
NOTES ON INTRODUCTION TO RANDOM GRAPHS

ZHIDAN LI

Abstract. This is the personal learning note on Frieze and Karoński’s book Introduction to Random Graphs [FK23].
It might be a revised version of the contents discussed in the reading seminar held in Spring 2024.
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1. Mathematical Symbols and Technique Tools

Before we start our discussion on random graphs, it is of great necessity to state some mathematical symbols
and technique tools for completeness.

1.1. Inequalities. For binomial inequalities, the most important tool we use is Stirling’s approximation: for
every n ∈ N>0,

√
2πn

(n
e

)n
e

1
12n+1 < n! <

√
2πn

(n
e

)n
e

1
12n .

Lemma 1.1. The following identities and inequalities hold
(1) For all n, k ∈ N>0, k ≤ n, (

n

k

)
≤
(en
k

)k
.
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(2) For n ∈ N>0 and k = o(n), it holds that (
n

k

)
≈ nk

k!
.

(3) For all n, k ∈ N>0, (
n

k

)
≤ nk

k!

(
1− k

2n

)k−1

.

1.2. Probabilistic methods. The most common tools we use are the moment methods, especially the first-
moment method (the Markov inequality) and the second-moment method (the Chebyshev inequality).

Lemma 1.2 (The Markov Inequality). Let X be a non-negative random variable. Then for all t > 0,

Pr [X ≥ t] ≤ E [X]

t
.

Theorem 1.3 (The First-Moment Method). Let X be a non-negative integer-valued random variable. Then

Pr [X > 0] ≤ E [X] .

Lemma 1.4 (The Chebyshev Inequality). Let X be a random variable with finite mean and finite variance.
Then for t > 0, it holds that

Pr [|X −E [X]| ≥ t] ≤ Var (X)

t2
.

Theorem 1.5 (The Second-Moment Method). Let X be a non-negative integer-valued random variable. Then

Pr [X = 0] ≤ Var (X)

E [X]2
.(1)

Furthermore, it holds that

Pr [X = 0] ≤ Var (X)

E [X2]
.(2)

Proof. The first inequality is easy to show by Lemma 1.4. For the second one, note that

X = X · 1 [X ≥ 1] .

Then by the Cauchy-Schwarz inequality,

E [X]2 = (E [X · 1 [X ≥ 1]])2 ≤ E
[
X2
]
Pr [X ≥ 1] .

□

1.2.1. Poisson approximation. Now we introduce the Poisson approximation which is useful in many aspects of
probability.

Theorem 1.6. Let Sn =
∑n

i=1 Ii be a sequence of random variables, n ≥ 1 and let B
(n)
k = E

[(
Sn

k

)]
. Suppose

that there exists λ ≥ 0 such that for every fixed k ≥ 1,

lim
n→∞

B
(n)
k =

λk

k!
.

Then for every j ≥ 0,

lim
n→∞

Pr [Sn = j] = e−λλ
j

j!
.
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2. Basic Models of Random Graphs

Before we begin all studies on properties, firstly we introduce the models that we usually take into account.
Let Gn,m be the collection of all graphs G = (V,E) with |V | = n and |E| = m. For convenience, we assume

that V = {1, . . . , n}. To ensure that Gn,m is well-defined, always suppose that 0 ≤ m ≤
(
n
2

)
. For every G ∈ Gn,m,

we equip it with probability

P (G) =

((n
2

)
m

)−1

.

It’s easy to note that following the probability, we draw a graph with n vertices and m edges uniformly at
random. We denote this random graph by Gn,m = (V = [n], En,m) and call it a uniform random graph.

Another random graph model we consider is similar. Given a real p ∈ [0, 1]. For 0 ≤ m ≤
(
n
2

)
and every

graph G = (V,E) with |V | = n and |E| = m, we assign to G the probability

P (G) = pm(1− p)(
n
2)−m.

We denote this random graph by Gn,p = (V = [n], En,p) and call it an Erdős-Rényi random graph.
The two models are strongly related to each other.

Lemma 2.1. A random graph Gn,p given that the number of its edge is m is equally likely to be one of the graph
G ∼ Gn,m.

Proof. For every G = (V,E) with |E| = m, simply we can observe that

{Gn,p = G} ⊆ {|En,p| = m} .
Then by calculation,

Pr [Gn,p = G | |En,p| = m] =
Pr [Gn,p = G ∧ |En,p| = m]

Pr [|En,p| = m]

=
pm(1− p)(

n
2)−m

pm(1− p)(
n
2)−m

((n2)
m

)
=

((n
2

)
m

)−1

= Pr [Gn,m = G] .

□

Intuitively, the two random graphs perform a similar fashion when m is closed to the expected number of the
edges of Gn,p, i.e.,

m =

(
n

2

)
p = (1 + o(1))

n2p

2
or

p =
m(
n
2

) = (1 + o(1))
2m

n2
.

To generate the random graphs, we usually apply a coupling technique. Suppose that p1 < p and p2 is defined
by

1− p = (1− p1)(1− p2).

Now we independently draw G(n, p1) and G(n, p2), and let Gn,p = G(n, p1) ∪ G(n, p2). So when we write

G(n, p1) ⊆ Gn,p,
it means that the two graphs are coupled so that Gn,p is obtained from G(n, p1) by the method described above.

To introduce a similar coupling process for Gn,m, firstly consider m1 < m. Then let

Gn,m = G(n,m1) ∪H
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where H is a random graph with exactly m2 = m−m1 edges uniformly generated from
(
[n]
2

)
\ En,m1 .

Pseudo-random graphs. Besides the ‘real’ random graph models, the following two models will be taken into
account.

• Model A: Let x = (x1, . . . , x2m) be chosen uniformly at random from [n]2m.
• Model B: Let x = (x1, . . . , x2m) be chosen uniformly at random from

(
[n]
2

)m
.

For X ∈ {A,B}, we construct the random graph G(X)
n,m with the vertex set [n] and edge set Em = {(x2i−1, x2i) : i = 1, . . . ,m}.

Note that the graph might be a multi-graph. To generate the simple graph G(X,−)
n,m with m− edges, we remove

all self-loops and multiple edges. It can be seen that conditional the value of m−, the simple graphs generated
by the above two models are distributed the same as Gn,m.

Also, it holds that, by symmetry for every G1 ∈ Gn,m and G2 ∈ Gn,m,

Pr
[
G(X)
n,m = G1

∣∣∣ G(X)
n,m is simple

]
= Pr

[
G(X)
n,m = G2

∣∣∣ G(X)
n,m is simple

]
for X ∈ {A,B}.

When m = cn with constant parameter c > 0, it holds that

Pr
[
G(X)
n,m is simple

]
≥
((n

2

)
m

)
m!2m

n2m
≥ (1− o(1)) exp(−c2 − c).

