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1 Overview: Optimization under Constraints

In this lecture, we will show how to solve a family of optimization problems under constraints. We
want to solve the following optimization problem:

min f(x)

s.t. hi(x) ≤ 0, ∀i ∈ [m],

ℓj(x) = 0, ∀j ∈ [n].

(1)

Note that f , {hi}i∈[m] and {ℓj}j∈[n] might not be necessarily convex, but we assume that they are

all C1 functions.

Let D be the feasible region of (1). When f is a convex function and D is a convex set, the projected
gradient descent works if ΠD(x) can be computed efficiently. In this lecture, we will introduce the
duality of the optimization problems to make (1) much easier to solve.
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2 Lagrange Multiplier and Weak Duality

To solve (1), it makes sense to transform it into one without constraints. For the region D ⊆ Rd,
define the indicator function ιD : Rd → R ∪ {∞} as:

ιD(x) =

{
0 x ∈ D,

∞ x /∈ D.

Then, the optimization problem (1) is equivalent to the following problem without constraints:

min
x∈Rd

f(x) + ιD(x). (2)

Since affine functions are often easier to analyze, for ιD, we have the following form of it.

Lemma 1. Under the definition above, it holds that

ιD(x) = sup
u∈Rm

≥0,v∈Rn


m∑
i=1

uihi(x) +

n∑
j=1

vjℓj(x)

 .

Proof. When x ∈ D, it is clear that ιD(x) ≤ 0. We choose u = 0, then it holds that ιD(x) can be 0.

When x /∈ D, there are two cases: there exists hi(x) > 0; there exists ℓj(x) ̸= 0.

• Case 1: ∃hi(x) > 0. Then we let ui → ∞ and other ui′ = 0, v = 0. It is clear that
ιD(x) → ∞.

• Case 2: ∃ℓj(x) ̸= 0. Then we choose vj → sign(ℓj)∞ and other vj′ = 0, u = 0. It is clear
that ιD(x) → ∞.

By Lemma 1, the optimization problem (2) is equivalent to the following optimization problem:

min
x∈Rd

sup
u∈Rm

≥0,v∈Rn

f(x) +
m∑
i=1

uihi(x) +
n∑

j=1

vjℓj(x)

 . (3)

For the sake of simplicity, define the function L : Rd × Rm
≥0 × Rn as

L(x, u, v)
△
= f(x) +

m∑
i=1

uihi(x) +
n∑

j=1

vjℓj(x).

We call (3) the primal problem ((P), for short) and the function L the Lagrangian function. Note

that, the function g(u, v)
△
= infx∈Rd L(x, u, v) is a concave function on (u, v), it is much easier to

maximize g(u, v) than the original optimization. In words, if we can solve the inner unconstrained
optimization problem infx∈Rd L(x, u, v), the outer optimization problem is relatively easy.
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Consider the following optimization problem

sup
u∈Rm

≥0,v∈Rn
min
x∈Rd

L(x, u, v). (4)

We call it the dual problem ((D), for short) of (3). Note that (P) and (D) are not equivalent in
general.

Proposition 2 (max-min inequality/weak duality). Let X,Y be two topological spaces. For f :
X × Y → R, it holds that

inf
x∈X

sup
y∈Y

f(x, y) ≥ sup
y∈Y

inf
x∈X

f(x, y).

When the equality holds, we say the primal problem has strong duality.

Proof. By definition, for all y0 ∈ Y , it holds that

inf
x∈X

sup
y∈Y

f(x, y) ≥ inf
x∈X

f(x, y0).

Then it immediately holds that

inf
x∈X

sup
y∈Y

f(x, y) ≥ sup
y∈Y

inf
x∈X

f(x, y).

Although the optimal value of the dual problem might not give us an optimal value of the primal
problem, it still offers a certification of the optimal value.

Corollary 3 (primal-dual solutions as certification). For x∗ ∈ D, u∗ ∈ Rm
≥0, v∗ ∈ Rn, if f(x∗) =

g(u∗, v∗), then x∗ (respectively, u∗, v∗) is an optimal solution to (P) (respectively (D)).

Proof. For all x ∈ D, by the weak duality (Proposition 2), it holds that

f(x) ≥ L(x, u∗, v∗) ≥ g(u∗, v∗) = f(x∗).

