CS2910 - Optimization	Summer 2023
Lecture $1 - $ Convex Sets and Function	ıs
Lecturer: Yunwei Ren Sc	ribed by Zhidan Li

Contents

1	Convex Sets and Supporting Hyperplanes	1
2	Convex Functions and Equivalent Definitions	4
	2.1 Ellipsoid method	$\overline{7}$

1 Convex Sets and Supporting Hyperplanes

Firstly, we introduce the definition of convex sets.

Definition 1. A set $C \subseteq \mathbb{R}^d$ is said to a convex set if, for all $x, y \in C$, $\theta \in [0,1]$, the point $(1-\theta)x + \theta y \in C$. In words, C contains the segment connecting x and y.

Examples: The following figures give an instance of a convex set and a non-convex set.

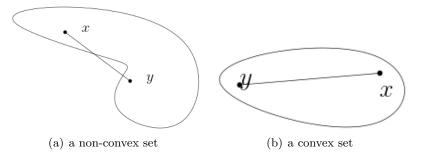


Figure 1: a non-convex set and a convex one

Goal: We want to show that, every convex set $C \subseteq \mathbb{R}^d$ can be characterized by its 'supporting hyperplanes'.

Rough Approach: Describe 'what is in $C' \iff$ describe the boundary of $C \iff$ describe the 'tangent planes' of C.

Remark 1. The reason we use the supporting hyperplanes is, hyperplanes are linear objects, and linear objects are easier to analyze than non-linear ones.

Definition 2. Let $C \subseteq \mathbb{R}^d$ be a closed convex set. Let $E = \{f = \alpha\}$ be the hyperplane determined by $f : \mathbb{R}^d \to \mathbb{R}$ and the real number $\alpha \in \mathbb{R}$. We say E is a supporting hyperplane if $E \cap C \neq \emptyset$ and C is contained either in $\{f \ge \alpha\}$ or in $\{f \le \alpha\}$. We also call that C-containing half-space a supporting half-space.

Examples: The following figures illustrate the above definition. The first hyperplane is a supporting hyperplane and the second and third ones are not.

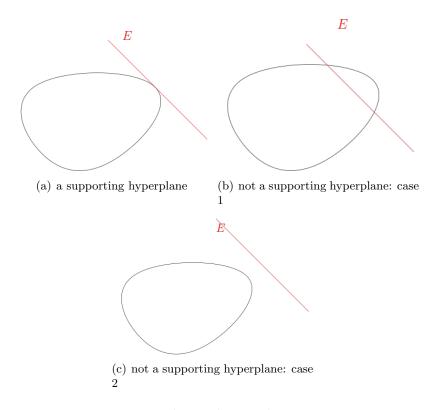


Figure 2: a supporting hyperplane and not supporting cases

The following proposition defines the metric projection.

Proposition 3 (metric projection). Let $C \subseteq \mathbb{R}^d$ be a non-empty closed set. For any $x \in \mathbb{R}^d$, define its metric projection to C as the set

$$\Pi_C(x) \stackrel{\triangle}{=} \operatorname*{argmin}_{y \in C} \|y - x\|_2 = \{ the \ closest \ points \ in \ C \ to \ x \} \subseteq \mathbb{R}^d$$

If C is a convex, the above minimizer is unique, and we will abuse the above notation to denote this point.

Proof. For every $x \in C$, it is obvious that $\Pi_C(x) = x$. Now we assume that $x \notin C$. Since $C \neq \emptyset$, there exists some r > 0 such that $B_r(x) \cap C \neq \emptyset$. Since C is closed, the set $B_r(x) \cap C$ is compact. Note that

$$\inf_{y \in C} \|y - x\|_2^2 = \inf_{y \in B_r(x) \cap C} \|y - x\|_2^2$$

is continuous. Then the infimum can be achieved by some $y \in C$.

When C is convex, let $x'_* \neq x_*$ be two projection points and $\alpha \stackrel{\triangle}{=} ||x_* - x||_2$. Since C is convex, the point $x' = \frac{1}{2}(x_* + x'_*) \in C$. Then,

$$\begin{aligned} \|x' - x\|_2^2 &= \left\|\frac{1}{2}(x_* - x) + \frac{1}{2}(x'_* - x)\right\|_2^2 \\ &< 2\left(\frac{1}{4}\|x_* - x\|_2^2 + \frac{1}{4}\|x'_* - x\|_2^2\right) \\ &= \alpha^2 \end{aligned}$$

where the inequality comes from Cauchy-Schwarz, and a trivial observation that the equality cannot be achieved. This leads to a contradiction. $\hfill \Box$

With the definition of the metric projection, we can immediately specify a family of supporting hyperplanes.

