
CS2910 - Optimization Summer 2023

Lecture 7 — Distributed Optimization and ADMM

Lecturer: Yunwei Ren Scribed by Zhidan Li

1 Overview

In this lecture, we focus on the distributed optimization problem. Under the distributed setting,
we will show our gradient descent algorithm can be computed in parallel. This kind of parallel
optimization algorithm will be of great significance when the dataset is extremely large.

2 Introduction

Recall ERM: given a dataset {(xi, yi)}ni=1 ⊆ Rd+1,

min
w∈Rd

f(w)
△
=

1

n

n∑
i=1

ℓ(h(xi;w), yi) +R(w). (1)

A problem is, if the dataset {(xi, yi)}ni=1 is extremely large, we have to store the dataset in a
distributed system (or multiple machines). This means we need to design a distributed optimization
algorithm.

Theoretical model:

• There are m machines M1, . . . ,Mm and they can communicate with each other.

• Each machine contains a subset of the dataset S1, . . . , Sm satisfying
⊎m

i=1 Si = [n] and so that
{(xj , yj)}j∈Sj

stored in machine Mi.

• For the computation model of machines, there are two cases: infinite computation power (the
local machine can compute arbitrary amount of things in a short time) in most of this lecture;
finite computation power.

• Our goal is to minimize the communication cost while minimizing objects.

2.1 Attempt 1

For each machine Mj , we compute

w∗
j = argmin

w

 1

|Sj |
∑
i∈Sj

ℓ(h(xi;w), yi) +R(w)

 .

Then we combine
{
w∗
j

}m

j=1
in a sophistical way. However, this kind of attempt does not work,

since S1, . . . , Sm are not necessarily a list of i.i.d. variables.

1

2.2 Attempt 2

Now we try to communicate the gradients. Consider the gradient of the objective function

1

n

n∑
i=1

∇wℓ(h(xi;w), yi) +∇wR(w) =
1

n

m∑
j=1

∑
i∈Sj

∇wℓ(h(xi;w), yi) +∇wR(w).

Then we can design the following parallel algorithm: At each iteration t,

• Each Mj computes the local gradient ∇j =
∑

i∈Sj
∇wℓ(h(xi;w), yi).

• Mj sends ∇j to anther machine M0.

• M0 computes the global gradient ∇ = 1
n

∑m
j=1∇j +∇R(w).

• M0 broadcasts ∇ to every machine M1, . . . ,Mm.

• Each Mj updates w (gradient descent) with ∇.

Figure 1: one iteration of the algorithm

In each iteration, the communication cost is Θ(md). Since the number of iterations depends on the
convergence rate of gradient descent. However, the cost will be very large when the smoothness of
the objective function is not good due to the convergence rate of gradient descent.

Key observation: the attempt does not utilize the infinite computation power.

3 Alternating Direction Method of Multipliers (ADMM)

We consider a slightly general problem. Consider the following optimization problem

min
w∈Rd

1

m

m∑
i=1

fj(w) (2)

2

where for each j ∈ [m], fj is a convex function and only depends on the dataset stored in Mj . Note
that to solve (1), for each j ∈ [m], we let

fj(w) =
m

n

∑
i∈Sj

ℓ(h(xi;w), yi) +R(w).

To solve (2), we consider the following optimization problem with constraints

min
w1,...,wm∈Rd

1

m

m∑
j=1

fj(wj) s.t. w1 = . . . = wm = w. (3)

For some technical reason, we consider the following optimization problem

min
w1,...,wm∈Rd

1

m

m∑
j=1

(
fj(wj) + λ∥wj − w∥22

)
s.t. w1 = . . . = wm = w (4)

where λ > 0 is a parameter we will choose later. Then it makes sense to consider its Lagrangian

L(α1, . . . , αm, w1, . . . , wm, w) =
1

m

m∑
j=1

(
fj(wj) + λ∥wj − w∥22 + ⟨αj , wj − w⟩

)
.

It is not hard to verify that the slater’s condition holds. Then we consider its dual

max
α∈(Rd)

m
G(α)

△
= min

w1,...,wm∈Rd
L(α,w1, . . . , wm, w) (5)

Note that, G(α) is concave. That is to say, we can do ‘gradient ascent’ to solve (5). Now we show
how to compute its gradient.

Lemma 1. Let h : Rd → R be a strictly convex function and A ∈ Rd′×d be a matrix. Put
F (β) = miny {h(y) + ⟨β,Ay⟩}. Under some regularity conditions, ∇F (β) = Ay(β) where y(β) =
argminy {h(y) + ⟨β,Ay⟩}.

Proof. Note that F (β) = h(y(β)) + ⟨β,Ay(β)⟩. Then,

∇F (β) = (∇βy(β))
⊤∇h(y(β)) +Ay(β) + (∇βy(β))

⊤A⊤β

= (∇βy(β))
⊤
(
∇h(y(β)) +A⊤β

)
+Ay(β).

Since y(β) = argminy {h(y) + ⟨β,Ay⟩}, it holds that ∇h(y(β)) + A⊤β = 0. Then ∇F (β) =
Ay(β).

