Lecture 11 — Pre-conditioned Gradient Descent

Lecturer: Yunwei Ren Scribed by Zhidan Li

Contents

1 Overview

In this lecture, we put our sight on two pre-conditioned versions of the gradient descent: Newton's method and adaptive gradient descent.

The second-order Taylor series expansion is often used in this lecture: for a function $f \in C^2(\mathbb{R}^d)$, for $x, y \in \mathbb{R}^d$, when x, y is 'near',

$$
f(y) \approx f(x) + (\nabla f(x))^\top (y - x) + \frac{1}{2}(y - x)^\top \nabla^2 f(x)(y - x).
$$
 (1)

2 Newton's Method

Recall the gradient descent algorithm. At each iteration, we choose locally minimize

$$
g(x) = f(x_t) + \langle \nabla f(x_t), x - x_t \rangle + \frac{1}{2\eta} ||x - x_t||^2.
$$

If f is L -smooth, together with the descent lemma

$$
f(x_{t+1}) \le f(x_t) - \frac{\eta}{2} \|\nabla f(x_t)\|^2
$$

we can establish the convergence rate of gradient descent. However, when $f \in C^2$, such an algorithm does not truly make use of the pre-conditioned information of quadratic terms.

For a function $f \in C^2(\mathbb{R}^d)$, from [\(1\)](#page-0-2), when x is near x_t , it holds that

$$
f(x) \approx f(x_t) + \langle \nabla f(x_t), x - x_t \rangle + \frac{1}{2} (x - x_t)^\top \nabla^2 f(x_t) (x - x_t) =: h(x)
$$

To seek the minimizer of h , we take its gradient

$$
\nabla h(x) = \nabla f(x_t) + \nabla^2 f(x_t)(x - x_t).
$$

Let $\nabla h(x_{t+1}) = 0$, and we solve that

$$
x_{t+1} = x_t - [\nabla^2 f(x_t)]^{-1} \nabla f(x_t). \tag{2}
$$

Often we use the following modified version

$$
x_{t+1} = x_t - \eta [\nabla^2 f(x_t)]^{-1} \nabla f(x_t)
$$
\n(3)

where $\eta \in (0, 1]$ is a chosen parameter.

2.1 Convergence rate of Newton's method

Now we analyze the convergence rate of Newton's method [\(3\)](#page-1-1).

Proposition 1 (local convergence of Newton's method). Assume that x_* is the strict minimizer of f in the sense that $\nabla f(x_*) = 0$ and $\nabla^2 f(x_*) \succeq \rho I_d$ for some $\rho > 0$. Assume f is L-Hessian Lipschitz (with respect to spectral norm). Then if $||x_0 - x_*|| \leq \frac{\rho}{2L}$, with $\eta = 1$, it holds that

$$
||x_{t+1} - x_*|| \le \frac{2L}{\rho} ||x_t - x_*||^2.
$$

Proof. From the calculus fact,

$$
\nabla f(x_t) - \nabla f(x_*) = \int_0^1 \nabla^2 f(x_* + s(x_t - x_*))(x_t - x_*) ds.
$$

Plugging it into [\(3\)](#page-1-1) with $\eta = 1$, we obtain

$$
||x_{t+1} - x_*|| = ||x_t - x_* - [\nabla^2 f(x_t)]^{-1} \nabla f(x_t)||
$$

\n
$$
= ||x_t - x_* - [\nabla^2 f(x_t)]^{-1} \int_0^1 \nabla^2 f(x_* + s(x_t - x_*))(x_t - x_*) ds||
$$

\n
$$
= ||[\nabla^2 f(x_t)]^{-1} \int_0^1 (\nabla^2 f(x_t) - \nabla^2 f(x_* + s(x_t - x_*))(x_t - x_*) ds||
$$

\n
$$
\leq ||[\nabla^2 f(x_t)]^{-1}|| \cdot ||x_t - x_*|| \int_0^1 ||\nabla^2 f(x_t) - \nabla^2 f(x_* + s(x_t - x_*)|| ds
$$

\n
$$
\stackrel{(i)}{\leq} ||[\nabla^2 f(x_t)]^{-1}|| \cdot ||x_t - x_*||^2 \int_0^1 Ls ds
$$

\n
$$
= \frac{L}{2} ||[\nabla^2 f(x_t)]^{-1}|| \cdot ||x_t - x_*||^2
$$

where (i) comes from the assumption that f is L -Hessian Lipschitz. Then it remains to bound $\|\nabla^2 f(x_t)\|^{-1}$. Since the update rule is a descent process (it's not hard to verify it), then for every $\|x_t, \|x_t - x_*\| \leq \|x_0 - x_*\| \leq \frac{\rho}{2L}.$

$$
\nabla^2 f(x_t) \succeq \nabla^2 f(x_*) - L \|x_t - x_*\| I_d \succeq \frac{\rho}{2} I_d.
$$

This means $\left\| [\nabla^2 f(x_t)]^{-1} \right\| \leq \frac{2}{\rho}$ $\frac{2}{\rho}$. Hence we conclude

$$
||x_{t+1} - x_*|| \le \frac{2L}{\rho} ||x_t - x_*||^2.
$$

 \Box

Remark 2. The local convergence of Newton's method is quadratic, which is better than the gradient descent (linear system).

3 Adaptive Gradient Descent

The note for Lecture 5, COS 597G: Toward Theoretical Understanding of Deep Learning, Fall 2018, lectured by Sanjeev Arora is precise and clear enough for this part. I really recommend you to refer [this note](https://www.cs.princeton.edu/courses/archive/fall18/cos597G/lecnotes/lecture5.pdf) together with [the slide.](https://yunwei-ren.me/optimization-2023/11-preconditioned.pdf)