Then we know that

Pr [Gn,m ∈P] = Pr
[
G(X)
n,m ∈P

∣∣∣ G(X)
n,m is simple

]
≤ (1 + o(1))ec

2+cPr
[
G(X)
n,m ∈P

]
.

Then to show the random graph does not satisfy some graph property, when m = O(n), it is feasible to turn to
the pseudo-random graph models.

2.1. Results on random graph properties. Now we consider the property of graphs.

Definition 2.2 (Graph Property). Fix a vertex set V = [n]. A graph property P is a collection of graphs
G = (V,E) where E ⊆

(
[n]
2

)
.

Lemma 2.3. Let P be any graph property and p = m/
(
n
2

)
where m = m(n)→∞ and

(
n
2

)
−m→∞ as n→∞.

Then for sufficiently large n,

Pr [Gn,m ∈P] ≤ 10m1/2Pr [Gn,p ∈P] .

Proof. By the law of total probability,

Pr [Gn,p ∈P] =

(n2)∑
k=0

Pr [Gn,p ∈P | |En,p = k|]Pr [|En,p| = k]

=

(nk)∑
k=0

Pr [G(n, k) ∈P]Pr [|En,p| = k]

≥ Pr [Gn,m ∈P]Pr [|En,p| = m]

where the second equality holds by Lemma 2.1. Now it suffices to estimate the term Pr [|En,p| = m]. By
definition,

Pr [|En,p| = m] =

((n
2

)
m

)
pm(1− p)(

n
2)−m.

By Stirling’s formula,

k! = (1 + o(1))
√
2πk

kk

ek
.
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Then when m = m(n)→∞ and
(
n
2

)
−m→∞ as n→∞,

Pr [|En,p| = m] = (1 + o(1))

√ (
n
2

)
2πm(

(
n
2

)
−m)

≥ 1

10
√
m
.

Putting it into the above inequality we conclude the lemma. □

When the property P is so called monotone increasing, the result of Lemma 2.3 can be tightened.

Definition 2.4 (Monotone Increasing Graph Property). A graph property P is said to be monotone increasing
if G ∈P implies G+e ∈P. Furthermore, it is said to be non-trivial if the empty graph ∅ /∈P and the complete
graph Kn ∈P.

Remark 2.5. From the view of coupling, if P is monotone increasing, then whenever p ≤ p′ or m < m′, if
Gn,p ∈P or Gn,m ∈P, then

G(n, p′) ∈P, G(n,m1) ∈P.

Lemma 2.6. Let P be a monotone increasing graph property. Given integers n,m > 0, fix p = m
N where

N =
(
n
2

)
. Then for large n and p = o(1) such that Np, N(1−p)√

Np
→∞ as n→∞,

Pr [Gn,m ∈P] ≤ 3Pr [Gn,p ∈P] .

Proof. Since P is monotone increasing, we know

Pr [Gn,p ∈P] ≥
N∑

k=m

Pr [G(n, k) ∈P]Pr [|En,p| = k] .

By Remark 2.5, for m ≤ k ≤ N ,

Pr [G(n, k)] ≥ Pr [Gn,m ∈P] .

Then we know

Pr [Gn,p ∈P] ≥ Pr [Gn,m ∈P]
N∑

k=m

uk

where

uk =

(
N

k

)
pk(1− p)N−k.

Using Stirling’s formula, we know

um =
1 + o(1)

(2πm)1/2
.

For 0 ≤ k −m ≤ m1/2, we know
uk+1

uk
=

(N − k)p

(k + 1)(1− p)
≥ exp

(
−k −m

N − k
− m− k + 1

m

)
.

Then it follows that for 0 ≤ t ≤ m1/2,

um+t ≥
exp

(
− t2

2m − o(1)
)

(2πm)1/2
.

Then we know
N∑

k=m

uk ≥
m1/2∑
t=0

um+t ≥
1− o(1)

(2π)1/2

∫ 1

0
e−x2/2 dx ≥ 1

3
.

This concludes our lemma. □
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Lemmas 2.3 and 2.6 show us that if we want to prove Pr [Gn,m ∈P]→ 0, it suffices to show Pr [Gn,p ∈P]→ 0.
In most cases, Pr [Gn,p ∈P] is much easier to compute.

To get rid of the limit between m and p, we have the following asymptotic version.

Theorem 2.7 ([Łuc90]). Let 0 ≤ p0 ≤ 1 be a real, s(n) = n
√
p(1− p) → ∞, and ω(n) → ∞ arbitrary slowly

as n→∞.
(1) Suppose that P is a graph property such that Pr [Gn,m ∈P]→ p0 for all

m ∈
[(

n

2

)
p− ω(n)s(n),

(
n

2

)
p+ ω(n)s(n)

]
.

Then Pr [Gn,p ∈P]→ p0 as n→∞.
(2) Let p− = p − ω(n)s(n)/n2 and p+ = p + ω(n)s(n)/n2. Suppose that P is a monotone increasing

graph property such that Pr [G(n, p−)] → p0 and Pr [G(n, p+)] → p0. Then Pr [Gn,m ∈P] → p0 for
m =

⌊(
n
2

)
p
⌋
.

2.2. Thresholds and sharp thresholds. One of the most important observations is that, for a monotone
increasing graph property, there might exist a ‘threshold’.

Definition 2.8 (Thresholds for Gn,m). A function m∗ = m∗(n) is called a threshold for a monotone increasing
property P in the random graph Gn,m if

lim
n→∞

Pr [Gn,m ∈P] =

{
0 m/m∗ → 0,

1 m/m∗ →∞.

Definition 2.9 (Thresholds for Gn,p). A function p∗ = p∗(n) is called a threshold for a monotone increasing
property P in the random graph Gn,p if

lim
n→∞

Pr [Gn,p ∈P] =

{
0 p/p∗ → 0,

1 p/p∗ →∞.

Remark 2.10. The threshold is not unique since any function which differs from m∗(n) (or p∗(n)) by only a
constant factor is also a threshold.

Theorem 2.11. Every non-trivial monotone graph property has a threshold.

Proof. Without loss of generality, we assume that P is monotone increasing. Given 0 < ε < 1, we define p(ε) by

Pr
[
Gn,p(ε) ∈P

]
= ε.

Before the proof, firstly we argue that p(ε) exists. Note that, for every 0 ≤ p ≤ 1,

Pr [Gn,p ∈P] =
∑
G∈P

p|E(G)|(1− p)N−|E(G)|

is a polynomial increasing from 0 to 1. Then we know p(ε) exists.
Now we will show p(1/2) is a threshold for P. Let G1, . . . , Gk be k independent copies of Gn,p. Then the

graph G = G1 ∪ . . . ∪Gk is distributed as Gn,1−(1−p)k . Note that 1− (1− p)k ≤ kp. By the coupling argument,

Gn,1−(1−p)k ⊆ Gn,kp.
And so, Gn,kp /∈P implies G1, . . . , Gk /∈P (by monotonicity). Hence,

Pr [Gn,kp /∈P] ≤ Pr [Gn,p /∈P]k .