As a corollary, we have the following result for G.

Corollary 2. For each j ∈ [m], it holds that

∇αjG(α) = w∗
j − w∗,

where (w∗
1, . . . , w

∗
m, w∗) is the minimizer of (w1, . . . , wm, w) 7→ L(α,w1, . . . , wm, w).

3

Remark 1. The corollary means, as long as we can efficiently solver the inner minimizing problem (in
a distributed way), we can solve the original optimization problem. However, the inner minimization
is not usually easy since w is shared across machines.

Even it is not easy to do the inner minimization, we have the two following observations which are
of great significance.

• Observation 1: For fixed w, the optimization problem

min
w1,...,wm

1

m

m∑
j=1

(
fj(wj) + λ∥wj − w∥2 + ⟨αj , wj − w⟩

)
can be solved in a distributed way.

• Observation 2: For fixed w1, . . . , wm, minimizing over w is easy:

∇wL = −2λ
m∑
j=1

(wj − w)−
m∑
j=1

αj = 0

=⇒ w =
1

2mλ

m∑
j=1

αj +
1

m

m∑
j=1

wj .

Based on the two observations, we would minimize w1, . . . , wm and w in an alternative way.

Definition 3 (ADMM). Consider the problem

min
w∈Rd

1

m

m∑
j=1

fj(w)

where fj : Rd → R are convex functions. Suppose that fj only depends on the dataset stored in
Mj. Without loss of generality assume that all fj are non-negative. ADMM updates the parameters
using the following rules

w
(t+1)
j = argmin

wj

{
fj(wj) + λ

∥∥∥wj − w(t)
∥∥∥2 + 〈α(t)

j , wj − w(t)
〉}

(6)

w(t+1) =
1

2mλ

m∑
j=1

α
(t)
j +

1

m

m∑
j=1

w
(t+1)
j (7)

α
(t+1)
j = α

(t)
j − η

(
w(t+1) − w

(t+1)
j

)
(8)

where η > 0, λ > 0 are two positive parameters which can be chosen, and α
(0)
1 , . . . , α

(0)
m , w

(0)
1 , . . . , w

(0)
m , w(0)

is the starting point. Precisely, ADMM works as: suppose that at the beginning of each iteration t,

each machine Mj locally stores w
(t)
j and α

(t)
j and a copy of w(t).

• Each machine locally computes w
(t+1)
j by (6).

• All machines send w
(t+1)
j and α

(t)
j to a center server.

4

• The center server computes w(t+1) by (6).

• The center server broadcasts w(t+1) to all machines.

• Each machine locally computes α
(t+1)
j by (8).

Remark 2. Note that, the cost of each iteration of ADMM is Θ(md). Unfortunately each iteration
of ADMM does not necessarily achieve the ‘local minimum’. And the convergence rate of ADMM
is not trivial.

3.1 Convergence rate of ADMM

Now we show the convergence rate of ADMM.

Proposition 4. Under the definitions and settings in Definition 3, for any given T > 0, choose

η = 2
√
T and λ = η/2. Initialize all α

(0)
j = 0. Then there exists t∗ ≤ T such that for all w,

1

m

m∑
j=1

fj(w
∗
j) ≤

1

m

m∑
j=1

fj(w) +
1√
T

∥∥∥w − w(0)
∥∥∥2,

1

m

m∑
j=1

∥∥∥w(t∗) − w
(t∗)
j

∥∥∥2 ≤ 1

m
√
T

m∑
j=1

fj(w) +
1

T

∥∥∥w − w(0)
∥∥∥2.

To prove Proposition 4, firstly we prove the following lemma.

Lemma 5. Under the settings of Proposition 4, when all α
(0)
j = 0, then for all t ≥ 0,

∑m
j=1 α

(t)
j = 0.

As a result, (6) can be written as

w(t+1) =
1

m

m∑
j=1

w
(t+1)
j .

Proof. We prove it by induction. By (8) and (7), it holds that

1

m

m∑
j=1

α
(t+1)
j =

1

m

m∑
j=1

α
(t)
j − η

w(t+1) − 1

m

m∑
j=1

w
(t+1)
j

=

1

m

m∑
j=1

α
(t)
j − η

 1

2mλ

m∑
j=1

α
(t)
j +

1

m

m∑
j=1

w
(t+1)
j − 1

m

m∑
j=1

w
(t+1)
j

=

1

m

m∑
j=1

α
(t)
j − η

2mλ

m∑
j=1

α
(t)
j .

As long as
∑m

j=1 α
(t)
j = 0, we have

∑m
j=1 α

(t+1)
j = 0.

Proof of Proposition 4. Since w
(t+1)
j is the minimizer, we have

0 ∈ ∂fj(w
(t+1)
j) + 2λ(w

(t+1)
j − w(t)) + α

(t)
j .

5

It is equivalent to

∂fj(w
(t+1)
j) ∋ −2λ(w

(t+1)
j − w(t))− α

(t)
j

Since fj is convex, for any w ∈ Rd,

fj(w) ≥ fj(w
(t+1)
j) +

〈
−2λ(w

(t+1)
j − w(t))− α

(t)
j , w − w

(t+1)
j

〉
Then

fj(w
(t+1)
j) ≤ fj(w) + 2λ

〈
w

(t+1)
j − w(t), w − w

(t+1)
j

〉
+
〈
α
(t)
j , w − w

(t+1)
j

〉
.