Thus we show f(x∗) is the optimal value.

The optimality of (u∗, v∗) comes directly from Proposition 2.

3 Slater’s Condition

(This section refers to Chapter 5, [BV04]). Now we focus on under which conditions, the strong
duality holds. For the primal optimization problem (2), define the set G as

G △
=

{
(r, s, t) ∈ Rm × Rn × R : ∃x ∈ Rd, (∀i ∈ [m], j ∈ [n], hi(x) = ri, ℓj(x) = sj) ∧ (f(x) = t)

}
.

Let p∗ be the optimal value of (3). By constraints, it holds that

p∗ = inf {t | (r, s, t) ∈ G : r ≤ 0, s = 0} .
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Figure 1: an easy case of G, feasible region and the optimal value

Now we consider the Lagrangian function L(x, u, v). On G, we write it as the following form

L(x, u, v) = t+ u⊤r + v⊤s = (u, v, 1)⊤(r, s, t), ri = hi(x), sj = ℓj(x),∀i ∈ [m], j ∈ [n].

Using this form of L, we claim

g(u, v) = inf
{
(u, v, 1)⊤(r, s, t) | (r, s, t) ∈ G

}
.

Since (u, v, 1)⊤(r, s, t) is a affine function on (r, s, t), the infimum of g(u, v) can be view as the
intersection of some ‘tangent hyperplane’ with ‘slope’ perpendicular to (u, v, 1) at some point (r, s, t)
on t-axis. The following figure illustrates an easy case of this geometric interpretation when G lies
on R2.

As a result, the optimal value of the dual problem can be written as the following form:

d∗ = sup
u∈Rm

≥0,v∈Rn
min
x∈Rd

L(x, u, v) = sup
u∈Rm

≥0,v∈Rn
inf

{
(u, v, 1)⊤(r, s, t) | (r, s, t) ∈ G

}
.

Intuitively and geometrically speaking, we might say, d∗ is the ‘highest’ intersection on t-axis among
all tangent supporting hyperplanes which are tangent to G at the point in the feasible region. View
Figure 3 as an instance on R2.

On the other hand, to make the set contain the point (0, 0, p∗), we introduce the following set A
which can be viewed as an epigraph of G:

A △
=

{
(r, s, t) ∈ Rm × Rn × R : ∃x ∈ Rd s.t hi(x) ≤ ri, ℓj(x) ≤ sj ,∀i ∈ [m], j ∈ [m]

}
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Figure 2: the geometric interpretation of g(u, v). The red line is a tangent line with slope −u, and
let r = 0 we get the point (0, g(u)) on this line.

Figure 3: the green line is the tangent line achieves the optimal d. Note that it must be a tangent
line at the point in the feasible region.
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Figure 4: the epigraph

Now we introduce the Slater’s condition.

Definition 4 (Slater’s condition). For a optimization problem (3), we say it satisfies the Slater’s
condition if:

• f is convex.

• hi is convex for all i ∈ [m].

• ℓj is affine for all j ∈ [n].

• There exists a point x̂ ∈ relintD, i.e., hi(x̂) < 0 for all i ∈ [m] and ℓj(x̂) = 0 for all j ∈ [n].

Lemma 5. If the optimization problem satisfies Slater’s condition, then it has the strong duality.

To prove Lemma 5, we firstly show the convexity of A.

Lemma 6. Under the Slater’s condition, A is a convex set on Rm × Rn × R.

The proof of Lemma 5 directly comes from the definition. We leave it as a mental training. Note
that, even under the Slater’s condition, G can be a non-convex set (let f(x) = 1

2x
2, h(x) = x. It is

trivial that G is not convex.)

Now we are ready to prove Lemma 5.

Proof of Lemma 5. For convenience, without loss of generality we assume that p∗ is finite. Since
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ℓj is affine, we can write the optimization problem as the following form:

min f(x)

s.t. hi(x) ≤ 0, ∀i ∈ [m],

Ax− b = 0, A ∈ Rn×d.

We also assume rank(A) = n. Consider the following set

B △
= {(0, 0, t) ∈ Rm × Rn × R : t < p∗} .

Directly from our construction, B is convex and A ∩ B = ∅.

