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1 Convex Sets and Supporting Hyperplanes

Firstly, we introduce the definition of convex sets.

Definition 1. A set C ⊆ Rd is said to a convex set if, for all x, y ∈ C, θ ∈ [0, 1], the point
(1− θ)x+ θy ∈ C. In words, C contains the segment connecting x and y.

Examples: The following figures give an instance of a convex set and a non-convex set.

(a) a non-convex set (b) a convex set

Figure 1: a non-convex set and a convex one

Goal: We want to show that, every convex set C ⊆ Rd can be characterized by its ‘supporting
hyperplanes’.

Rough Approach: Describe ‘what is in C’ ⇐⇒ describe the boundary of C ⇐⇒ describe the
‘tangent planes’ of C.

Remark 1. The reason we use the supporting hyperplanes is, hyperplanes are linear objects, and
linear objects are easier to analyze than non-linear ones.

Definition 2. Let C ⊆ Rd be a closed convex set. Let E = {f = α} be the hyperplane determined
by f : Rd → R and the real number α ∈ R. We say E is a supporting hyperplane if E ∩ C ̸= ∅
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and C is contained either in {f ≥ α} or in {f ≤ α}. We also call that C-containing half-space a
supporting half-space.

Examples: The following figures illustrate the above definition. The first hyperplane is a sup-
porting hyperplane and the second and third ones are not.

(a) a supporting hyperplane (b) not a supporting hyperplane: case
1

(c) not a supporting hyperplane: case
2

Figure 2: a supporting hyperplane and not supporting cases

The following proposition defines the metric projection.

Proposition 3 (metric projection). Let C ⊆ Rd be a non-empty closed set. For any x ∈ Rd, define
its metric projection to C as the set

ΠC(x)
△
= argmin

y∈C
∥y − x∥2 = {the closest points in C to x} ⊆ Rd.

If C is a convex, the above minimizer is unique, and we will abuse the above notation to denote
this point.

Proof. For every x ∈ C, it is obvious that ΠC(x) = x. Now we assume that x /∈ C. Since C ̸= ∅,
there exists some r > 0 such that Br(x) ∩C ̸= ∅. Since C is closed, the set Br(x) ∩C is compact.
Note that

inf
y∈C
∥y − x∥22 = inf

y∈Br(x)∩C
∥y − x∥22
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is continuous. Then the infimum can be achieved by some y ∈ C.

When C is convex, let x′∗ ̸= x∗ be two projection points and α
△
= ∥x∗ − x∥2. Since C is convex, the

point x′ = 1
2(x∗ + x′∗) ∈ C. Then,

∥∥x′ − x
∥∥2
2
=

∥∥∥∥12(x∗ − x) +
1

2
(x′∗ − x)

∥∥∥∥2
2

< 2

(
1

4
∥x∗ − x∥22 +

1

4

∥∥x′∗ − x
∥∥2
2

)
= α2

where the inequality comes from Cauchy-Schwarz, and a trivial observation that the equality cannot
be achieved. This leads to a contradiction.

With the definition of the metric projection, we can immediately specify a family of supporting
hyperplanes.

Proposition 4. Let C ⊆ Rd be a non-empty closed convex set. For all x /∈ C, the hyperplane E
through ΠC(x) and orthogonal to x−ΠC(x) supports C. Moreover, the half-space H bounded by E
and not containing x is a supporting half-space.

Proof. It is trivial to see ΠC(x) ∈ E ∩ C ̸= ∅, then we only need to show C ⊆ H. We claim that:
for all y ∈ C, ⟨x−ΠC(x), y −ΠC(x)⟩ ≤ 0.

Consider the function F : [0, 1]→ R defined as

F (t) = ∥(1− t)ΠC(x) + ty − x∥22.

Since C is convex, (1 − t)ΠC(x) + ty ∈ C. Then from the definition of the metric projection, it
holds that

F (0) = min
t∈[0,1]

F (t).

By the continuity of F ,

0 ≤ F ′(t)|t=0 = 2 ⟨y −ΠC(x), (1− t)ΠC(x) + ty − x⟩ |t=0

= 2 ⟨y −ΠC(x),ΠC(x)− x⟩ .

Then we conclude ⟨y −ΠC(x), x−ΠC(x)⟩ ≤ 0.

Additionally, it can be shown that we can use supporting hyperplanes to represent C.

Corollary 5. Let C ⫋ Rd be a non-empty closed convex set. Then

C =
⋂
{H : H is a closed subspace containing C} =

⋂
{H : H is a supporting half-space} .

