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1 Overview

In this lecture, we introduce a more general and efficient method of gradient descent. We firstly
give an alternative view of the gradient descent, and generalize the mirror descent.

Additionally, we might assume all functions are C1 for convenience.

2 An Alternative View of Gradient Descent

Now we turn back to the gradient descent. Consider the optimization problem

min
x∈Rd

f(x).

Recall that the form of every update is

xk+1 = xk − η∇f(xk).

This can be viewed as the local linear approximation around xk. Then we observe that the update
rule is exactly a solution to some optimization problem.

Observation 1. The update rule of gradient descent

xk+1 = xk − η∇f(xk)

is equivalent to

xk+1 = argmin
x∈Rd

{
f(xk) + ⟨∇f(xk), x− xk⟩+

1

2η
∥x− xk∥2

}
.
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Proof. Let x∗ = argminx∈Rd

{
f(xk) + ⟨∇f(xk), x− xk⟩+ 1

2η∥x− xk∥2
}
. Then by direct calcula-

tion,

x∗ = argmin
x∈Rd

{
f(xk) + ⟨∇f(xk), x− xk⟩+

1

2η
∥x− xk∥2

}
= argmin

x∈Rd

{
⟨∇f(xk), x⟩+

1

2η
∥x− xk∥2

}
.

Then, we know

∇f(xk) +
1

η
(x∗ − xk) = 0.

Rearranging terms we prove the observation.

Now we put our eyes on the term

argmin
x∈Rn

{
⟨∇f(xk), x− xk⟩+

1

2η
∥x− xk∥2

}
We can see, the term ⟨∇f(xk), x− xk⟩ is the global linear approximation, and we name the left
term 1

2η∥x− xk∥2 the regularization.

Remark 1. The introduction of the regularization is to make the hard constraint ‘x is around xk’
a soft one.

2.1 Bregman divergence

Observe that, the regularization is not necessarily ℓ2-norm. Now we replace the ℓ2-norm with
Bregman divergence, to establish the method of mirror descent.

Definition 2. Let g : Rd → R be a C1 convex function. We define its Bregman divergence
Dg : Rd × Rd → R as

Dg(x, y) = g(x)− g(y)− ⟨∇g(y), x− y⟩ .

Figure 1: an example on R2

Remark 2. The Bregman divergence has the following properties.

• Since g is convex, Dg(x, y) ≥ 0 for all x, y ∈ Rd.
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• For all x ∈ Rd, Dg(x, x) = 0.

• If g is strictly convex, Dg(x, y) > 0 for all x ̸= y.

• Dg(x, y) is convex on x.

• In general Bregman divergence is not symmetric.

Examples:

• When g(x) = 1
2∥x∥

2, its Bregman divergence is Dg(x) =
1
2∥x∥

2

• Let x ∈ ∆n
△
= {x ∈ Rn :

∑n
i=1 xi = 1 ∧ ∀i ∈ [n], xi ≥ 0}. When g(x) =

∑n
i=1 xi log xi, x ∈ ∆n,

its Bregman divergence is

Dg(x, y) =
n∑

i=1

xi log
xi
yi
.

This kind of divergence is also called Kullback-Leibler divergence (KL divergence for
short) or relative entropy.

3 Mirror Descent

Similarly to gradient descent, we establish the art of mirror descent. We introduce the update rule
of mirror descent as

xk+1 = argmin
x∈Rd

{
⟨∇f(xk), x⟩+

1

η
Dg(x, xk)

}
.

Since the function x 7→ ⟨∇f(xk), x⟩+ 1
ηDg(x, xk) is convex, consider its gradient:

∇f(xk) +
1

η
(∇g(xk+1)−∇g(xk)) = 0.

Rearranging terms we obtain

∇g(xk+1) = ∇g(xk)− η∇f(xk).

Then

xk+1 = ∇g−1 (∇g(xk)− η∇f(xk)) .
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Figure 2: one step of update in mirror descent. The update can viewed as a step of update of
gradient descent in its dual space generated by x 7→ ∇g(x).