Figure 5: an example of A and B

Since A,B are convex and A∩B = ∅, by the separating hyperplane theorem, there exists an affine
function determined by (ũ, ṽ, µ̃) ̸= 0 and a value γ satisfying

• (r, s, t) ∈ A =⇒ ũ⊤r + ṽ⊤s+ µ̃t ≥ γ.

• (r, s, t) ∈ B =⇒ ũ⊤r + ṽ⊤s+ µ̃t ≤ γ.
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Figure 6: the green line separates the two convex sets

From our construction of A, it must hold ũ ≥ 0 and µ̃ ≥ 0 (otherwise, ũ⊤r+µ̃t cannot be bounded).
Also, since t < p∗ for every (0, 0, t) ∈ B, it holds that µ̃p∗ ≤ γ. Thus for every x ∈ D,

m∑
i=1

ũihi(x) + ṽ⊤ (Ax− b) + µ̃f(x) ≥ γ ≥ µ̃p∗.

We separate the remaining part of our proof into two cases: µ̃ > 0; µ̃ = 0.

• Case 1: µ̃ > 0. Consider the pair (ũ/µ̃, ṽ/µ̃). For all x ∈ D,

L(x, ũ/µ̃, ṽ/µ̃) = f(x) +

∑m
i=1 ũihi(x) + ṽ⊤ (Ax− b)

µ̃
≥ p∗.

Then combining it with the weak duality, we establish the strong duality.

• Case 2: µ̃ = 0. The separating hyperplane theorem implies

m∑
i=1

ũihi(x) + ṽ⊤(Ax− b) ≥ γ ≥ 0.

Consider the point x̂ ∈ relintD. Since Ax̂− b = 0, it holds that

m∑
i=1

ũihi(x) ≥ 0.

Since hi(x̂) < 0, it must hold that ũ = 0. Then for all x ∈ D,

ṽ⊤(Ax− b) ≥ 0.

Since (ũ, ṽ, µ̃) ̸= 0, we obtain ṽ ̸= 0. By our assumption, x̂ is in the relative interior of D and
ṽ(Ax̂ − b) = 0, there must be some x ∈ D near x̂ such that ṽ⊤(Ax − b) < 0 unless ṽA = 0.
This leads to a contradiction to the assumption that rank(A) = n.
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Combining the two cases above, we prove the strong duality.

3.1 An example of solving optimization via duality

Now we show an example of solving optimization problems via duality. Consider the problem
finding the projection to the polytope.

min
x∈Rd

1

2
∥x− x0∥2

s.t. ⟨wi, x⟩ ≤ bi,∀i ∈ [m].

(5)

We compute its Lagrangian function

L(x, u) =
1

2
∥x− x0∥2 +

m∑
i=1

ui (⟨wi, x⟩ − bi)

and let g(u) = infx∈Rd L(x, u). By Slater’s condition, to solve the primal optimization problem, it
suffices to solve its dual problem

max
u∈Rm

≥0

g(u).

Observe that, L(x, u) is a strongly convex function. Then for u ≥ 0, the minimizer of L(x, u) is
attained at the point x(u) = x0 −

∑m
i=1 uiwi.

Then it holds that

g(u) = ⟨u,b⟩ − 1

2
u⊤Wu

where

b
△
= {⟨wi, x0⟩ − bi}i∈[m] ∈ Rm

W
△
= (⟨wi, wj⟩)i,j∈[m] ∈ Rm×m.

To (approximately) maximize g(u) we can apply the projected gradient descent.

4 Karush-Kuhn-Tucker Conditions

For unconstrained optimization problem

min
x∈Rd

f(x),

the necessary condition for x∗ to be a optimal point is ∇f(x∗) = 0. How about the constraint
optimization problem?

Definition 7 (KKT conditions). We say a point (x, u, v) ∈ Rd×Rm×Rn satisfies Karush-Kuhn-
Tucker conditions (KKT conditions for short) if the following hold:
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(a) Stationarity:

∇xL(x, u, v) = ∇f(x) +

m∑
i=1

ui∇hi(x) +

n∑
j=1

vj∇ℓj(x) = 0.

(b) Complementary slackness: uihi(x) = 0, ∀i ∈ [n].

