^{\top} A x$ where $A = \text{diag}(-1, 1, \dots, 1) \in \mathbb{R}^{d \times d}$. It is trivial to see $\hat{x} = 0$ is a saddle point. We do gradient flow of f:

$$\frac{d}{dt}x_t = -\nabla f(x_t) = -2Ax_t.$$

Since A is a diagonal matrix, for each $k \in [d]$,

$$\frac{d}{dt}(x_t)_d = -2A_{k,k}(x_t)_d.$$

Solving these systems, we obtain

$$(x_t)_k = (x_0)_k \exp(-2A_{k,k}t).$$

This means as $t \to \infty$, $(x_t)_k \to 0$ for $k \neq 1$ and $|(x_t)_1| \to \infty$. This means as long as $|(x_0)_1| \ge 1/\text{poly}(d)$, $|(x_t)_1|$ will become $\Omega(1)$ in $O(\log d)$ time.

3.2 General loss function

Now we illustrate the high-level idea to show how to escape the saddle point. Due to Lemma 1, to escape the saddle point, it might be possible to add a small perturbation ball if necessary. The algorithm can be roughly stated as

Algorithm 1: noisy gradient descent

1 for t = 0, 1, ... do 2 if some perturbation condition holds then 3 $\xi_t \sim \text{Unif}(r\mathbb{B}^d);$ 4 $x_t \leftarrow x_t + \xi_t;$ 5 $x_{t+1} = x_t - \eta \nabla f(x_t);$

Since the analysis is quite technical, we will present the high-level idea here (for precise and detailed analysis, refer [JGN⁺17]). Suppose that x_0 is near a saddle point with at least one descent direction (to ensure that it is possible to escape). Assume that, $\nabla f(x_t)$ is small for all $t \in [0, T]$. Then x_t is near x_0 . Since f is Hessian Lipschitz, we know

$$\nabla^2 f(x_t) \approx \nabla^2 f(x_0).$$

Thus we compute

$$\frac{d}{dt} \|\nabla f(x_t)\|^2 = 2 \left\langle \nabla f(x_t), \frac{d}{dt} \nabla f(x_t) \right\rangle$$
$$= 2 \left\langle \nabla f(x_t), \nabla^2 f(x_t) \dot{x}_t \right\rangle$$
$$= -2 \left\langle \nabla f(x_t), \nabla^2 f(x_t) \nabla f(x_t) \right\rangle$$
$$\approx -2 \left\langle \nabla f(x_t), \nabla^2 f(x_0) \nabla f(x_t) \right\rangle$$

This means $\nabla f(x_t)$ will blow up along the descent direction. Thus we know it will escape the saddle point (under some regularity conditions).

Theorem 5 (Theorem 2 in [JGN⁺17]). Let $f : \mathbb{R}^d \to \mathbb{R}$ be an ℓ -smooth, ρ -Hessian Lipschitz function. For all $\eta < \ell^2/\rho$, $\delta \in (0,1)$, with probability at least $1 - \delta$, noisy gradient descent can output an ε -second order stationary point with

$$O\left(\frac{\ell(f(x_0) - f_*)}{\varepsilon^2} \log^4\left(\frac{d\ell(f(x_0) - f_*)}{\eta^2 \delta}\right)\right)$$

iterations.

References

[JGN⁺17] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to Escape Saddle Points Efficiently, 2017.