Then, for any ω(n)→∞ arbitrarily slowly as n→∞ and ω(n)≪ log log n, we know

Pr
[
Gn,ω(n)p(1/2) /∈P

]
≤ 2−ω = o(1).

On the other hand, for p = p(1/2)/ω(n), we know

Pr
[
Gn,p(1/2)/ω(n) /∈P

]
≥ 2−1/ω = 1− o(1).

□
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By observation, there exists a more subtle threshold for some monotone graph properties.

Definition 2.12 (Sharp Thresholds for Gn,m). A function m∗ = m∗(n) is called a sharp threshold for a monotone
increasing property P in the random graph Gn,m if for every ε > 0,

lim
n→∞

Pr [Gn,m ∈P] =

{
0 m/m∗ ≤ 1− ε,

1 m/m∗ ≥ 1 + ε.

Definition 2.13 (Sharp Thresholds for Gn,p). A function p∗ = p∗(n) is called a sharp threshold for a monotone
increasing property P in the random graph Gn,p if for every ε > 0,

lim
n→∞

Pr [Gn,p ∈P] =

{
0 p/p∗ ≤ 1− ε,

1 p/p∗ ≥ 1 + ε.

To illustrate Definitions 2.8 and 2.9 more precisely, we state the following simple example. We deal with the
graph Gn,p and the property

P = {G = (V (G), E(G)) | V (G) = n,E(G) ̸= ∅} .(3)

Now we will show p∗ = 1/n2 is a threshold.

Theorem 2.14. Let P be the graph property defined as (3). Then

lim
n→∞

Pr [Gn,p ∈P] =

{
0 p≪ n−2,

1 p≫ n−2.

Proof. Let X be the number of edges in Gn,p. By the definition of the random model, it holds that

E [X] =

(
n

2

)
p, Var (X) =

(
n

2

)
p(1− p) = (1− p)E [X] .

By the Markov inequality, it holds that

Pr [X > 0] ≤ E [X] ≤ n2

2
p.

When p≪ n−2, it holds that limn→∞Pr [X > 0] = 0. Thus we conclude the first part of the theorem.
To show the second result, we consider the concentration of the random variable X. By the Chebyshev

inequality,

Pr [X > 0] ≥ 1− Var (X)

E [X]2
= 1− 1− p

E [X]
.

When p≫ n−2, it holds that 1−p
E[X] → 0 and we know limn→∞Pr [X > 0] = 1. □

Now we consider the degree of a fixed vertex v ∈ V in random graphs. By definition, it is easy to show:

PrGn,p [deg(v) = d] =

(
n− 1

d

)
pd(1− p)n−1−d.

and for the model Gn,m,

PrGn,m [deg(v) = d] =

(
n−1
d

)((n−1
2 )

m−d

)
((n2)
m

) .

Let P be the graph property such that the graph contains an isolated vertex, i.e.,

P := {G = (V (G), E(G)) | ∃v ∈ V (G),deg(v) = 0} .

Now we show m = 1
2n log n is a sharp threshold for P in Gn,m.
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Lemma 2.15. Let P be the property defined as above, and m = 1
2n(log n+ ω(n)). Then

lim
n→∞

Pr [Gn,m ∈P] =

{
1 ω(n)→ −∞,

0 ω(n)→∞.

Proof. We define a random variable X as the number of isolated vertices in Gn,m, and for every v ∈ V , we define
a random variable Iv to denote whether v is isolated. Then

X =
∑
v∈V

Iv

and for each v ∈ V ,

E [Iv] = Pr [Iv = 1]

=

((n−1
2

)
m

)
/

((n
2

)
m

)
=

m−1∏
i=0

(
(n−1)(n−2)

2 − i
n(n−1)

2 − i

)

=

(
n− 2

n

)m m−1∏
i=0

(
1− 4i

n(n− 1)(n− 2)− 2i(n− 2)

)
.

Thus we obtain

E [X] =
∑
v∈V

E [Iv]

= n

(
n− 2

n

)m m−1∏
i=0

(
1− 4i

n(n− 1)(n− 2)− 2i(n− 2)

)
.

To bound the product, notice that, if 0 ≤ x0, . . . , xm−1 ≤ 1, it holds that

n

(
1−

m−1∑
i=0

xi

)
≤ n

m−1∏
i=0

(1− xi) ≤ n.

Thus we obtain that, if we assume that ω(n) = o(log n),

n

(
n− 2

n

)m m−1∏
i=0

(
1− 4i

n(n− 1)(n− 2)− 2i(n− 2)

)
≤ n

(
1− 2

n

)m

≤ e−ω(n).

When ω(n)→∞, we know E [X]→ 0 and by the first-moment method, we know X = 0 with high probability.
For the counterpart, note that

m−1∏
i=0

(
1− 4i

n(n− 1)(n− 2)− 2i(n− 2)

)
≥ 1− 4

n− 2

m−1∑
i=0

i

n(n− 1)− 2i
= 1−O

(
(log n)2

n

)
.

Then it holds that

E [X] = (1− o(1))n

(
n− 2

n

)m

≥ (1− o(1))ne−
2m
n−2 ≥ (1− o(1))e−ω(n) →∞.
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Also, to show the concentration of X, we compute the second moment of X. By calculation,

E
[
X2
]
= E

(∑
v∈V

Iv

)2


=
∑

u,v∈V
Pr [Iu = Iv = 1]

= n(n− 1)

((n−2
2

)
m

)
/

((n
2

)
m

)
+E [X]

≤ (1 + o(1))E [X]2 +E [X] .

Then we know

Pr [X > 0] ≥ E [X]2

E [X2]
≥ 1

1 + o(1) +E [X]−1 = 1− o(1)

whenever ω(n)→ −∞. □

At the end of the part, we show a more complicated example.

Theorem 2.16. If m/n→∞, then with high probability the random graph Gn,m contains a triangle.

Proof. It is easy to observe that the property is monotone increasing. Then it suffices to show that, when p
satisfies some regular requirements, the random graph Gn,p contains at least one triangle with high probability.

By coupling method, it suffices to show the case ω := np ≤ log n. Let Z be the random variable denoting the
number of triangles in Gn,p. Then

E [Z] =

(
n

3

)
p3 ≥ (1− o(1))ω3

6
→∞.