Proof. Define

C1
△
=

⋂
{H : H is a closed subspace containing C} ,

C2
△
=

⋂
{H : H is a supporting half-space} .
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It is clear that C ⊆ C1. Since every supporting half-space is a closed C-containing subspace, it
holds that C1 ⊆ C2. Thus we prove C ⊆ C1 ⊆ C2.

To prove the corollary, it suffices to show C2 ⊆ C, in other words, Cc ⊆ Cc
2. For every x /∈ C, from

Proposition 4, there exists a supporting hyperplane H such that x /∈ H, C ∈ H. Then we know
x /∈ C2, i.e., x ∈ Cc

2. Then we conclude C2 ⊆ C.

2 Convex Functions and Equivalent Definitions

In this section, we introduce another fundamental definition — convex functions.

Definition 6. A function f : Rd → R ∪ {∞} is said to be convex if ∀x, y ∈ Rd, θ ∈ [0, 1],

f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y).

Exercise 1. Prove that, f : Rd → R is a convex function if and only if its epigraph

epi(f)
△
=

{
(x, y) ∈ Rd+1 : f(x) ≤ y

}
is a convex set.

Now we show some equivalent definitions for convex functions

Proposition 7 (first-order condition). Let f : Rd → R and f ∈ C1(Rd). Then, f is a convex
function if and only if f has lower linear bound, i.e., for all x, y ∈ Rd,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ .

Proof. Since f ∈ C1(Rd),

⟨∇f(x), y − x⟩ = lim
ε→0

f(x+ ε(y − x))− f(x)

ε

= lim
ε→0

f((1− ε)x+ εy)− f(x)

ε

≤ lim
ε→0

(1− ε)f(x) + εf(y)− f(x)

ε

= f(y)− f(x)

where the inequality holds since f is convex. This implies the lower linear bound.

Suppose that f has lower linear bound. Set z = (1− θ)x+ θy where θ ∈ (0, 1). Then,

f(x) ≥ f(z) + ⟨∇f(z), x− z⟩ ,
f(y) ≥ f(z) + ⟨∇f(z), y − z⟩ .

Then we conclude

(1− θ)f(x) + θf(y) ≥ (1− θ) (f(z) + ⟨∇f(z), x− z⟩) + θ (f(z) + ⟨∇f(z), y − z⟩)
= f(z) + ⟨∇f(z), (1− θ)(x− z) + θ(y − z)⟩
= f(z) + ⟨∇f(z), (1− θ)x+ θy − z⟩
= f(z).

This implies the convexity of f .
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Remark 2. The following three concepts are equivalent: first-order Taylor expansion, local linear
approximation and tangent space.

Lemma 8. f : Rd → R is a convex if and only if it is convex along all segments, i.e., for all
x, y ∈ Rd, the 1-dimensional function t 7→ f((1− t)x+ ty) on [0, 1] is convex.

Proof. The lemma holds directly from the definition.

Proposition 9 (monotone gradient). Let f : Rd → R be a C1(Rd). Then, f is a convex function
if and only if ∇f is monotone, i.e., ⟨∇f(x)−∇f(y), x− y⟩ ≥ 0.

Proof. When f is convex, for all x, y ∈ Rd, by Proposition 7,

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ ,
f(x) ≥ f(y) + ⟨∇f(y), x− y⟩ .

Then,

0 ≥ ⟨∇f(x)−∇f(y), y − x⟩ .

Thus we obtain the monotone gradient.

When ∇f is monotone, for all x, y ∈ Rd, define g(t) = f((1− t)x+ ty). Then

g′(t) = ⟨∇f((1− t)x+ ty), y − x⟩ .

For t1, t2 ∈ [0, 1], by elementary calculation

(g′(t1)− g′(t2))(t1 − t2) = ⟨∇f((1− t1)x+ t1y)−∇f((1− t2)x+ t2y), (t1 − t2)(y − x)⟩ .

Note that ((1− t1)x+ t1y)− ((1− t2)x+ t2y) = (t1 − t2)(y − x), then

(g′(t1)− g′(t2))(t1 − t2) ≥ 0.

This means, we can assume d = 1. For all x, y ∈ R, θ ∈ (0, 1), define z = (1 − θ)x + θy. Without
loss of generality, let x < y. By the mean value theorem, there exists 0 ≤ θ1 ≤ θ ≤ θ2 ≤ 1 such
that

f(x)− f(z)

x− z
= f ′(θ1) ≤ f ′(θ2) =

f(z)− f(y)

z − y
.

