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1 Overview

In this lecture, we put our sight on two pre-conditioned versions of the gradient descent: Newton’s
method and adaptive gradient descent.

The second-order Taylor series expansion is often used in this lecture: for a function f ∈ C2(Rd),
for x, y ∈ Rd, when x, y is ‘near’,

f(y) ≈ f(x) + (∇f(x))⊤(y − x) +
1

2
(y − x)⊤∇2f(x)(y − x). (1)

2 Newton’s Method

Recall the gradient descent algorithm. At each iteration, we choose locally minimize

g(x) = f(xt) + ⟨∇f(xt), x− xt⟩+
1

2η
∥x− xt∥2.

If f is L-smooth, together with the descent lemma

f(xt+1) ≤ f(xt)−
η

2
∥∇f(xt)∥2,

we can establish the convergence rate of gradient descent. However, when f ∈ C2, such an algorithm
does not truly make use of the pre-conditioned information of quadratic terms.

For a function f ∈ C2(Rd), from (1), when x is near xt, it holds that

f(x) ≈ f(xt) + ⟨∇f(xt), x− xt⟩+
1

2
(x− xt)

⊤∇2f(xt)(x− xt) =: h(x)

1



To seek the minimizer of h, we take its gradient

∇h(x) = ∇f(xt) +∇2f(xt)(x− xt).

Let ∇h(xt+1) = 0, and we solve that

xt+1 = xt − [∇2f(xt)]
−1∇f(xt). (2)

Often we use the following modified version

xt+1 = xt − η[∇2f(xt)]
−1∇f(xt) (3)

where η ∈ (0, 1] is a chosen parameter.

2.1 Convergence rate of Newton’s method

Now we analyze the convergence rate of Newton’s method (3).

Proposition 1 (local convergence of Newton’s method). Assume that x∗ is the strict minimizer
of f in the sense that ∇f(x∗) = 0 and ∇2f(x∗) ⪰ ρId for some ρ > 0. Assume f is L-Hessian
Lipschitz (with respect to spectral norm). Then if ∥x0 − x∗∥ ≤ ρ

2L , with η = 1, it holds that

∥xt+1 − x∗∥ ≤ 2L

ρ
∥xt − x∗∥2.

Proof. From the calculus fact,

∇f(xt)−∇f(x∗) =

∫ 1

0
∇2f(x∗ + s(xt − x∗))(xt − x∗) ds.

Plugging it into (3) with η = 1, we obtain

∥xt+1 − x∗∥ =
∥∥xt − x∗ − [∇2f(xt)]

−1∇f(xt)
∥∥

=

∥∥∥∥xt − x∗ − [∇2f(xt)]
−1

∫ 1

0
∇2f(x∗ + s(xt − x∗))(xt − x∗) ds

∥∥∥∥
=

∥∥∥∥[∇2f(xt)]
−1

∫ 1

0
(∇2f(xt)−∇2f(x∗ + s(xt − x∗))(xt − x∗) ds

∥∥∥∥
≤

∥∥[∇2f(xt)]
−1

∥∥ · ∥xt − x∗∥
∫ 1

0

∥∥∇2f(xt)−∇2f(x∗ + s(xt − x∗)
∥∥ ds

(i)

≤
∥∥[∇2f(xt)]

−1
∥∥ · ∥xt − x∗∥2

∫ 1

0
Ls ds

=
L

2

∥∥[∇2f(xt)]
−1

∥∥ · ∥xt − x∗∥2

where (i) comes from the assumption that f is L-Hessian Lipschitz. Then it remains to bound∥∥[∇2f(xt)]
−1

∥∥. Since the update rule is a descent process (it’s not hard to verify it), then for every
xt, ∥xt − x∗∥ ≤ ∥x0 − x∗∥ ≤ ρ

2L .

∇2f(xt) ⪰ ∇2f(x∗)− L∥xt − x∗∥Id ⪰ ρ

2
Id.

2



This means
∥∥[∇2f(xt)]

−1
∥∥ ≤ 2

ρ . Hence we conclude

∥xt+1 − x∗∥ ≤ 2L

ρ
∥xt − x∗∥2.

Remark 2. The local convergence of Newton’s method is quadratic, which is better than the gradient
descent (linear system).

3 Adaptive Gradient Descent

The note for Lecture 5, COS 597G: Toward Theoretical Understanding of Deep Learning, Fall 2018,
lectured by Sanjeev Arora is precise and clear enough for this part. I really recommend you to refer
this note together with the slide.
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https://www.cs.princeton.edu/courses/archive/fall18/cos597G/lecnotes/lecture5.pdf
https://yunwei-ren.me/optimization-2023/11-preconditioned.pdf
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