For the second moment, let T1, . . . , TM be the triangles of the complete graph Kn where M =
(
n
3

)
. Then,

E
[
Z2
]
=

M∑
i,j=1

Pr [Ti, Tj ∈ Gn,p]

=
M∑
i=1

Pr [Ti ∈ Gn,p]
M∑
j=1

Pr [Tj ∈ Gn,p | Ti ∈ Gn,p]

= MPr [T1 ∈ Gn,p]
M∑
j=1

Pr [Tj ∈ Gn,p | T1 ∈ Gn,p]

= E [Z]
M∑
j=1

Pr [Tj ∈ Gn,p | T1 ∈ Gn,p] .

Separating the summation according to the number of edges T1, Tj share, we obtain

M∑
j=1

Pr [Tj ∈ Gn,p | T1 ∈ Gn,p] = 1 + 3(n− 3)p2 +

((
n

3

)
− 3n+ 8

)
p3

≤ 1 +
3ω2

n
+E [Z] .

Then we know

Var (Z) ≤ E [Z]

(
1 +

3ω2

n
+E [Z]

)
−E [Z]2 ≤ 2E [Z] .



10 ZHIDAN LI

By the Chebyshev inequality, we conclude

Pr [Z = 0] ≤ Var (Z)

E [Z]2
≤ 2

E [Z]
= o(1).

The result then comes immediately. □

3. Evolution of Random Graphs

Now we view the random graph model as an evolution process of a graph sequence:

G0 = ([n], ∅) ⊆ G1 ⊆ . . . ⊆ GN = Kn

where for m ≥ 1, Gm is generated from Gm−1 by uniformly and independently adding a remaining edge. Then
we know Gm and Gn,m share the same distribution.

In this part, we will focus on the structure of the random graph Gn,m and Gn,p. We view the random graph
model Gn,m as the above evolution process, and for Gn,p, we consider the structure along with the growth of
p = p(n) from 0 to 1.

3.1. Sub-critical phase. Firstly we focus on sub-critical phases. We set m = o(n) and thus np = o(1). Since
most of the properties we consider are monotone, we assume that ω = ω(n) is growing more slowly than n.

Theorem 3.1. If m≪ n, then Gm is a forest w.h.p..

Proof. Assume that m = n/ω, N =
(
n
2

)
and p = m/N = 2

ω(n−1) . Let X be the number of cycles in Gn,p. Then

E [X] =

n∑
k=3

(
n

k

)
(k − 1)!

2
pk

≤
n∑

k=3

nk

k!

(k − 1)!

2

4

ωknk

≤
n∑

k=3

1

k

(
1

ω

)k

= o(ω−3)→ 0.

Then we know Pr [X > 0] ≤ E [X] = o(1). Then we conclude this theorem. □

Theorem 3.2. The function m∗(n) = n1/2 is the threshold for the property that a random graph Gm contains
a path of length 2.

Proof. Firstly we consider the case m≪ n1/2. Assume that m = n1/2/ω and p = m/
(
n
2

)
. Let X be the number

of paths of length 2 in the random graph Gn,p. Then by the Markov inequality,

Pr [X > 0] ≤ E [X] = 3

(
n

3

)
p2 ≤ O(ω−2)→ 0

as n→∞. Hence we conclude the negative aspect of the threshold with the fact that the property is monotone
increasing.

When m≫ n1/2, assume that m = ωn1/2 and p = m/
(
n
2

)
. Furthermore, let Path2 be the collection of all paths

of length 2 in the complete Kn. One might apply the second-moment method to obtain the result. However,
the direct calculation might be complex.

Now we consider the random variable X̂ denoting the number of isolated paths of length 2. Assume that
m = o(n) and then np = o(1). Then we know

E
[
X̂
]
= 3

(
n

3

)
p2(1− p)3(n−3)+1 ≥ 2(1− o(1))ω2(1− 3np)→∞

as n→∞.
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Now we compute the second moment of X̂. For a path P ∈ Path2, we use P ⊆i Gn,p to denote the event P is
an isolated path in Gn,p. Then,

E
[
X̂2
]
=

∑
P∈Path2

∑
Q∈Path2

Pr [P ⊆i Gn,p ∧Q ⊆i Gn,p] .

Observe that, the event {P ⊆i Gn,p ∧Q ⊆i Gn,p} occurs only when P = Q or P,Q are disjoint. Together with
symmetry, we know

E
[
X̂2
]
= E

[
X̂
]1 +

∑
Q∈Path2∧Q∩{1,2,3}=∅

Pr [Q ⊆i Gn,p | (1↔ 2↔ 3) ⊆ Gn,p]


≤ E

[
X̂
](

1 + 3

(
n− 3

3

)
p2(1− p)3(n−6)+1

)
≤ E

[
X̂
] (

1 + (1− p)−9E
[
X̂
])

.

Then by the second moment method,

Pr
[
X̂ > 0

]
≥

E
[
X̂
]2

E
[
X̂2
] ≥ 1

(1− p)−9 +E
[
X̂
]−1 → 0

as n → ∞. Then we know when p = o(1) but
(
n
2

)
p ≫ n1/2, the random graph Gn,p contains a path of length

2 w.h.p.. By coupling method and the fact that the property is monotone increasing, we know that when
m≫ n1/2, Gm contains a path of length 2 w.h.p.. □

When the number of edges grows, trees occur in the random graph.

Theorem 3.3. Given a fixed vertex k ≥ 3, the function m∗(n) = n
k−2
k−1 is the threshold for the property that a

random graph Gn,m contains a tree with k ≥ 3 vertices.

Proof. When m≪ n
k−2
k−1 , assume that m = n

k−2
k−1 /ω. And then

p =
m(
n
2

) ≤ 3

ωn
k

k−1

.

Let Xk be the random variable denoting the number of trees with k vertices a random graph Gn,p contains.
Then by direct calculation,

E [Xk] =

(
n

k

)
pk−1kk−2

where kk−2 comes from Caylay’s lemma to count the number of trees formed by [k]. Then by the binomial
inequality,

EXk ≤
nkek

kk
kk−2 3k−1

ωk−1nk

=
ek3k−1

k2ωk−1
→ 0

as n→∞. Then we can prove the negative part by the similar argument we have been familiar with.
When m ≫ n

k−2
k−1 , assume that m = ωn

k−2
k−1 and p = m/

(
n
2

)
. Since the property is monotone increasing, we

further suppose that ω = o(log n). Now we consider this much stronger property: given a tree T with k vertices,
Gn,p contains an isolated copy of T w.h.p.. Let X̂k be the number of isolated copies of T in Gn,p. For a graph
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H, define aut(H) to be the number of automorphisms of H. Then by direct calculation, the number of copies
of T is k!

aut(T ) . Then we know

E
[
X̂k

]
=

(
n

k

)
k!

aut(T )
pk−1(1− p)k(n−k)+(k2)−(k−1)

=
n(n− 1) · · · (n− k + 1)

k!

k!

aut(T )

(2ω)k−1nk−2

nk−1(n− 1)k−1
(1− p)k(n−k)+(k2)−(k−1)

≥ (1− o(1))
(2ω)k−1

aut(T )
→∞

as n→∞, where the last inequality comes from the fact that

(1− p)k(n−k)+(k2)−(k−1) ≥ 1− p

(
k(n− k) +

(
k

2

)
− (k − 1)

)
= 1− o(1).