3.1 Convex conjugate

Note that, to implement mirror descent, we need to show the ∇g−1 can be computed efficiently.
We introduce the convex conjugate to compute it.

Definition 3 (convex conjugate). Let f : Rd → R ∪ {∞} be a convex function. We define its
convex conjugate f∗ : Rd → R ∪ {∞} as

f∗(u) = sup
x∈Rd

{⟨u, x⟩ − f(x)} .

Note that f∗ is always convex.

Recall that, the convex function is equivalent to (or, can be expressed by) its supporting affine
function. For u ∈ Rd, we write hu,b(x) = ⟨u, x⟩ + b. Consider the ‘highest’ supporting affine
function generated by u. Let

b∗(u) = sup {b ∈ R : f(x) ≥ ⟨u, x⟩+ b} .

It is not easy to show b∗(u) = −f∗(u), and by definition the affine function hu,b∗(u) is the ‘highest’
supporting affine function of f .

Examples:

• When f(x) = ax+ b, we compute that

f∗(u) = sup
x∈R

{ux− f(x)} = sup
x∈R

{(u− a)x− b} =

{
−b u = a,

∞ u ̸= a.

• When f(x) = 1
2∥x∥

2, we compute

f∗(u) = sup
x∈R

{
⟨u, x⟩ − 1

2
∥x∥2

}
=

1

2
∥x∥2.
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Figure 3: an example in R2. The blue line achieves the highest b.

Then we establish some properties of the convex conjugate.

Lemma 4 (Fenchel inequality). For all x, u ∈ Rd, we have

⟨x, u⟩ ≤ f(x) + f∗(u).

Additionally, the equality holds if and only if u = ∇f(x).

Proof. By definition of convex conjugate, for every x, u ∈ Rd, it holds

f∗(u) ≥ ⟨u, x⟩ − f(x).

Rearranging terms we prove the inequality.

When the equality holds, we know

⟨u, x⟩ = f(x) + f∗(u) ⇐⇒ ⟨u, x⟩ ≥ f(x) + ⟨u, z⟩ − f(z),∀z ∈ Rd

⇐⇒ f(z) ≥ f(x) + ⟨u, z − x⟩ ,∀z ∈ Rd.

Then by lower linear bound, the last inequality is equivalent to u = ∇f(x).

Then we introduce the Fenchel-Moreau theorem.

Theorem 5 (Fenchel-Moreau). If f is a convex function, then f = f∗∗.

Proof. For all u, x ∈ Rd, it holds that

f∗(u) = sup
x′∈Rd

{〈
u, x′

〉
− f(x′)

}
≥ ⟨u, x⟩ − f(x).

Thus we obtain

f(x) ≥ ⟨u, x⟩ − f∗(u), ∀x, u ∈ Rd.

This means

f(x) ≥ sup
u∈Rd

{⟨u, x⟩ − f∗(u)} = f∗∗(x).
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Also, by Lemma 4, it holds that

f(x) + f∗(∇f(x)) = ⟨∇f(x), x⟩ ,∀x ∈ Rd.

This means

f(x) = ⟨∇f(x), x⟩ − f∗(∇f(x)) ≤ sup
y∈Rd

{⟨y, x⟩ − f∗(y)} = f∗∗(x).

Corollary 6. If f is strictly convex, then

(∇f)−1 = ∇f∗.

Proof. Let u = ∇f(x). Then, by Lemma 4,

⟨x, u⟩ = f(x) + f∗(u).

By Theorem 5, it holds that

⟨x, u⟩ = f(x) + f∗(u) = f∗∗(x) + f∗(u).

Then by Lemma 4 it holds that

∇f∗(u) = x.

Note that, when f is not a strictly convex function on Rd, but still strictly convex on its domain,
the result also holds.

