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Lecture 1 — Convex Sets and Functions
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1 Convex Sets and Supporting Hyperplanes

Firstly, we introduce the definition of convex sets.

Definition 1. A set C C RY is said to a convex set if, for all x,y € C, § € [0,1], the point
(1=0)z+ 0y € C. In words, C contains the segment connecting = and y.

Examples: The following figures give an instance of a convex set and a non-convex set.

(a) a non-convex set (b) a convex set

Figure 1: a non-convex set and a convex one

Goal: We want to show that, every convex set C' C R? can be characterized by its ‘supporting
hyperplanes’.

Rough Approach: Describe ‘what is in C” <= describe the boundary of C' <= describe the
‘tangent planes’ of C.

Remark 1. The reason we use the supporting hyperplanes is, hyperplanes are linear objects, and
linear objects are easier to analyze than non-linear ones.

Definition 2. Let C C R? be a closed convex set. Let E = {f = a} be the hyperplane determined
by f:R? — R and the real number o € R. We say E is a supporting hyperplane if ENC # @



and C' is contained either in {f > a} orin {f < a}. We also call that C-containing half-space a
supporting half-space.

Examples: The following figures illustrate the above definition. The first hyperplane is a sup-
porting hyperplane and the second and third ones are not.

E

— - _h"\-\
7~ N
/ |
i /
7

\\ /

\ yd

\ _/
S _7_/
(c) not a supporting hyperplane: case
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Figure 2: a supporting hyperplane and not supporting cases

The following proposition defines the metric projection.

Proposition 3 (metric projection). Let C C R? be a non-empty closed set. For any x € RY, define
its metric projection to C' as the set

o (x) 2 argmin ||y — ||, = {the closest points in C to x} C R%.
yel

If C is a convex, the above minimizer is unique, and we will abuse the above notation to denote
this point.

Proof. For every x € C, it is obvious that II¢(z) = x. Now we assume that x ¢ C. Since C # &,
there exists some r > 0 such that B,(z) N C # @. Since C is closed, the set B,(z) N C is compact.
Note that

inf — |2 = inf —x|?
infly—ol3= o lly—al}



is continuous. Then the infimum can be achieved by some y € C.

. C . . A . .
When C'is convex, let z/, # x, be two projection points and a = ||z, — z||,. Since C is convex, the
point 2’ = %(x* +2/) € C. Then,
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where the inequality comes from Cauchy-Schwarz, and a trivial observation that the equality cannot
be achieved. This leads to a contradiction. O

With the definition of the metric projection, we can immediately specify a family of supporting
hyperplanes.

Proposition 4. Let C C R? be a non-empty closed convex set. For all x ¢ C, the hyperplane E
through Ilc(z) and orthogonal to x — () supports C. Moreover, the half-space H bounded by E
and not containing x is a supporting half-space.

Proof. Tt is trivial to see Ilg(x) € ENC # &, then we only need to show C' C H. We claim that:
forally € C, (x —¢(z),y — He(z)) < 0.
Consider the function F' : [0,1] — R defined as

F(t) = (1 = e () + ty — 5.

Since C' is convex, (1 — t)[Ig(x) + ty € C. Then from the definition of the metric projection, it
holds that

F(0) = min F(2).
(0) min, (t)

By the continuity of F,

0 < F'(t)|i=0 = 2(y — e (z), (1 — H)le(x) + ty — 2) =0
=2(y —lg(z),lo(z) — ).
Then we conclude (y — Il (x), z — e (z)) < 0. O

Additionally, it can be shown that we can use supporting hyperplanes to represent C.

Corollary 5. Let C ; R? be a non-empty closed convex set. Then

C = ﬂ {H : H is a closed subspace containing C'} = ﬂ {H : H is a supporting half-space} .

Proof. Define
A : -
C) = m {H : H is a closed subspace containing C'},

Co 2 ﬂ {H : H is a supporting half-space} .



It is clear that C' C C;. Since every supporting half-space is a closed C-containing subspace, it
holds that C7 C C5. Thus we prove C' C Cy C Cs.

To prove the corollary, it suffices to show Cy C C, in other words, C¢ C C§. For every = ¢ C, from
Proposition 4, there exists a supporting hyperplane H such that © ¢ H, C € H. Then we know
x ¢ Cq, ie., x € C§. Then we conclude Cy C C. O

2 Convex Functions and Equivalent Definitions

In this section, we introduce another fundamental definition — convex functions.
Definition 6. A function f: R% = RU {co} is said to be convez if Vx,y € RY, § € [0,1],
F(A=0)x+0y) < (1—0)f(z)+0f(y).

Exercise 1. Prove that, f : R — R is a convex function if and only if its epigraph

epi(f) = { (@.y) € R¥: f(a) <y

1S a convex set.

Now we show some equivalent definitions for convex functions

Proposition 7 (first-order condition). Let f : R = R and f € CY(R?). Then, f is a convex
function if and only if f has lower linear bound, i.e., for all z,y € R%,

fy) = fx) + (Vf(z),y — ).

Proof. Since f € C'(RY),

(VF(@),y — a) — lim LETEW =) = (@)

e—0 c
T F((1 =)z +ey) — f(z)
- e—0 €
< pim 1= @) + /() = f(@)
e—0 €
= fy) — f(=z)

where the inequality holds since f is convex. This implies the lower linear bound.
Suppose that f has lower linear bound. Set z = (1 — 6)z + 0y where 6 € (0,1). Then,
f() = f(2) + (Vf(2),2 = 2),
fy) = f(2) +(Vf(2),y — 2).
Then we conclude

(1=0)f(x)+0f(y) = (1 -0
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=f(2) +{Vf(2), 1 =0)(z - 2) +0(y — 2))
=f(2) +(Vf(2), (1 = 0)x + Oy — 2)
= f(2).
This implies the convexity of f. O



Remark 2. The following three concepts are equivalent: first-order Taylor expansion, local linear
approximation and tangent space.