To compute the second moment, we apply the similar method we use in Theorem 3.2 and obtain

E
[
X̂2

k

]
≥ (1− o(1))E

[
X̂k

] (
1 + (1− p)−k2E

[
X̂k

])
.

Then we know

Pr
[
X̂k > 0

]
≥ 1 + o(1)

1 + (1− p)−k2E
[
X̂k

]−1 = 1− o(1).

What remains is quite routine and we omit it here. □

It is interesting that when m is exactly at the threshold, which kind of phenomena the random graph will
perform?

Theorem 3.4. Given m = cn
k−2
k−1 where c > 0 is a constant and a fixed k-vertex tree T with k ≥ 3. Then

Pr [Gm contains an isolated copy of T ]→ 1− e−λ

as n → ∞, where λ = (2c)k−1

aut(T ) . In other words, the number of copies of T is asymptotically distributed as the
Poisson distribution with expectation λ.

Proof. Let T1, . . . , TM be the copies of T in the complete graph Kn. For every 1 ≤ i ≤M , define the event

Ai := {Ti occurs isolately in Gm} .

Suppose that J ⊆ [M ] = {1, . . . ,M} with |J | = t. Let AJ = ∩i∈JAi. If Ti, Tj share a point for some i, j ∈ J ,
then it holds that Pr [AJ ] = 0. Otherwise,

Pr [AJ ] =

( (
n−kt
2

)
m− (k − 1)t

)
/

((n
2

)
m

)
.

If say t ≤ log n, then we know (
n− kt

2

)
= N

(
1−O(ktn−1)

)
.

Then we know ( (
n−kt
2

)
m− (k − 1)t

)
= (1 + o(1))

Nm−(k−1)t
(
1−O(mktn−1)

)
(m− (k − 1)t)!

.

Then we know

Pr [AJ ] = (1 + o(1))m(k−1)tN−(k−1)t.
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Let ZT denote the number of components of Gm which are copies of T . Then we know

E

[(
ZT

t

)]
= (1 + o(1))

1

t!

(
n

k, . . . , k

)(
k!

aut(T )

)t (m
N

)(k−1)t

= (1 + o(1))
2(k−1)tnkt

t!(k!)t
(k!)t

aut(T )k
n(k−2)tc(k−1)t

n2(k−1)t

= (1 + o(1))
λt

t!
.

Then by Theorem 1.6, we conclude the theorem. □

The last ingredient of this part is to show the size of the maximal component in very sparse random graphs.

Theorem 3.5. If m = 1
2cn, where 0 < c < 1 is a constant, then w.h.p. the order of the largest component of a

random graph Gm is O(log n).

To prove Theorem 3.5, we need the following three lemmas together.

Lemma 3.6. If p ≤ 1
n −

ω
n4/3 where ω = ω(n)→∞, then w.h.p. every component in Gn,p contains at most one

cycle.

Proof. We consider the graph with two cycles. Firstly it can be shown that the number of graphs with exactly
two cycles of size k can be bounded by k2 · k!. Then, let X be the number of such graphs in Gn,p. It can be
shown that

E [X] ≤
n∑

k=4

(
n

k

)
k2k!pk+1

≤
n∑

k=4

nk

k!
k2k!

(
1

n
− ω

n4/3

)k+1

≤
n∑

k=4

k2n−1
(
1− ωn−1/3

)k+1

≤ 1

n

∫ ∞

0
x2(1− ωn−1/3)x+1 dx

≤ 1

n

∫ ∞

0
x2 exp(−ωxn−1/3) dx

=
2

ω3

= o(1).

Then by the first-moment method, we know Pr [X > 0] = o(1). □

Remark 3.7. When p = c/n where 0 < c < 1, then we know

Pr [X > 0] ≤
n∑

k=4

k2ck+1n−1 = O(n−1).

Lemma 3.6 means we can only focus on unicyclic components and tree-components. The next lemma will
show that the number of vertices on unicyclic components is rather small.

Lemma 3.8. Let p = c/n where c ̸= 1 is a constant. Then in Gn,p w.h.p. the number of vertices in components
with exactly one cycle is O(ω) for any growing function ω = ω(n)→∞.

Proof. Let Xk be the number of vertices on unicyclic components with k vertices. Then

E [Xk] ≤
(
n

k

)
kk−2k

(
k

2

)
pk(1− p)k(n−k)+(k2)−k.
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Firstly we assume that c < 1. Applying the inequality(
n

k

)
≤ nk

k!
e−

k(k−1)
2n ,

we obtain

E [Xk] ≤
nk

k!
e

k(k−1)
2n kk+1 c

k

nk

(
1− c

n

)k(n−k)+(k2)−k

≤ nk

k!
kk+1 c

k

nk
exp

(
−k(k − 1)

2n
− ck(n− k)

n
− ck(k − 1)

2n
+

ck

n

)
≤ ekkk+1ck

kk
exp

(
−ck − (1− c)k(k − 1)

2n

)
≤ k

(
ce1−c

)k
.

Then by ce1−c < 1 for any c ̸= 1

E

[
n∑

k=3

Xk

]
≤

n∑
k=3

k
(
ce1−c

)k
= O(1).

Thus we know for every ω = ω(n)→∞,

Pr

[
n∑

k=3

Xk ≥ ω

]
≤ O(ω−1)→ 0

as n→∞.
For c > 1, note that the inequality holds as well when k = o(n) since ek

2/n = eo(k). Then we will prove in the
later part that when c > 1, w.h.p. there is a unique giant component of size Ω(n) and all other components are
of size O(log n), and this giant component is not unicyclic. Then we complete the proof for c > 1. □

Now we investigate the tree components.

Lemma 3.9. Let p = c/n where c ̸= 1 is a constant, α = c − 1 − log c > 0 and ω = ω(n) → ∞, ω(n) =
o(log log n). Then

(1) w.h.p. there exists an isolated tree of order

k− :=
1

α

(
log n− 5

2
log logn

)
− ω;

(2) w.h.p. there is no isolated tree of order

k+ :=
1

α

(
log n− 5

2
log logn

)
+ ω.