Theorem 7 (Theorem 26.5 in [Roc70]). Let f : dom(f) ⊆ Rd → R be a closed strictly convex
function. Suppose that ∥∇f(x)∥ → ∞ as x → ∂dom(f). Then f∗ : dom(f∗) ⊆ Rd → R is also
a C1 closed strictly convex function, satisfying the same properties. Moreover, x 7→ ∇f(x) is a
bijection from int(dom(f)) onto int(dom(f∗)) and (∇f)−1 = ∇f∗.

3.2 Convergence of mirror descent

Now we return to mirror descent. Combining the discussion above, we can write the update rule
of mirror descent as

xk+1 = ∇g∗ (∇g(xk) + η∇f(xk)) .

In this section we will show the convergence rate of mirror descent (under some regular conditions).
We will extend our analysis of gradient descent to mirror descent. Firstly we extend the definition
of smooth functions.

Definition 8. Let g ∈ C1 be a convex function. A function f : dom(g) ⊆ Rd → R is L-Lipschitz
with respect to Dg if for all x, y ∈ dom(g)

|⟨∇f(x), y − x⟩| ≤ L
√
Dg(y, x).
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Remark 3. Note that, let g = ∥x− y∥2, the definition contains the Lipschitz property (with a little
difference in constant).

Theorem 9. Suppose that f is convex and L-Lipschitz with respect to Dg. For any T ≥ 1, if we
choose

η =
2

L

√
Dg(x∗, x0)

T
,

then

1

T

T−1∑
k=0

f(xk) ≤ f(x∗) +
L

2

√
Dg(x∗, x0)

T
.

To prove Theorem 9, we need the following lemma which is an extension of law of cosines to deduce
the mirror descent lemma.

Lemma 10 (law of cosines for Bregman divergence). Let g ∈ C1 be a convex function. For all
x, y, z ∈ dom(g), it holds that

⟨∇g(z)−∇g(y), x− y⟩ = Dg(x, y) +Dg(y, z)−Dg(x, z).

Proof. The result comes directly from the definition.

Lemma 11 (mirror descent lemma). Suppose that f is convex. Let {xk} be the sequence generated
by mirror descent of f . Then, for all y,

f(xk) ≤ f(y) +
1

η
(Dg(y, xk)−Dg(y, xk+1) +Dg(xk, xk+1)) .

The proof of Lemma 11 is similar to the proof of basic mirror descent lemma we stated in Lecture
2. We leave it as a mental training.

Proof of Theorem 9. By Lemma 11, it holds that

f(xk) ≤ f(x∗) +
1

η
(Dg(x∗, xk)−Dg(x∗, xk+1) +Dg(xk, xk+1)) .

Summing over both sides from 0 to T − 1, it holds that

T−1∑
k=0

f(xk) ≤ Tf(x∗) +
1

η

(
Dg(x∗, x0)−Dg(x∗, xT ) +

T−1∑
k=0

Dg(xk, xk+1)

)
.

By definition,

Dg(xk, xk+1) = g(xk)− g(xk+1)− ⟨∇g(xk+1), xk − xk+1⟩ ,
Dg(xk+1, xk) = g(xk+1)− g(xk)− ⟨∇g(xk), xk+1 − xk⟩ .
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Then it holds that

Dg(xk, xk+1) +Dg(xk+1, xk) = ⟨∇g(xk)−∇g(xk+1), xk − xk+1⟩
= ⟨η∇f(xk), xk − xk+1⟩

≤ ηL
√
Dg(xk+1, xk).

Then

Dg(xk, xk+1) ≤ −Dg(xk+1, xk) + ηL
√
Dg(xk+1, xk) ≤

η2L2

4
.

Plugging it into above, we obtain

1

T

T−1∑
k=0

f(xk) ≤ f(x∗) +
1

ηT

(
Dg(x∗, x0) + T

η2L2

4

)
≤ f(x∗) +

1

ηT
Dg(x∗, x0) +

ηL2

4
.

Choose η = 2
L

√
Dg(x∗,x0)

T , and we obtain the desired bound.
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