Proposition 4. Let $C \subseteq \mathbb{R}^d$ be a non-empty closed convex set. For all $x \notin C$, the hyperplane E through $\Pi_C(x)$ and orthogonal to $x - \Pi_C(x)$ supports C. Moreover, the half-space H bounded by E and not containing x is a supporting half-space.

Proof. It is trivial to see $\Pi_C(x) \in E \cap C \neq \emptyset$, then we only need to show $C \subseteq H$. We claim that: for all $y \in C$, $\langle x - \Pi_C(x), y - \Pi_C(x) \rangle \leq 0$.

Consider the function $F: [0,1] \to \mathbb{R}$ defined as

$$F(t) = \|(1-t)\Pi_C(x) + ty - x\|_2^2.$$

Since C is convex, $(1-t)\Pi_C(x) + ty \in C$. Then from the definition of the metric projection, it holds that

$$F(0) = \min_{t \in [0,1]} F(t).$$

By the continuity of F,

$$0 \le F'(t)|_{t=0} = 2 \langle y - \Pi_C(x), (1-t)\Pi_C(x) + ty - x \rangle |_{t=0}$$

= 2 \langle y - \Pi_C(x), \Pi_C(x) - x \rangle.

Then we conclude $\langle y - \Pi_C(x), x - \Pi_C(x) \rangle \leq 0.$

Additionally, it can be shown that we can use supporting hyperplanes to represent C.

Corollary 5. Let $C \subsetneq \mathbb{R}^d$ be a non-empty closed convex set. Then

$$C = \bigcap \{H : H \text{ is a closed subspace containing } C\} = \bigcap \{H : H \text{ is a supporting half-space}\}.$$

Proof. Define

 $C_1 \stackrel{\triangle}{=} \bigcap \{H : H \text{ is a closed subspace containing } C\},\$ $C_2 \stackrel{\triangle}{=} \bigcap \{H : H \text{ is a supporting half-space}\}.$

It is clear that $C \subseteq C_1$. Since every supporting half-space is a closed C-containing subspace, it holds that $C_1 \subseteq C_2$. Thus we prove $C \subseteq C_1 \subseteq C_2$.

To prove the corollary, it suffices to show $C_2 \subseteq C$, in other words, $C^c \subseteq C_2^c$. For every $x \notin C$, from Proposition 4, there exists a supporting hyperplane H such that $x \notin H$, $C \in H$. Then we know $x \notin C_2$, i.e., $x \in C_2^c$. Then we conclude $C_2 \subseteq C$.

2 Convex Functions and Equivalent Definitions

In this section, we introduce another fundamental definition — convex functions. **Definition 6.** A function $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ is said to be convex if $\forall x, y \in \mathbb{R}^d$, $\theta \in [0, 1]$,

$$f((1-\theta)x + \theta y) \le (1-\theta)f(x) + \theta f(y).$$

Exercise 1. Prove that, $f : \mathbb{R}^d \to \mathbb{R}$ is a convex function if and only if its epigraph

$$\operatorname{epi}(f) \stackrel{\triangle}{=} \left\{ (x, y) \in \mathbb{R}^{d+1} : f(x) \le y \right\}$$

is a convex set.

Now we show some equivalent definitions for convex functions

Proposition 7 (first-order condition). Let $f : \mathbb{R}^d \to \mathbb{R}$ and $f \in C^1(\mathbb{R}^d)$. Then, f is a convex function if and only if f has lower linear bound, i.e., for all $x, y \in \mathbb{R}^d$,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle.$$