Proof. Let Xk be the number of isolated trees of order k. Then

E [Xk] =

(
n

k

)
kk−2pk−1(1− p)k(n−k)+(k2)−(k−1).

Suppose that k = O(log n). Then we know

E [Xk] = (1 + o(1))
nk

k!
kk−2 c

k−1

nk−1
e−ck

=
1 + o(1)

c
√
2π

nk−5/2
(
ce1−c

)k
=

1 + o(1)

c
√
2π

nk−5/2e−αk.
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Let k = k−, we know

E [Xk] =
1 + o(1)

c
√
2π

(k−1 log n)5/2eαω ≥ Ceαω

for some constant C > 0.
To estimate the second moment of Xk, it is not hard to obtain

E
[
X2

k

]
≤ E [Xk]

(
1 + (1− p)−k2E [Xk]

)
.

Then we know

Var (Xk) ≤ E [Xk] +E [Xk]
2
(
(1− p)−k2 − 1

)
≤ E [Xk] + 2ck2 (E [Xk])

2 /n.

Thus by Chebyshev inequality, for every ε > 0,

Pr [|Xk −E [Xk]| ≥ εE [Xk]] ≤
1

ε2E [Xk]
+

2ck2

ε2n
= o(1).

Thus w.h.p. Xk ≥ Ceαω, leading to the proof of 1.
For the second part, note that for some constant C1 > 0 such that

E [Xk] ≤ C1k
−1/2

(ne
k

)k
kk−2

(
1− k

2n

)k−1 ( c
n

)k−1
e−ck+ ck2

2n

≤ 2An

ckk5/2
(
cke

1−ck
)k

where ck := c
(
1− k

2n

)
.

When c < 1 and k ≥ k+, we know cke
1−ck ≤ ce1−c and ck ≥ 1

2c. Then we know
n∑

k=k+

E [Xk] ≤
4C1n

c

n∑
k=k+

(ce1−c)k

k5/2

≤ 4C1n

ck
5/2
+

∞∑
k=k+

e−αk

=
4C1ne

−αk+

ck
5/2
+ (1− e−α)

=
(4C1 + o(1))e−αωα5/2

c(1− e−α)
= o(1).

When c > 1, we use the following two inequalities: when k ≤ n
logn , cke1−ck = e−α−O(1/logn) while ck ≥ c/2

and cke
1−ck ≤ 1 for k > n

logn . Then we know

n∑
k=k+

E [Xk] ≤
4C1n

ck
5/2
+

n/logn∑
k=k+

e−(α+O(1/logn))k +
20C1n

c

n∑
k=n/logn

1

k5/2
= o(1).

□

Now we prove the useful identity. For any c > 0, suppose x = x(c) ∈ (0, 1] such that

x(c) =

{
c c ≤ 1

the solution of xe−x = ce−c c > 1.
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Lemma 3.10. If c > 0 is a constant, and x = x(c) is given above. Then

1

x

∞∑
k=1

kk−1

k!
(ce−c)k = 1.

Proof. We prove the case c < 1. The case c > 1 can be solved by the observation ce−c = xe−x. To prove x = 1,
note that the function f(c) = 1

x

∑∞
k=1

kk−1

k! (ce−c)k is continuous.
Let p = c/n. Let X be the number of vertices in Gn,p that lie in non-tree components. Let Xk be the number

of isolated trees of order k. Note that

n =
n∑

k=1

kXk +X,

meaning that

n =

n∑
k=1

kE [Xk] +E [X] .

Then we know E [X] = O(1), and if k < k+,

E [Xk] = (1 + o(1))
n

ck!
kk−2(ce−c)k.

Then we know that

n = o(n) +
n

c

k+∑
k=1

kk−1

k!
(ce−c)k

= o(n) +
n

c

∞∑
k=1

kk−1

k!
(ce−c)k.

Then we prove the identity when c < 1. □

3.2. Super-critical phase. The structure of a random graph Gn,m changes dramatically when m = 1
2cn where

c > 1 is a constant.

Theorem 3.11. Suppose that m = 1
2cn, c > 1. Then w.h.p. Gm consists of a unique giant components with(

1− x
c + o(1)

)
n vertices and

(
1− x2

c2
+ o(1)

)
cn
2 edges, where x is the unique solution in (0, 1) with xe−x = ce−c.

The remaining components are of order at most O(log n).

Proof. Suppose that Zk is the number of components of order k in Gn,p. To bound E [Zk], we could bound the
number of trees of order k.

E [Zk] ≤
(
n

k

)
kk−2pk−1(1− p)k(n−k)

≤ nk

k!
kk−2

( c
n

)k−1 (
1− c

n

)k(n−k)

≤ C
nkek

kk
kk−2 c

k−1

nk−1
e−ck+ck2/n

≤ Cn

ck2

(
ce1−c+ck/n

)k
Define the two quantities β0 = β0(c), β1 = β1(c) as

ce1−c+cβ1 < 1,
(
ce1−c+o(1)

)β0 logn
<

1

n2
.

Then we know that w.h.p. there is no component of order k ∈ [β0 log n, β1n].
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Now we consider the number of vertices on small components of order [1, β0 log n]. Recall the setting of
α = c− 1− log c. Firstly assume that 1 ≤ k ≤ k0, where k0 =

1
2α log n. Then

E

[
k0∑
k=1

kXk

]
= (1 + o(1))

n

c

k0∑
k=1

kk−1

k!
(ce−c)k

= (1 + o(1))
n

c

∞∑
k=1

kk−1

k!
(ce−c)k

where we use the fact that kk−1

k! < ek and ce−c < e−1 for c ̸= 1 to extend the summation from k0 to ∞.
Note that, the probability

∑k0
k=1 kXk deviates from its mean by more than 1 ± O(log n−1) is at most o(1).

Then we know that
k0∑
k=1

kXk ≈ (1 + o(1))
nx

c

where x ∈ (0, 1) is the unique solution such that xe−x = ce−c.
Now consider k0 < k ≤ β0 log n.

E

β0 logn∑
k=k0+1

kXk

 ≤ n

c

β0 logn∑
k=k0+1

(
ce1−c+ck/n

)k
= O

(
n(ce1−c)k0

)
= O

(
n1/2+o(1)

)
.

So by the Markov inequality, w.h.p.,
β0 logn∑
k=k0+1

kXk = o(n).

Now, we consider the non-tree components. Let Yk be the number of non-tree components of k vertices where
1 ≤ k ≤ β0 log n.

E

[
β0 logn∑
k=1

kYk

]
≤

β0 logn∑
k=1

(
n

k

)
kk−1

(
k

2

)
ck

nk

(
1− c

n

)k(n−k)

=

β0 logn∑
k=1

k
(
ce1−c+ck/n

)k
= O(1).

