
CS2910 - Optimization Summer 2023

Lecture 6 — Proximal Gradient Descent

Lecturer: Yunwei Ren Scribed by Zhidan Li

Contents

1 Overview 1

2 Non-Smooth Convex Function and Sub-Gradient 1

3 Proximal Gradient Descent 2

3.1 Interpretation of proximal gradient descent . . . . . . . . . . . . . . . . . . . . . . . 3

3.1.1 Proximal gradient descent and backward Euler method . . . . . . . . . . . . 4

3.2 Rate of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1 Overview

In this lecture, we focus on how to solve the optimization problem for much more families of convex
functions. We will generalize a method of gradient descent named the proximal gradient descent.
Similarly to how to generalize Wasserstein gradient flow, we will introduce a gradient-like term —
sub-gradient — to illustrate how to well define the descent along the gradient. Based on the term
we introduced, we will show the analysis of its rate of convergence.

2 Non-Smooth Convex Function and Sub-Gradient

Recall the optimization problem:
min
x∈Rd

f(x). (1)

If f ∈ C1(Rd) is a convex function, the gradient of f is well-defined and we safely employ gradient
descent to get an approximate solution to it (without consider the rate of convergence). However,
if f is still continuous and convex but not necessarily a C1 function, gradient descent fails since it
seems hard to say the existence of the gradients at every point of f . We need to introduce a new
term to describe the structure of f .

Definition 1 (sub-gradient). Given a convex function f : Rd ∪ {∞}, we say a vector p ∈ Rd is a
sub-gradient of f at point x ∈ Rd if

f(y) ≥ f(x) + ⟨y − x, p⟩ , ∀y ∈ Rd.

The collection of sub-gradients at point x, denoted by ∂f(x), is called the sub-differential of f at x.
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Remark 1. When f ∈ C1(Rd) is convex, for all x ∈ Rd, ∂f(x) = {∇f(x)}; since f is a convex
function, the optimal point x∗ = argminx∈Rd {f(x)} is equivalent to 0 ∈ ∂f(x).

Examples: Consider f(x) = ∥x∥2. It is not hard to see f is a continuous convex function.

• When x ̸= 0, f is a C1 function. Then ∂f(x) = {∇f(x)} = {sign(x)}.

• When x = 0. We claim, ∂f(0) =
{
p ∈ Rd : ∥p∥2 ≤ 1

}
.

Proof. For all ∥p∥2 ≤ 1, it holds that

⟨p, y⟩ ≤ ∥p∥2 · ∥y∥2 ≤ ∥y∥2.

This means p ∈ ∂f(0). On the other hand, for all p ∈ ∂f(0), it holds that for all y ∈ Rd,
∥y∥2 ≥ ⟨p, y⟩. We choose y = p, then ∥p∥22 ≤ ∥p∥2, thus leading to ∥p∥2 ≤ 1.

3 Proximal Gradient Descent

Now we introduce how to solve the optimization problem (1) when f is a non-smooth convex
function.

min
x∈Rd

f(x) = g(x) + h(x) (2)

where g is a function with some ‘nice’ properties, e.g., L-smoothness and convexity, and h is a
function with some special structures, but might be non-differentiable.

Examples:

• Lasso function f(β) = 1
2∥Xβ − y∥22 + ∥β∥1.

• The convex constraints f(x) = g(x) + ιD(x).

For this kind of optimization problem, it seems that gradient descent does not work, due to the
function h.

Recall that, in each step of gradient descent, we choose xk+1 as

xk+1 = argmin
x∈Rd

{
f(xk) + ⟨∇f(xk), x− xk⟩+

1

2η
∥x− xk∥22

}
.

Although f is non-differentiable, g is differentiable. This inspires us to just make quadratic ap-
proximation to g and leave h alone.

Now, consider

x∗ = argmin
x∈Rd

{
g(xk) + ⟨∇g(xk), x− xk⟩+

1

2η
∥x− xk∥22 + h(x)

}
= argmin

x∈Rd

{
1

2η
∥x− (xk − η∇g(xk))∥22 + h(x)

}
.
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The first term means x∗ must be located near the local minimum of g, and the second term means
x∗ should not make h large.

Definition 2. Let h : Rd → R∪{∞} be a proper, convex function. We define the proximal mapping
proxh : Rd → Rd as

proxh(x) = argmin
z∈Rd

{
1

2
∥z − x∥22 + h(z)

}
.

Then we can describe the proximal gradient descent. Given a step size η > 0, at each step k, for
xk, we update

xk+1 = proxηh(xk − η∇g(xk)).

We would rewrite it as the following form:

xk+1 = xk − ηGη(xk)

where the function Gη(x) is generalized by

Gη(x) =
x− proxηh(x− η∇g(x))

η
.

Remark 2. Since h is convex and the function z 7→ 1
2∥z − x∥22 is strongly convex, the function

1
2∥z − x∥22 + h(z) has the unique minimizer, which means the function proxh is well-defined. Addi-
tionally, we would say that, under the assumption that h has some special structure, proxh is easy
to compute.

