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Lecture 11 — Pre-conditioned Gradient Descent
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1 Overview

In this lecture, we put our sight on two pre-conditioned versions of the gradient descent: Newton’s
method and adaptive gradient descent.

The second-order Taylor series expansion is often used in this lecture: for a function f € C?(R%),
for z,y € R? when z,y is ‘near’,

Fl) ~ F(@) + (V@) — o)+ 5y~ ) V(@) (y - ). 1)

2 Newton’s Method
Recall the gradient descent algorithm. At each iteration, we choose locally minimize
1
9(@) = f(ze) + (Vf(2e), 2 — 20) + %Hx — .
If f is L-smooth, together with the descent lemma
n 2
Flaes) < flae) = SIV @)

we can establish the convergence rate of gradient descent. However, when f € C?, such an algorithm
does not truly make use of the pre-conditioned information of quadratic terms.

For a function f € C?(R%), from (1), when z is near xy, it holds that

f(x) = f(xy) +(Vf(xe), 2 —2¢) + %(:ﬂ —x) "V f(x)(x — ;) =: h(x)



To seek the minimizer of h, we take its gradient
Vh(z) = Vf(ze) + V2 f () (x — x4).
Let Vh(z¢11) = 0, and we solve that
zp1 =z — [V2f (@) 7V f (). (2)
Often we use the following modified version
Tep1 = xp — [V f(20)] IV f(a2) (3)

where n € (0, 1] is a chosen parameter.

2.1 Convergence rate of Newton’s method

Now we analyze the convergence rate of Newton’s method (3).

Proposition 1 (local convergence of Newton’s method). Assume that x, is the strict minimizer
of f in the sense that Vf(x,) = 0 and V2f(z.) = plg for some p > 0. Assume f is L-Hessian

Lipschitz (with respect to spectral norm). Then if ||zo — x| < §F, with n =1, it holds that

2L
lzer = @all < —=llze = 2.

Proof. From the calculus fact,

1
Vf(z) — Vf(zy) = /0 V2 (2 + (@ — ) (1 — T4) ds.
Plugging it into (3) with n = 1, we obtain
@1 — | = ||ze — 2 = [V2 f(20)] 7V f ()|

1
xp — Ty — [V2f(20)] 7" / V2 f(zy + (s — 22)) (24 — 24) ds
0

1
0

= H[VQf(xt)}_l / (V2f(x) — V2f (e + s(x — 24)) (21 — 24) ds

1
<[V f )] 7| - llve — ) /0 V2 f(2e) = V2 f (@ + sz — @) | ds

(7) 1
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L - 2
= L)@ a0 e -
where (i) comes from the assumption that f is L-Hessian Lipschitz. Then it remains to bound
[[V2f(x¢)] |- Since the update rule is a descent process (it’s not hard to verify it), then for every

xy, |2 — @e|| < o — 24| < FF-

V() = V3 (e.) — Ll - oo = 1



This means H[V2 fla)) ™| < %. Hence we conclude

2L
2141 — 24| < 7“% — %

O

Remark 2. The local convergence of Newton’s method is quadratic, which is better than the gradient
descent (linear system).

3 Adaptive Gradient Descent

The note for Lecture 5, COS 597G: Toward Theoretical Understanding of Deep Learning, Fall 2018,
lectured by Sanjeev Arora is precise and clear enough for this part. I really recommend you to refer
this note together with the slide.


https://www.cs.princeton.edu/courses/archive/fall18/cos597G/lecnotes/lecture5.pdf
https://yunwei-ren.me/optimization-2023/11-preconditioned.pdf
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