Lemma 8. f : R — R is a convex if and only if it is convex along all segments, i.e., for all
z,y € R, the 1-dimensional function t — f((1 —t)x +ty) on [0,1] is conver.

Proof. The lemma holds directly from the definition. O
Proposition 9 (monotone gradient). Let f : R — R be a C1(R?). Then, f is a convex function

if and only if V f is monotone, i.e., (Vf(x) —Vf(y),z —y) > 0.

Proof. When f is convex, for all ,y € R%, by Proposition 7,

fy) = f(x) +(Vf(z),y — ),
f(@) = fy) +(VI(y),z—y).

Then,

0= (Vf(z)=VIQy)y—=).
Thus we obtain the monotone gradient.

When V£ is monotone, for all z,y € R%, define g(t) = f((1 — t)x + ty). Then
gt = (VA -tz +ty),y — ).
For 1,15 € [0,1], by elementary calculation
(¢'(t1) = g'(t2))(t1 — t2) = (VF((1 = t1)z + try) = VF((1 — t2)z + L2y), (1 — 12)(y — 2)).
Note that ((1 —t1)x + t1y) — (1 — t2)z + toy) = (t1 — t2)(y — x), then
(¢'(t1) = g'(t2))(t1 — t2) = 0.

This means, we can assume d = 1. For all z,y € R, § € (0,1), define z = (1 — )z + fy. Without
loss of generality, let x < y. By the mean value theorem, there exists 0 < 6; < 6 < 6 < 1 such
that

F@) = FC) _ g < oy — TR IW),

T — 2 Z—y
Organizing each terms we obtain
f@)(z—y)+ [z —2) < f(2)(z —y).
Plugging z = (1 — 0)x + Ay into above, we get
(L=0)f(@)(x—y)+0f(y)(z—y) < f(2)(x—y).
This leads to the desired inequality (1 — ) f(z) + 0f(y) < f(2). O

Proposition 10 (second-order condition). A C?(R%) function f : R? — R is convex if and only if
V2f(z) = 0 for all z € R,



Proof. Firstly we prove the always positive semidefinite Hessian implies convexity. For all z,y € R?,
by Taylor’s theorem, there exists z € [z,y] (z lies in the segment through zy) such that

F) = £(@) + (VI @)y =) + 5 (v =2, P FE) - 2)
= f(@) +(Vf(z),y —x).
Then by Proposition 7 f is convex.

Suppose that f is a convex function. Assume that there exists a point 29 € R? such that V2 f(zg) <
0. Suppose that (A, v) is a pair of eigenvalue and eigenvector of V2 f(zp), with A < 0 and [|v]|, = 1.
By Taylor’s theorem,

2

Flao + 1) = f(x0) + £V f(z0), 0) + - (0, V2 (w0)0) + o(#?)

— Fa0) + HV(a0).0) + EA o)
Since A < 0, when ¢ is sufficiently small, we know
f(zo +tv) < f(xo) +1(V f(20),v)
which leads to a contradiction to the convexity of f. O

Remark 3. The following four concepts are equivalent: positive semidefinite Hessian, local second-
order approrimation, positive curvature and the pace it deviates from the tangent.

Sometimes we need the function f much more ‘convex’. Now we introduce the definition of strongly
convex functions.

Proposition 11 (strong convexity). Given a C*(RY) function f : R = R and a real p > 0, the
followings are equivalent:

(a) f is p-strongly conves, i.e., x + f(x) — &|z|3 is conves.

(b) F((1—0)x+0y) < (1—0)f(z)+0f(y) — L5022 — y|2 for all 2,y € R and 0 € (0,1).
(¢) (VF(x) = VI@),x—y) > ple—yl3 for all 2,y € RL.

(d) f(y) = f(z) + (Vf(@),y —2) + 5o — yll3 for allz,y € RY.

(e) Vf(x) = puly for all z € RY

Example: All linear functions are not strongly convex. The function x +— %xTAa: for positive
definite matrix A is Apin(A)-strongly convex.
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Figure 3: an example of bisection.

2.1 Ellipsoid method

A typical question is, how to minimize an one-dimensional function f7 The answer is, bisection.
Figure 3 shows an example of the bisection. We want to find the minimum in [L, R]. Firstly we

choose M € [L, R] and calculate f'(M). If f'(M) < 0 we let R < M otherwise L <— M. When
|R — L| < ¢ we find the (approximate) minimum.

For the high-dimensional case, a natural-thinking idea is to extend the bisection method. Let
f : R4 = R be the objective function we want to minimize. Similarly to the bisection, at each
step, we choose a hyperplane, and select the subspace bounded by this hyperplane containing the
optimal point x.. To choose the proper subspace, recall the monotone gradient:

0 <(Vf(z) = Vf(ze), 2 = 2e) = (Vf(2), 2 = 2s) -

Then we can properly pick the subspace containing x..

(a) select the proper sub-  (b) several bisections
space

Figure 4: bisection on R?



Ideally, at each step, we want to choose a ‘good’ xji; such that the volume of the polytope
containing x, decreases by half (or a constant ratio) — However, it is hard.

To solve this problem, we replace polytopes with a family of ellipsoids {Ej},cy, and set 41 as
the center of Ej.

Claim 12. We can construct {Ey} such that z, € Ej and

vol (Egss) < (1 _Q (;2» vol (Ey) .
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