Then by the Markov inequality, w.h.p.,
β0 logn∑
k=1

kYk = o(n).

Combining the above, we know that w.h.p. there are nx
c vertices on components of order not more than β0 log n.

Now we show the uniqueness of the giant component. We prove the argument by coupling random graphs.
let

c1 = c− log n

n
, p1 =

c1
n
, p2 = 1− 1− p

1− p1
.

Then by the coupling argument, it holds that

Gn,p = Gn,p1 ∪ Gn,p2 .
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Additionally, we observe that

p2 = 1− 1− p

1− p1
=

p− p1
1− p1

=
log n

n2 − log n
≥ log n

n2
.

Let x1 ∈ (0, 1) such that x1e
−x1 = c1e

−c1 . Since c1 = c − o(1), we know that c1 ≈ c. Then similar argument
indicates that, w.h.p. there are no components of order in [β0 log n, β1n] in Gn,p1 .

Suppose that C1, . . . , Cℓ are maximal giant components in Gn,p1 , i.e., |Ci| > β1n for every i ∈ [ℓ] and
ℓ ≤ 1/β1. By coupling argument, we view Gn,p as a graph induced based on Gn,p1 by adding edges according to
Gn,p2 independently of Gn,p1 . Then,

Pr [∃i, j ∈ [ℓ], Ci, Cj are not linked] ≤
(
ℓ

2

)
(1− p2)

(β1n)2

≤ ℓ2e−β2
1 logn

= o(1).

Thus we conclude that Gn,p has an unique giant components of size
(
1− x

c + o(1)
)
n.

The last ingredient of the theorem is to estimate the edges in the giant component. Now we consider the
evolution of random graphs

G0 = ∅, G1, . . . , Gm = Gn,m.

Denote by C0 the giant component in Gn,m. Note that Gm−1 is distributed as Gn,m−1. Then we know Gm−1 has
a unique giant components C−1 and other components are of size O(log n). Then,

Pr [e /∈ C0 | |C−1| ≈ (1− x/c)n] = Pr [e ∩ C−1 = ∅ | (1− x/c)n] ≈
(x
c

)2
.

This means that the expected number of edges in the giant component is
(
1− x

c + o(1)
)
n. What remains to

do is to show the concentration. Fix i ̸= j ≤ m. Let C−2 denote the unique giant component of Gm − {ei, ej}.
Then we know that

Pr [ei, ej ⊆ C0] = (1 + o(1))Pr [ei ∈ C0]Pr [ej ∈ C0] .

Then by the Chebyshev inequality, we can easily show the concentration of the number of edges in the giant
component. □

For more dense random graphs, the structure of them is much more complex. However, there are some simple
structures as well.

Theorem 3.12. Let ω = ω(n) → ∞ as n → ∞ be some slowly growing function. If m ≥ ωn but m ≤
n(log n− ω)/2, then Gm is disconnected and all components are trees w.h.p. except the giant one.

3.2.1. Cores. Given a positive integer k > 1, the k-core of a graph G = (V,E) is the largest subset S ⊆ V such
that the minimum degree δS := minv∈S degG[S](v) in the induced subgraph G[S] is at least k.

Theorem 3.13. Suppose that c > 1 and x ∈ (0, 1) is the unique solution of the equation xe−x = ce−c. Then
w.h.p. the 2-core C2 of the random graph Gn,p with parameter p = c/n has (1− x)

(
1− c

x + o(1)
)
n vertices and(

1− x
c + o(1)

)2 cn
2 edges.

The proof of this theorem follows the routine and we omit it here.

4. Degrees in Random Graphs

In this section, we show the distribution of degrees of vertices in random graphs. We consider two different
cases.
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4.1. Degrees of sparse random graphs. Firstly we consider the sparse case. Let X0 be the number of
isolated vertices. Then

E [X0] = n(1− p)n−1.

As n→∞,

E [X0]→


∞ np− log n→ −∞
e−c np− log n→ c <∞
0 np− log n→∞

.

We have the following theorem for the distribution of degrees.

Theorem 4.1. Let X0 be the random variable denoting the number of isolated vertices in Gn,p. Then as n→∞,

(1) X̂0 = (X0 −E [X0])/(Var (X0))
1/2 D→ N (0, 1) if n2p→∞ and np− log n→ −∞.

(2) X0
D→ Poisson(e−c) if np− log n→ c, c <∞.

(3) X0
D→ 0 if np− log n→∞.

If we work further on the case of the number of vertices with a specific degree d ∈ N, the following theorem
will come.

Theorem 4.2. Let Xd = Xn,d be the random variable denoting the number of vertices in Gn,p with degree d > 0.
Then as n→∞,

(1) Xd
D→ 0 if p≪ n−(d+1)/d.

(2) Xd
D→ Poisson(cd/d!) if p ≈ cn−(d+1)/d, c <∞.

(3) X̂d := (Xd −E [Xd])/Var (Xd)
1/2 D→ N (0, 1) if p≫ n−(d+1)/d but pn− log n− d log logn→ −∞.

(4) Xd → Poisson(e−c/d!) if pn− log n− d log logn→ c, c ∈ R.
(5) Xd → 0 if pn− log n− d log log n→∞.

The next theorem shows the concentration of Xd around its expectation when p = c/n.

Theorem 4.3. Let p = c/n where c is a constant. Let Xd denote the number of vertices of degree d in Gn,p.
Then for d = O (1), w.h.p.

Xd ≈
cde−c

d!
n.

We end this part with the behavior of the maximum degree in a sparse random graph.

Theorem 4.4. Let ∆(Gn,p) (δ(Gn,p)) be the maximum (minimum) degree of vertices of Gn,p.
(1) If p = c/n for some constant c > 0, then w.h.p.,

∆(Gn,p) ≈
log n

log log n
.

(2) If p = ω log n where ω →∞, then w.h.p.,

δ(Gn,p) ≈ ∆(Gn,p) ≈ np.

4.2. Degrees of dense random graphs. When p is a constant, the degrees are well concentrated.

Theorem 4.5. Let
d± = (n− 1)p+ (1± ε)

√
2(n− 1)p(1− p) log n.

If p is a constant and ε > 0 is a small constant, then w.h.p.
(1) d− ≤ ∆(Gn,p) ≤ d+.
(2) There is a unique vertex of maximum degree.

More precisely, we have the following strengthened version of Theorem 4.5.

Theorem 4.6. Let ε = 1/10 and p be a constant. Let

d± = (n− 1)p+ (1± ε)
√
2(n− 1)p(1− p) log n.

Then w.h.p.,
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(1) ∆(Gn,p) ≤ d+.
(2) There are Ω(n2ε(1−ε)) vertices of degree at least d−.
(3) There exists no u ̸= v such that deg(u),deg(v) ≥ d− and |deg(u)− deg(v)| ≤ 10.