(c) Primal feasibility: x ∈ D, i.e.,

hi(x) ≤ 0,∀i ∈ [m],

ℓj(x) = 0,∀j ∈ [n].

(d) Dual feasibility: u ≥ 0.

Remark 1. To see when KKT conditions hold, refer the wikipedia page KKT conditions.

4.1 Interpretation for KKT conditions

Before proving the necessity and the sufficiency of KKT conditions, we firstly give an interpretation
of KKT conditions.

Figure 7: the geometric interpretation of KKT conditions

We interpret the primal problem as moving a particle in the space Rd, subject to the three kinds
of force fields:

• f is a potential field. In this field, we need to minimize f(x∗). Then the force of the field is
−∇f .

• hi are one-sided constraint surfaces. The particle can move inside hi ≤ 0. However, once
hi(x) = 0, the particle will be pushed inward.

• ℓj are two-sided constraint surfaces. That is, the particle is only allowed to move in these
surfaces.

Then, stationarity means the sum of forces ∇f(x∗) must be balanced by a linear sum of the forces
∇hi(x∗) and ∇ℓj(x∗) (intuitively the point must be stationary).
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Complementary slackness means, if hi(x∗) < 0, then force ∇hi(x∗) must be zero, since when the
particle is not on the boundary, the one-sided force cannot be active.

Primal feasibility means the particle must be in the feasible region, and dual feasibility means all
forces ∇gi(x∗) must be one-sided.

4.2 Necessity and sufficiency of KKT conditions

Now we show the necessity and the sufficiency of KKT conditions.

Lemma 8 (neccesity of KKT conditions). Suppose the function

x(u, v)
△
= argmin

x∈Rd

L(x, u, v)

is C1 function. Then a point (x∗, u∗, v∗) is a solution to the primal problem in the sense that

L(x∗, u∗, v∗) = sup
u∈Rm

≥0,v∈Rn
inf
x∈Rd

L(x, u, v)

only if KKT conditions hold.

Proof. We verify KKT conditions by definition.

• Dual feasibility: It is trivial since u ∈ Rm
≥0.

• Stationarity: The stationarity comes from the fact that

x∗ ∈ argmin
x∈Rd

L(x, u∗, v∗).

• Primal feasibility: Assume x∗ /∈ D. There are two cases: ∃i ∈ [m], hi(x∗) > 0; ∃j ∈
[n], ℓj(x∗). We assume ∃i ∈ [m], hi(x∗) > 0 and the other case is similar (left as another
mental exercise). By the chain rule,

∂uiL(x(u, v), u, v) = ⟨∇xL(x(u, v), u, v),∇uix(u, v)⟩+ hi(x(u, v)).

Then, for δ > 0,

L(x(u∗ + δei, v∗), u∗ + δei, v∗)

= L(x(u∗, v∗), u∗, v∗) + ⟨∇xL(x(u∗, v∗), u∗, v∗),∇uix(u∗, v∗)⟩ δ
+ hi(x(u∗, v∗))δ + o(δ)

= L(x∗, u∗, v∗) + hi(x∗)δ + o(δ) (stationarity)

> L(x∗, u∗, v∗) (when δ is small.)

which leads to a contradiction to the optimality of (x∗, u∗, v∗)

• Complementary slackness: Assume that hi(x∗) < 0 and (u∗)i > 0 for some i ∈ [m].
Similarly to the calculation above we show

L(x(u∗ − δei, v∗), u∗ − δei, v∗) = L(x∗, u∗, v∗)− hi(x∗)δ + o(δ) > L(x∗, u∗, v∗)

thus also leading to a contradiction.
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On the other hand, we establish that it suffices to show KKT conditions of a point to show its
optimality.

Lemma 9 (sufficiency of KKT conditions). Suppose that Slater’s condition holds. Then a point
(x∗, u∗, v∗) is a solution to the primal if KKT conditions hold.

Proof. By the stationarity and the convexity of the function x 7→ L(x, u∗, v∗), we know x∗ is a
global minimizer of L(x, u∗, v∗). Then

g(u∗, v∗) = L(x∗, u∗, v∗) = f(x∗)

where the last equality holds by the primal feasibility and complementary slackness. Then by
Corollary 3, we show the optimality.
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