Now we give an example for proximal gradient descent. We would view projected gradient descent

min
z∈Rd

1

2
∥x− z∥22 + ιD(z).

as a kind of proximal gradient descent. By definition, we compute

proxηh(x) = argmin
z∈Rd

{
ηιD(x) +

1

2
∥x− z∥22

}
= argmin

z∈D

{
1

2
∥x− z∥22

}
= ΠD(x).

This means the projection is some kind of proximal mapping.

3.1 Interpretation of proximal gradient descent

In this part, we give some interpretations of proximal gradient descent. Let yk
△
= xk − η∇g(xk).

We write the update of proximal gradient descent as

xk+1 = argmin
z∈Rd

{
1

2
∥z − yk∥+ ηh(z)

}
= argmin

z∈Rd

{
1

2η
∥z − yk∥+ h(z)

}
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Intuitively, proximal gradient descent minimizes g and h, instead of only minimizing g. Since
when z ̸= yk, ∥z − yk∥ > 0, by the optimality of xk+1, it must hold that h(xk+1) < h(y). The
larger ∥z − yk∥ is, the smaller h(z)− h(y) is. This intuition can be seen as a generalization of the
interpretation of each step of gradient descent (or mirror descent).

3.1.1 Proximal gradient descent and backward Euler method

If h is differentiable, we write

xk+1 = argmin
z∈Rd

{
1

2η
∥z − yt∥+ h(z)

}
.

It is equivalent to

1

η
(xk+1 − yk) +∇h(xk+1) = 0.

This means xk+1 is the solution to the following ODE

xk+1 = yk − η∇h(xk+1). (3)

If yk = xk, then h = f and (3) is exactly the backward Euler method. We compare it with the Euler
method

xk+1 = xk − η∇f(xk). (4)

Note that (4) is an explicit form of the update rule and (3) is an implicit form of update. Usually
(3) has more precise approximation and faster convergence, but for implementation (4) is more
common and useful.

3.2 Rate of convergence

Now we analyze the rate of the convergence of proximal gradient descent. The analysis is similar
to what we do in gradient descent and mirror descent.

Lemma 3 (mirror descent lemma for the proximal step). Given f = g+h where g is a differentiable
convex function and h is a convex function, and a step size η > 0, let {xk}k∈N be the proximal
gradient descent generated by f . For k ∈ N, define yk = xk − η∇g(xk). Then for all x ∈ Rn, it
holds that

h(xk+1) ≤ h(x) +
1

2η

(
∥yk − x∥22 − ∥xk+1 − x∥22 − ∥yk − xk+1∥22

)
.

Proof. Since xk+1 = argminz∈Rd

{
1
2∥z − yk∥22 + ηh(z)

}
, it holds that

yk − xk+1

η
∈ ∂h(xk+1)
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By lower linear bound, for all x ∈ Rd, it holds that

h(xk+1) ≤ h(x)− 1

η
⟨yk − xk+1, xk+1 − x⟩

= h(x) +
1

2η

(
∥yk − x∥2 − ∥xk+1 − x∥22 − ∥yk − xk+1∥2

)
where the last equality holds by the law of cosines.

Now we establish the convergence rate of proximal gradient descent.

Proposition 4 (convergence rate of proximal gradient descent). Given f = g + h where g is a
differentiable convex L-smooth function and h is a convex function, and a step size η ≤ 1/L, let
{xk}k∈N be the proximal gradient descent generated by f . Let x∗ = argminx∈Rd {f(x)}. Then, we
have

1

T

T∑
k=1

f(xk) ≤ f(x∗) +
∥x∗ − x0∥2

2ηT
.

Proof. Since g is an L-smooth convex function, it holds that

g(xk+1) ≤ g(xk) + ⟨∇g(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2.

≤ g(x∗)− ⟨∇g(xk), x∗ − xk⟩+ ⟨∇g(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2

= g(x∗) + ⟨∇g(xk), xk+1 − x∗⟩+
L

2
∥xk+1 − xk∥2

= g(x∗) +
1

η
⟨xk − yk, xk+1 − x∗⟩+

L

2
∥xk+1 − xk∥2.

With Lemma 3 applied, we obtain

f(xk+1) ≤ f(x∗)−
1

η
⟨xk − xk+1, x∗ − xk+1⟩+

L

2
∥xk+1 − xk∥22

= f(x∗)−
1

2η

(
∥xk − xk+1∥2 + ∥x∗ − xk+1∥2 − ∥x∗ − xt∥2

)
+

L

2
∥xk+1 − xk∥22

= f(x∗)−
(

1

2η
− L

2

)
∥xk − xk+1∥2 +

1

2η
∥x∗ − xk+1∥2 −

1

2η
∥x∗ − xt∥2.

When η ≤ 1/L, it holds that

f(xk+1) ≤ f(x∗) +
1

2η
∥x∗ − xk+1∥2 −

1

2η
∥x∗ − xt∥2.

Summing over both sides we prove the proposition.
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