By (8), it holds that

w
(t+1)
j = w(t+1) +

α
(t+1)
j − α

(t)
j

η
.

Recall that λ = η
2 . Plugging into above, we have

fj(w
(t+1)
j) ≤ fj(w) + η

〈
w(t+1) − w(t) +

α
(t+1)
j − α

(t)
j

η
, w − w

(t+1)
j

〉
+
〈
α
(t)
j , w − w

(t+1)
j

〉
= fj(w) + η

〈
w(t+1) − w(t), w − w

(t+1)
j

〉
+
〈
α
(t+1)
j , w − w

(t+1)
j

〉
= fj(w) + η

〈
w(t+1) − w(t), w − w

(t+1)
j

〉
+
〈
α
(t+1)
j , w − w(t+1)

〉
− 1

η

〈
α
(t+1)
j , α

(t+1)
j − α

(t)
j

〉
.

Summing over j, it holds that

1

m

m∑
j=1

fj(w
(t+1)
j) ≤ 1

m

m∑
j=1

fj(w) + η

〈
w(t+1) − w(t), w − 1

m

m∑
j=1

w
(t+1)
j

〉

+

〈
1

m

m∑
j=1

α
(t+1)
j , w − w(t+1)

〉
− 1

mη

m∑
j=1

〈
α
(t+1)
j , α

(t+1)
j − α

(t)
j

〉
.

By Lemma 5, we have

1

m

m∑
j=1

fj(w
(t+1)
j) ≤ 1

m

m∑
j=1

fj(w) + η
〈
w(t+1) − w(t), w − w(t+1)

〉
− 1

mη

m∑
j=1

〈
α
(t+1)
j , α

(t+1)
j − α

(t)
j

〉
.

With the law of cosines applied, we obtain

1

m

m∑
j=1

fj(w
(t+1)
j) ≤ 1

m

m∑
j=1

fj(w)−
η

2

(∥∥∥w(t) − w(t+1)
∥∥∥2 + ∥∥∥w − w(t+1)

∥∥∥2 − ∥∥∥w − w(t)
∥∥∥2)

− 1

2mη

(∥∥∥α(t+1)
j

∥∥∥2 + ∥∥∥α(t+1)
j − α

(t)
j

∥∥∥2 − ∥∥∥α(t)
j

∥∥∥2) .

Summing over t = 0, . . . , T − 1, it holds that

1

mT

T−1∑
t=0

m∑
j=1

fj(w
(t+1)
j) ≤ 1

m

m∑
j=1

fj(w) +
η

2T

∥∥∥w − w(0)
∥∥∥− 1

2mηT

m∑
j=1

(
T−1∑
t=0

∥∥∥α(t+1)
j − α

(t)
j

∥∥∥2 − ∥∥∥α(0)
j

∥∥∥2) .

6

By (8), it holds that

1

2mηT

m∑
j=1

T−1∑
t=0

∥∥∥α(t+1)
j − α

(t)
j

∥∥∥2 = η

2mT

m∑
j=1

T−1∑
t=0

∥∥∥w(t+1) − w
(t+1)
j

∥∥∥2.
Therefore, we have

1

T

T−1∑
t=0

 1

m

m∑
j=1

fj(w
(t+1)
j) +

η

2m

m∑
j=1

m∑
j=1

∥∥∥w(t+1) − w
(t+1)
j

∥∥∥2
 ≤ 1

m

m∑
j=1

fj(w) +
η

2T

∥∥∥w − w(0)
∥∥∥2.

As a result, there exists some t∗ ≤ T satisfying that

1

m

m∑
j=1

fj(w
(t∗)
j) +

η

2m

m∑
j=1

m∑
j=1

∥∥∥w(t∗) − w
(t∗)
j

∥∥∥2 ≤ 1

m

m∑
j=1

fj(w) +
η

2T

∥∥∥w − w(0)
∥∥∥2.

Choose η = 2
√
T , and we get

1

m

m∑
j=1

fj(w
(t∗)
j) +

√
T

m

m∑
j=1

m∑
j=1

∥∥∥w(t∗) − w
(t∗)
j

∥∥∥2 ≤ 1

m

m∑
j=1

fj(w) +
1√
T

∥∥∥w − w(0)
∥∥∥2.

Thus we get

1

m

m∑
j=1

fj(w
(t∗)
j) ≤ 1

m

m∑
j=1

fj(w) +
1√
T

∥∥∥w − w(0)
∥∥∥2

1

m

m∑
j=1

m∑
j=1

∥∥∥w(t∗) − w
(t∗)
j

∥∥∥2 ≤ 1

m
√
T

m∑
j=1

fj(w) +
1

T

∥∥∥w − w(0)
∥∥∥2.

7

	Overview
	Introduction
	Attempt 1
	Attempt 2

	Alternating Direction Method of Multipliers (ADMM)
	Convergence rate of ADMM