Proof. Since $f \in C^1(\mathbb{R}^d)$,

$$\begin{split} \langle \nabla f(x), y - x \rangle &= \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon(y - x)) - f(x)}{\varepsilon} \\ &= \lim_{\varepsilon \to 0} \frac{f((1 - \varepsilon)x + \varepsilon y) - f(x)}{\varepsilon} \\ &\leq \lim_{\varepsilon \to 0} \frac{(1 - \varepsilon)f(x) + \varepsilon f(y) - f(x)}{\varepsilon} \\ &= f(y) - f(x) \end{split}$$

where the inequality holds since f is convex. This implies the lower linear bound. Suppose that f has lower linear bound. Set $z = (1 - \theta)x + \theta y$ where $\theta \in (0, 1)$. Then,

$$\begin{split} f(x) &\geq f(z) + \left< \nabla f(z), x - z \right>, \\ f(y) &\geq f(z) + \left< \nabla f(z), y - z \right>. \end{split}$$

Then we conclude

$$(1-\theta)f(x) + \theta f(y) \ge (1-\theta) \left(f(z) + \langle \nabla f(z), x - z \rangle \right) + \theta \left(f(z) + \langle \nabla f(z), y - z \rangle \right)$$

= $f(z) + \langle \nabla f(z), (1-\theta)(x-z) + \theta(y-z) \rangle$
= $f(z) + \langle \nabla f(z), (1-\theta)x + \theta y - z \rangle$
= $f(z).$

This implies the convexity of f.

Remark 2. The following three concepts are equivalent: first-order Taylor expansion, local linear approximation and tangent space.

Lemma 8. $f : \mathbb{R}^d \to \mathbb{R}$ is a convex if and only if it is convex along all segments, i.e., for all $x, y \in \mathbb{R}^d$, the 1-dimensional function $t \mapsto f((1-t)x + ty)$ on [0,1] is convex.

Proof. The lemma holds directly from the definition.

Proposition 9 (monotone gradient). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a $C^1(\mathbb{R}^d)$. Then, f is a convex function if and only if ∇f is monotone, i.e., $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0$.

Proof. When f is convex, for all $x, y \in \mathbb{R}^d$, by Proposition 7,

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle,$$

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle.$$

Then,

$$0 \ge \left\langle \nabla f(x) - \nabla f(y), y - x \right\rangle.$$

Thus we obtain the monotone gradient.

When ∇f is monotone, for all $x, y \in \mathbb{R}^d$, define g(t) = f((1-t)x + ty). Then

$$g'(t) = \langle \nabla f((1-t)x + ty), y - x \rangle.$$

For $t_1, t_2 \in [0, 1]$, by elementary calculation

$$(g'(t_1) - g'(t_2))(t_1 - t_2) = \langle \nabla f((1 - t_1)x + t_1y) - \nabla f((1 - t_2)x + t_2y), (t_1 - t_2)(y - x) \rangle.$$

Note that $((1 - t_1)x + t_1y) - ((1 - t_2)x + t_2y) = (t_1 - t_2)(y - x)$, then

$$(g'(t_1) - g'(t_2))(t_1 - t_2) \ge 0.$$

This means, we can assume d = 1. For all $x, y \in \mathbb{R}$, $\theta \in (0, 1)$, define $z = (1 - \theta)x + \theta y$. Without loss of generality, let x < y. By the mean value theorem, there exists $0 \le \theta_1 \le \theta \le \theta_2 \le 1$ such that

$$\frac{f(x) - f(z)}{x - z} = f'(\theta_1) \le f'(\theta_2) = \frac{f(z) - f(y)}{z - y}.$$

Organizing each terms we obtain

$$f(x)(z-y) + f(y)(x-z) \le f(z)(x-y).$$

Plugging $z = (1 - \theta)x + \theta y$ into above, we get

$$(1-\theta)f(x)(x-y) + \theta f(y)(x-y) \le f(z)(x-y).$$

This leads to the desired inequality $(1 - \theta)f(x) + \theta f(y) \le f(z)$.

Proposition 10 (second-order condition). A $C^2(\mathbb{R}^d)$ function $f : \mathbb{R}^d \to \mathbb{R}$ is convex if and only if $\nabla^2 f(x) \succeq 0$ for all $x \in \mathbb{R}^d$.

Proof. Firstly we prove the always positive semidefinite Hessian implies convexity. For all $x, y \in \mathbb{R}^d$, by Taylor's theorem, there exists $z \in [x, y]$ (z lies in the segment through xy) such that

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle y - x, \nabla^2 f(z)(y - x) \rangle$$

= $f(x) + \langle \nabla f(x), y - x \rangle$.

Then by Proposition 7 f is convex.

