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1 Overview

In this lecture we focus on how to solve the optimization problem. Firstly we will introduce a
time-continuous method called gradient flow, and analyze its efficiency. Then we turn our sight
on a time-discrete method — gradient descent, and analyze the efficiency of gradient descent and
compare it with gradient flow.

The following lemma known as Gronwall lemma will be useful in our analysis

Lemma 1 (Gronwall lemma). For a time-continuous non-negative process (or a path, for short)
ut, suppose that u̇t ≤ αtut. Then we have

ut ≤ u0 exp

(∫ T

0
αt dt

)
.

Remark 1. The path ut satisfying u̇t = Aui is called a linear system. Its solution is uT =
u0 exp(AT ). Its discrete version is the sequence {uk}k∈N satisfying

uk+1 − uk = Auk,∀k ∈ N.

Then uk = u0(1 +A)k. This means the exponential growth/decreasing rate.

2 Gradient Flow

Now we introduce the method called gradient flow to solve the optimization problem.
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Definition 2 (gradient flow (GF)). For a function f ∈ C1(Rd), we define the gradient flow of f
with initial point x̂ ∈ Rd as the solution to the initial value problem:

ẋt = −∇f(xt), x0 = x̂.

Remark 2. By the chain rule,

d

dt
f(xt) = ⟨∇f(xt), ẋt⟩ = −∥∇f(xt)∥2 ≤ 0.

This means f(xt) is not increasing.

Now we show that, the gradient flow will converge to the minimizer if f is strongly convex. The
following proposition shows strong convexity implies linear convergence rate.

Proposition 3. Suppose that the function f : Rd → R is a C1(Rd), µ-strongly convex function.
Let x∗ = argminx∈Rd f(x), xt be the gradient flow of f . For all ε > 0, we have

∥xT − x∗∥2 ≤ ε, ∀T ≥ µ−1 log

(
∥x0 − x∗∥2

ε

)
.

Proof. Consider the function t 7→ ∥xt − x∗∥22. Then, by the chain rule,

d

dt
∥xt − x∗∥22 = 2

〈
xt − x∗,

d

dt
xt

〉
= −2 ⟨xt − x∗,∇f(xt)⟩
= −2 ⟨xt − x∗,∇f(xt)−∇f(x∗)⟩
≤ −2µ∥xt − x∗∥22

where the last inequality holds from the strong convexity. Then by Lemma 1, it holds that

∥xT − x∗∥22 ≤ ∥x0 − x∗∥22 exp (−2µT ) .

If f is not necessarily strongly convex, for f(xt) we also have the following approximation.

Proposition 4. Let f ∈ C1(Rd) be a convex function, (xt)t be the gradient flow of f and x∗ =
argminx∈Rd f(x) be the minimizer. Then,

f(xT ) ≤ f(x∗) +
∥x0 − x∗∥22

2T
.

Proof. Since f is convex, by lower linear bound, we have

⟨∇f(x), x− x∗⟩ ≥ f(x)− f(x∗)

which implies

d

dt
∥xt − x∗∥22 = −2 ⟨xt − x∗,∇f(xt)⟩

≤ −2(f(xt)− f(x∗)).
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Integrating both sides, we obtain

∥xT − x∗∥22 − ∥x0 − x∗∥22 ≤ −2

∫ T

0
f(xt) dt+ 2Tf(x∗) ≤ 2T (f(x∗)− f(xT )).

where the last inequality holds since f is not increasing. Rearranging terms, we conclude

f(xT ) ≤ f(x∗) +
∥x0 − x∗∥22

2T
.

Remark 3. The above proposition illustrates a phenomenon that, when f is almost flat, although
the movement of xt is slow, since f is convex, f(xT ) is near f(x∗) in those regions. Thus we can
track f(xT ) as an approximation of f(x∗).

2.1 Polyak-Lojasiewicz condition

Surprisingly, when f is not necessarily convex, gradient flow might be efficient when f meets some
regular conditions.

Definition 5 (Polyak-Lojasiewicz condition). For a function f ∈ C1(Rd) (not necessarily convex),
let f∗ = infx∈Rd f(x). We say f satisfies the Polyak-Lojasivewicz (PL) condition with PL constant
µ > 0 if

1

2
∥∇f(x)∥2 ≥ µ(f(x)− f∗).

