
CS2910 - Optimization Summer 2023

Lecture 10 — Bayesian Optimization

Lecturer: Yunwei Ren Scribed by Zhidan Li

Contents

1 Overview 1

2 Bayesian Optimization 1

2.1 Gaussian process regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Bayesian optimization via Gaussian process regression . . . . . . . . . . . . . . . . . 3

1 Overview

Recall that, in the gradient descent algorithm, we can efficiently solve the optimization problem
when:

• The objective function f is convex.

• The dimension d is large.

• The gradient of f can be efficiently computed.

However, when the gradient cannot be computed or it is too expensive to compute it such as
hyperparameter tuning (architecture search). To solve this issue, we introduce the method called
Bayesian optimization.

2 Bayesian Optimization

Now we give the high-level idea of the Bayesian optimization. To implement the Bayesian opti-
mization, the major problem is, how to choose the next point xt+1, based on the current sequence
{(xi, f(xi))}ti=1.

• Firstly we ‘fit a function’ fn : Rd → R such that fn(xi) = f(xi) for all i ∈ [t].

• Then we ‘optimize’ fn to find the next xt+1.

• After all, we observe f(xt+1) and append (xt+1, f(xt+1)) to the sequence.
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Then it naturally gives rise to the following two questions: How to parameterize the function?
Which kinds of functions are good?

The solution to the above questions is, we pick a distribution over all ‘nice’ functions passing
through (xi, f(xi)) for all i ∈ [t]. It makes sense that, we hope the function will be smooth. That
is to say, when x is getting close to xi, f(x) is also closer to f(xi).

2.1 Gaussian process regression

Typically we will choose the Gaussian process to specify the distribution over all ‘nice’ functions.

Definition 1 (Gaussian process). An Rd-indexed stochastic process F is said to be a Gaussian
process if for all n ∈ N, x1, . . . , xn ∈ Rd, there exists a function µ : Rd → R and K : Rd × Rd → R
such that

(F (x1), . . . , F (xn)) ∼ N
(
[µ(xi)]i∈[n], [K(xi, xj)]i,j∈[n]

)
.

Remark 1. Usually we pick K as the RBF kernel, i.e., for some chosen σ ≥ 0, x, y ∈ Rd,

K(x, y) := exp

(
−∥x− y∥2

2σ2

)
.

Note that, when ∥x− y∥ is decreasing (x is getting close to y), K(x, y) is increasing, which means
Cov (F (x), F (y)) becomes larger. This implies F (x) is more correlated with F (y). Also, when σ
is decreasing, K(x, y) will be increasing as well. Then F (x) would be more correlated with F (y).
The simple observation intuitively tells us the RBF kernel ‘truly’ controls the smoothness.

Then, we show the law of any f(x) based on {(xi, f(xi)}ti=1.

Lemma 2. Let Y1 ∈ Rd1, Y2 ∈ Rd2 and[
Y1
Y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ⊤
12 Σ22

])
.

Then

Y1|Y2 ∼ N
(
µ1 +Σ12Σ

−1
22 (Y2 − µ2),Σ11 − Σ12Σ

−1
22 Σ

⊤
12

)
.

We leave the proof of Lemma 2 as a simple probability exercise.

Definition 3 (Gaussian process regression). Let {(xi, f(xi))}i∈[t] be the observed data. The Gaus-

sian process regression proceeds as: for every x ∈ Rd, we set the prior distribution to be
F (x)
F (x1)

...
F (xt)

 ∼ N
(
0,

[
K(x, x) [K(x, xi)]i∈[t]

[K(x, xi)]
⊤
i∈[t] [K(xi, xj)]i,j∈[t]

])
=: N

(
0,

[
Kxx KxX

K⊤
xX KXX

])
.

Then by Lemma 2, the posterior distribution is given by

F (x)|[f(xi)]i∈[t] ∼ N
(
KxXK−1

XX [f(xi)]i∈[t],Kxx −KxXK−1
XXK⊤

xX

)
. (1)
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Now we do a sanity check. Let x = xk for k ∈ [t]. Then we know KxX = e⊤k KXX and Kxx =
e⊤k KXXek. Hence

KxXK−1
XX [f(xi)]i∈[t] = e⊤k KXXK−1

XX [f(xi)]i∈[t] = f(xk)

Kxx −KxXK−1
XXK⊤

xX = Kxx − e⊤k KXXK−1
XXKXXek = 0.

2.2 Bayesian optimization via Gaussian process regression

Now we illustrate the strategy to choose the next point xt+1. For convenience, we consider the
maximization problem.

Definition 4 (acquisition function). Let {(xi, f(xi))}i∈[t] be the observed data and Pt the dis-
tribution over all functions by (1). Put f∗

t = max {f(x1), . . . , f(xt)}. The acquisition function
EIt : Rd → R is defined as

EIt(x) = Eg∼Pt [max {0, g(x)− f∗
t }] .

Remark 2. The function EI means the expected improvement (actually decrease) of the minimum
when we pick x ∈ Rd as our next point. When the dimension is low, we can efficiently optimize EIt
by grid search or gradient ascent.

If Pt(x) = N (µ(x), σ(x)2), by simple calculation, it holds

EIt(x) = σ(x) (γ(x)Φ(γ(x)) + φ(γ(x)))

where γ(x) :=
µ(x)−f∗

t
σ(x) and φ, Φ are the PDF and CDF of the standard normal distribution

respectively.

Now we describe the algorithm formally. At each iteration t, assume that the observed dataset is
{(xi, f(xi))}i∈[t].

• Firstly we compute Pt as (1) and EIt.

• Find maximizer xt+1 with respect to EIt (using grid search or gradient ascent).

• Evaluate f(xt+1) and append the point (xt+1, f(xt+1)) to the dataset.

• Go to the next iteration.

Note that, it is not easy to give any theoretical guarantee or convergence rate for Bayesian opti-
mization. Despite the unknown convergence result, it is still a widely used optimization algorithm.
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