Suppose that f is a convex function. Assume that there exists a point $x_0 \in \mathbb{R}^d$ such that $\nabla^2 f(x_0) \prec 0$. Suppose that (λ, v) is a pair of eigenvalue and eigenvector of $\nabla^2 f(x_0)$, with $\lambda < 0$ and $||v||_2 = 1$. By Taylor's theorem,

$$f(x_0 + t\boldsymbol{v}) = f(x_0) + t \left\langle \nabla f(x_0), \boldsymbol{v} \right\rangle + \frac{t^2}{2} \left\langle \boldsymbol{v}, \nabla^2 f(x_0) \boldsymbol{v} \right\rangle + o(t^2)$$
$$= f(x_0) + t \left\langle \nabla f(x_0), \boldsymbol{v} \right\rangle + \frac{t^2}{2} \lambda + o(t^2).$$

Since $\lambda < 0$, when t is sufficiently small, we know

$$f(x_0 + t\boldsymbol{v}) < f(x_0) + t \langle \nabla f(x_0), \boldsymbol{v} \rangle$$

which leads to a contradiction to the convexity of f.

Remark 3. The following four concepts are equivalent: positive semidefinite Hessian, local secondorder approximation, positive curvature and the pace it deviates from the tangent.

Sometimes we need the function f much more 'convex'. Now we introduce the definition of strongly convex functions.

Proposition 11 (strong convexity). Given a $C^2(\mathbb{R}^d)$ function $f : \mathbb{R}^d \to \mathbb{R}$ and a real $\mu > 0$, the followings are equivalent:

(a) f is μ -strongly convex, i.e., $x \mapsto f(x) - \frac{\mu}{2} ||x||_2^2$ is convex.

(b)
$$f((1-\theta)x+\theta y) \leq (1-\theta)f(x)+\theta f(y)-\frac{\theta(1-\theta)\mu}{2}||x-y||_2^2$$
 for all $x, y \in \mathbb{R}^d$ and $\theta \in (0,1)$.

(c)
$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2$$
 for all $x, y \in \mathbb{R}^d$.

- (d) $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle + \frac{\mu}{2} ||x y||_2^2$ for all $x, y \in \mathbb{R}^d$.
- (e) $\nabla f(x) \succeq \mu I_d$ for all $x \in \mathbb{R}^d$.

Example: All linear functions are *not* strongly convex. The function $x \mapsto \frac{1}{2}x^{\top}Ax$ for positive definite matrix A is $\lambda_{\min}(A)$ -strongly convex.



Figure 3: an example of bisection.

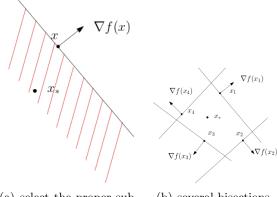
2.1 Ellipsoid method

A typical question is, how to minimize an one-dimensional function f? The answer is, bisection. Figure 3 shows an example of the bisection. We want to find the minimum in [L, R]. Firstly we choose $M \in [L, R]$ and calculate f'(M). If $f'(M) \leq 0$ we let $R \leftarrow M$ otherwise $L \leftarrow M$. When $|R - L| \leq \varepsilon$ we find the (approximate) minimum.

For the high-dimensional case, a natural-thinking idea is to extend the bisection method. Let $f : \mathbb{R}^d \to \mathbb{R}$ be the objective function we want to minimize. Similarly to the bisection, at each step, we choose a hyperplane, and select the subspace bounded by this hyperplane containing the optimal point x_* . To choose the proper subspace, recall the monotone gradient:

$$0 \le \langle \nabla f(x) - \nabla f(x_*), x - x_* \rangle = \langle \nabla f(x), x - x_* \rangle.$$

Then we can properly pick the subspace containing x_* .



(a) select the proper sub- (b) several bisections space

Figure 4: bisection on \mathbb{R}^d

Ideally, at each step, we want to choose a 'good' x_{k+1} such that the volume of the polytope containing x_* decreases by half (or a constant ratio) — However, it is hard.

To solve this problem, we replace polytopes with a family of ellipsoids $\{E_k\}_{k\in\mathbb{N}}$, and set x_{k+1} as the center of E_k .

Claim 12. We can construct $\{E_k\}$ such that $x_* \in E_k$ and

$$\operatorname{vol}(E_{k+1}) \leq \left(1 - \Omega\left(\frac{1}{d^2}\right)\right) \operatorname{vol}(E_k).$$