Remark 4. Note that, since d
dtf(xt) = −∥∇f(x)∥2, PL condition implies the linear convergence.

Also, it gives the message that, to get the rate of convergence, it suffices to lower bound ∥∇f(x)∥.
Then another strategy is picking a descent direction u

∥∇f(xt)∥ ≥ ⟨∇f(xt), u/∥u∥⟩ .

Lemma 6. For a µ-strongly convex function f , it also satisfies PL condition with µ.

Proof. Suppose f is µ-strongly convex. Then we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2.

This means

min
y1∈Rd

f(y) ≥ min
y2∈Rd

{
f(x) + ⟨∇f(x), y2 − x⟩+ µ

2
∥y2 − x∥2

}
which is exactly the following inequality:

f∗ ≥ f(x)− 1

2µ
∥∇f(x)∥2.

Rearranging the inequality we prove what we desire.
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3 Gradient Descent

Although the gradient flow is efficient (under some regular conditions), it is hard to implement it
since it is a time-continuous path. Now we introduce its discrete version — gradient descent.

Definition 7 (gradient descent (GD)). Given a function f ∈ C1(Rd), the gradient descent of f
with starting point x̂ and a step size η > 0 is the sequence {xk}k∈N satisfying:

xk+1 = xk − η∇f(xk), x0 = x̂.

We compare the gradient descent with the gradient flow. For the gradient descent,

xk+1 = xk −
∫ (k+1)η

kη
∇f(xk) dt.

For the gradient flow,

x(k+1)η = xkη −
∫ (k+1)η

kη
∇f(xt) dt.

Directly from the comparison, intuitively we observe that, if ∇f doesn’t change too fast, then
GD ≈ GF.

Definition 8. A function f ∈ C1(Rd) is said to be L-smooth for L ≥ 0 if its gradient is L-Lipschitz,
i.e.,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥,∀x, y ∈ Rd.

Remark 5. For L-smoothness, we have the reverse PL conditions, i.e.,

1

2
∥∇f(x)∥2 ≤ L(f(x)− f∗).

Lemma 9 (equivalent definitions). For a function f ∈ C1(Rd), the followings are equivalent:

(a) f is L-smooth.

(b)
∥∥∇2f(x)

∥∥
2
≤ L.

(c) (Two-sided) f has upper quadratic bound, i.e., for all x, y ∈ Rd,

f(y) ∈
[
f(x) + ⟨∇f(x), y − x⟩ − L

2
∥x− y∥2, f(x) + ⟨∇f(x), y − x⟩+ L

2
∥x− y∥2

]
.

Now we focus on the efficiency of the gradient descent.

Lemma 10 (descent lemma). For an L-smooth function f ∈ C1(Rd) (not necessarily convex), and
η ≤ 1/L, we have

f(xk+1) ≤ f(xk)−
η

2
∥∇f(xk)∥2.
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Proof. Since f is L-smooth, by the upper quadratic bound, we have

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2

= f(xk)− η∥∇f(xk)∥2 +
Lη2

2
∥∇f(xk)∥2

= f(xk)− η(1− ηL

2
)∥∇f(xk)∥2

≤ f(xk)−
η

2
∥∇f(xk)∥2.

Remark 6. Note that if we only want to make f(xk) not increasing, then η < 2/L is enough.
Additionally, this lemma might be meaningless in non-convex optimization because of the existence
of the EoS phenomenon.

The following corollary comes immediately from Lemma 10 by summing over both sides and rear-
ranging terms.

Corollary 11. Within 2
ηε(f(x0) − f(x∗)) iterations, GD with η ≤ 1/L can find a point x with

∥∇f(x)∥2 ≤ ε.

Remark 7. For a µ-strongly convex function f , since it also satisfies µ-PL condition, then the
condition ∥∇f(xk)∥2 ≤ ε implies f(xk)− f∗ ≤ ε/µ.

Then for strongly convex functions, we have the following convergence rate.

Proposition 12. For a µ-strongly convex, L-smooth function f ∈ C1(Rd), Let the minimizer
x∗ = argminx∈Rd f(x) and η ≤ 1/L. Then we have

∥xk − x∗∥2 ≤ (1− ηµ)k∥x0 − x∗∥2.