Organizing each terms we obtain

f(x)(z − y) + f(y)(x− z) ≤ f(z)(x− y).

Plugging z = (1− θ)x+ θy into above, we get

(1− θ)f(x)(x− y) + θf(y)(x− y) ≤ f(z)(x− y).

This leads to the desired inequality (1− θ)f(x) + θf(y) ≤ f(z).

Proposition 10 (second-order condition). A C2(Rd) function f : Rd → R is convex if and only if
∇2f(x) ⪰ 0 for all x ∈ Rd.

5



Proof. Firstly we prove the always positive semidefinite Hessian implies convexity. For all x, y ∈ Rd,
by Taylor’s theorem, there exists z ∈ [x, y] (z lies in the segment through xy) such that

f(y) = f(x) + ⟨∇f(x), y − x⟩+ 1

2

〈
y − x,∇2f(z)(y − x)

〉
= f(x) + ⟨∇f(x), y − x⟩ .

Then by Proposition 7 f is convex.

Suppose that f is a convex function. Assume that there exists a point x0 ∈ Rd such that ∇2f(x0) ≺
0. Suppose that (λ,v) is a pair of eigenvalue and eigenvector of ∇2f(x0), with λ < 0 and ∥v∥2 = 1.
By Taylor’s theorem,

f(x0 + tv) = f(x0) + t ⟨∇f(x0),v⟩+
t2

2

〈
v,∇2f(x0)v

〉
+ o(t2)

= f(x0) + t ⟨∇f(x0),v⟩+
t2

2
λ+ o(t2).

Since λ < 0, when t is sufficiently small, we know

f(x0 + tv) < f(x0) + t ⟨∇f(x0),v⟩

which leads to a contradiction to the convexity of f .

Remark 3. The following four concepts are equivalent: positive semidefinite Hessian, local second-
order approximation, positive curvature and the pace it deviates from the tangent.

Sometimes we need the function f much more ‘convex’. Now we introduce the definition of strongly
convex functions.

Proposition 11 (strong convexity). Given a C2(Rd) function f : Rd → R and a real µ > 0, the
followings are equivalent:

(a) f is µ-strongly convex, i.e., x 7→ f(x)− µ
2∥x∥

2
2 is convex.

(b) f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y)− θ(1−θ)µ
2 ∥x− y∥22 for all x, y ∈ Rd and θ ∈ (0, 1).

(c) ⟨∇f(x)−∇f(y), x− y⟩ ≥ µ∥x− y∥22 for all x, y ∈ Rd.

(d) f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ
2∥x− y∥22 for all x, y ∈ Rd.

(e) ∇f(x) ⪰ µId for all x ∈ Rd.

Example: All linear functions are not strongly convex. The function x 7→ 1
2x

⊤Ax for positive
definite matrix A is λmin(A)-strongly convex.
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Figure 3: an example of bisection.

2.1 Ellipsoid method

A typical question is, how to minimize an one-dimensional function f? The answer is, bisection.
Figure 3 shows an example of the bisection. We want to find the minimum in [L,R]. Firstly we
choose M ∈ [L,R] and calculate f ′(M). If f ′(M) ≤ 0 we let R ← M otherwise L ← M . When
|R− L| ≤ ε we find the (approximate) minimum.

For the high-dimensional case, a natural-thinking idea is to extend the bisection method. Let
f : Rd → R be the objective function we want to minimize. Similarly to the bisection, at each
step, we choose a hyperplane, and select the subspace bounded by this hyperplane containing the
optimal point x∗. To choose the proper subspace, recall the monotone gradient:

0 ≤ ⟨∇f(x)−∇f(x∗), x− x∗⟩ = ⟨∇f(x), x− x∗⟩ .

Then we can properly pick the subspace containing x∗.

(a) select the proper sub-
space

(b) several bisections

Figure 4: bisection on Rd
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Ideally, at each step, we want to choose a ‘good’ xk+1 such that the volume of the polytope
containing x∗ decreases by half (or a constant ratio) — However, it is hard.

To solve this problem, we replace polytopes with a family of ellipsoids {Ek}k∈N, and set xk+1 as
the center of Ek.

Claim 12. We can construct {Ek} such that x∗ ∈ Ek and

vol (Ek+1) ≤
(
1− Ω

(
1

d2

))
vol (Ek) .
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