Proof. By definition,

∥xk+1 − x∗∥2 = ∥xk − η∇f(xk)− x∗∥2

= ∥xk − x∗∥2 − 2η ⟨∇f(xk), xk − x∗⟩+ η2∥∇f(xk)∥2

≤ ∥xk − x∗∥2 − 2η
(
f(xk)− f(x∗) +

µ

2
∥xk − x∗∥2

)
+ η2∥∇f(xk)∥2

≤ ∥xk − x∗∥2 − 2η
(
f(xk)− f(x∗) +

µ

2
∥xk − x∗∥2

)
+ 2η2L(f(xk)− f∗)

where the first inequality comes from the lower linear bound, and the second inequality comes from
the reverse PL condition of L-smoothness. Rearranging terms, we obtain

∥xk+1 − x∗∥2 ≤ (1− ηµ)∥xk − x∗∥2 − 2η(1− ηL)(f(xk)− f∗) ≤ (1− ηµ)∥xk − x∗∥2.

Remark 8. Note that this bound is dimension-free. This bound is also tighter than the one deduced
from descent lemma with PL condition. Consider the function x 7→ 1

2∥x∥
2. This proposition means

we only need to choose a proper step size.
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3.1 Convergence of gradient descent without strong convexity

Now we establish the convergence of gradient descent without strong convexity. Firstly we introduce
some basic lemmas.

Lemma 13 (law of cosines). For all x, y, z ∈ Rd, it holds that

⟨z − x, y − x⟩ = 1

2

(
∥y − x∥2 + ∥z − x∥2 − ∥y − z∥2

)
.

Lemma 14 (basic mirror descent lemma). For a C1 convex function f : Rd → R, for all y ∈ Rd,

f(xk) ≤ f(y) +
1

2η

(
∥y − xk∥2 − ∥y − xk+1∥2 + ∥xk+1 − xk∥2

)
.

Proof. By the lower linear bound, it holds that

f(y) ≥ f(xk) + ⟨∇f(xk), y − xk⟩

= f(xk) +
1

η
⟨xk − xk+1, y − xk⟩

= f(xk)−
1

2η

(
∥y − xk∥2 − ∥y − xk+1∥2 + ∥xk+1 − xk∥2

)
.

Remark 9. When ∥xk − xk+1∥ is small and y = x∗, the lemma shows

f(xk)− f∗ ≲
1

2η

(
∥x∗ − xk∥2 − ∥x∗ − xk+1∥2

)
.

Namely, we lower bound the distance xk moves within one step by the suboptimality.

Now we establish the convergence rate.

Proposition 15. For an L-smooth C1 convex function f : Rd → R, choose η ≤ 1/L. Then it holds
that

f(xT ) ≤ f(x∗) +
∥x0 − x∗∥2

ηT
.

Proof. By Lemma 14, choose y = x∗,

f(xk) ≤ f(x∗) +
1

2η

(
∥x∗ − xk∥2 − ∥x∗ − xk+1∥2 + ∥xk+1 − xk∥2

)
.

Summing over from 0 to T − 1, we obtain

T−1∑
k=0

f(xk) ≤ Tf(x∗) +
1

2η

(
∥x0 − x∗∥2 − ∥xT − x∗∥2 +

T−1∑
k=0

∥xk+1 − xk∥2
)

≤ Tf(x∗) +
1

2η
∥x0 − x∗∥2 +

1

2η

T−1∑
k=0

∥xk+1 − xk∥2

= Tf(x∗) +
1

2η
∥x0 − x∗∥2 +

1

2
η

T−1∑
k=0

∥∇f(xk)∥2

≤ Tf(x∗) +
1

2η
∥x0 − x∗∥2 + (f(x0)− f(xT ))
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where the last inequality holds by Lemma 10. Then

f(xT ) ≤
1

T

T−1∑
k=0

f(xk)

≤ f(x∗) +
1

2Tη
∥x0 − x∗∥2 +

1

T
(f(x0)− f(xT ))

≤ f(x∗) +
1 + ηL

2Tη
∥x0 − x∗∥2

≤ f(x∗) +
∥x0 − x∗∥2

ηT

where the third inequality comes from f is L-smooth.

7


	Overview
	Gradient Flow
	Polyak-Lojasiewicz condition

	Gradient Descent
	Convergence of gradient descent without strong convexity