Application to graph isomorphism. Now we introduce an application of results on degrees in random graphs
to graph isomorphism. Given two graph G = (VG, EG) and H = (VH , EH), our goal is to determine whether
G ∼= H. The first step is to give a labeling algorithm.

Algorithm 1: Graph Labeling Label
Input: a graph G = (V,E) and a parameter L > 0.
Output: a boolean signal flag ∈ {True,False} to determine whether the algorithm succeeds and a

labeling {v1, . . . , vn} of V .

1 Relabel V as {vi}ni=1 so they satisfy

deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vn).

2 if ∃i < L, deg(vi) = deg(vi+1) then
3 flag← False;
4 return flag and {vi}ni=1;
5 foreach i > L do
6 Xi ← {j ∈ [L] : {vi, vj} ∈ E};
7 relabel {vL+1, . . . , vn} so that

XL+1 ≻ XL+2 ≻ · · · ≻ Xn

where ≻ denotes the lexicographic order;
8 if ∃i < n,Xi = Xi+1 then
9 flag← False;

10 return flag and {vi}ni=1;
11 flag← True;
12 return flag and {vi}ni=1;

Now we are able to give Algorithm 2 for graph isomorphism.

Algorithm 2: Graph Isomorphism Isomorphism
Input: two graphs G = (VG, EG) and H = (VH , EH) and a parameter L > 0.
Output: a boolean signal to determine whether G ∼= H.

1 {flagG, {vi}
n
i=1} ← Label(G,L);

2 {flagH , {wi}ni=1} ← Label(H,L);
3 if flagG = False ∨ flagH = False then
4 return False;
5 if vi 7→ wi is an isomorphism then
6 return True;
7 else
8 return False;

Usually the parameter L is not easy to choose. However, when the two underlying graphs G,H are dense
random graphs, the algorithm works well w.h.p..

Theorem 4.7. Let p be a fixed constant and ρ = p2 + q2. Then Algorithm 2 works well on Gn,p w.h.p..

Proof. The first step is to show that Algorithm 1 succeeds w.h.p. on Gn,p. It suffices to show that when i ̸= j > L,
w.h.p. Xi ̸= Xj .
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Fix i ̸= j, i, j > L. Let G̃ := Gn,p \ {vi, vj}. By Theorem 4.6, w.h.p. the L largest degree vertices of G̃ and
Gn,p coincide. So w.h.p. we compute Xi and Xj from G̃ w.h.p. which are independent of the edge incident with
vi and vj . Then we know

Pr [flag = False] ≤ o(1) +

(
n

2

)(
p2 + (1− p)2

)L
= o(1).

Finally, by Algorithm 1, w.h.p. Gn,p only has exactly one automorphism, meaning that Algorithm 2 works
well w.h.p.. □

Application to edge colorings. For the typical edge-coloring problem, the famous Vizing’s lemma has told us
that for every graph G = (V,E),

∆(G) ≤ χE(G) ≤ ∆(G) + 1

where χE(G) denotes the minimum number of colors which can form a proper edge coloring of G. It is often
a hard problem to determine the exact number of χE(G). However, when the graph has a unique vertex of
maximum degree, it can be shown that χE(G) = ∆(G). By Theorem 4.5, w.h.p. χE(Gn,p) = ∆(Gn,p).

5. Connectivity of Random Graphs

In this section, we look at the behavior of the connectivity in random graphs. It is interesting to see when
the random graph is connected.

5.1. Connectivity. Firstly we state the following result for the connectivity of Gn,m.

Theorem 5.1. Let m = 1
2n(log n+ cn). Then

lim
n→∞

Pr [Gn,m is connected] =


0 cn → −∞,

e−e−c
cn → c,

1 cn →∞.

Comparing Theorem 5.1 with Theorem 4.1, we can see the following interesting phenomenon.

Proposition 5.2. Consider the evolution process {Gm}. Let

m∗
1 := min {m : δ(Gm) ≥ 1}

and

mc := min {m : Gm is connected} .

Then w.h.p. m∗
1 = mc.

This proposition is quite impressive. On one hand, it tells us the picture through the whole evolution process.
On the other hand, it emphasizes the importance of vertex degrees in random graphs.

5.2. k-connectivity. Now we look at k-connectivity of a random graph. A graph is said to be k-connected if it
remains connected after removing arbitrary k vertices. Inspired by Proposition 5.2, the following result holds.

Theorem 5.3. Let m = 1
2n(log n+ (k − 1) log n+ cn). Then

lim
n→∞

Pr [Gn,m is k-connected] =


0 cn → −∞,

e
− e−c

(k−1)! cn → c,

1 cn →∞.
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6. Small Subgraphs in Random Graphs

In this section, we put our sight on the existence of small subgraphs in random graphs. That is to say, given
a graph H = (VH , EH), we investigate the occurrence of H in Gn,m or Gn,p, as the growth of m/n and p. Before
all, we define some quantities and useful facts here. Let vH := |VH | be the number of vertices in H and let
eH := |EH | be the number of edges in H. Then, define the density of H as

d(H) =
eH
vH

.

Note that 2d(H) = α(H) where α(H) is the average degree of H. Moreover, define the quantity m(H) as

m(H) := sup
K⊆H

d(K).

Intuitively, m(H) measures how ‘dense’ a part of H could be. If d(H) = m(H), we say that the graph H is
balanced. Moreover, if for every K ⫋ H, it holds that d(K) < d(H), then we say that the graph H is strictly
balanced.

Recall that aut(H) means the number of automorphisms of H. The following fact computes the copies of H
in the complete graph Kn.

Fact 6.1. The number of copies of H in a complete graph Kn is(
n

vH

)
vH !

aut(H)
.

6.1. Threshold of occurrence. At the beginning of this section, we state the threshold result of the occurrence
of H in random graphs.

Theorem 6.2. Fix a graph H with eH > 0. Then

lim
n→∞

Pr [H ⊆ Gn,p] =

{
0 pn1/m(H) → 0,

1 pn1/m(H) →∞.

Proof. The first result is not hard to verify. To show the second result, we apply the second-moment method.
Set p = ωn−1/m(H). Denote by H1, H2, . . . ,Ht all copies of H in complete graph Kn. Then by Fact 6.1,

t =

(
n

vH

)
vH !

aut(H)
.

For every i = 1, . . . , t, define the indicator Ii as

Ii := 1 [H ⊆ Gn,p] .

Let XH be the number of H occurring in Gn,p, i.e., XH =
∑t

i=1 Ii. Then by direct calculation,

Var (XH) =
t∑

i=1

t∑
j=1

Cov (Ii, Ij)

=
t∑

i=1

t∑
j=1

(Pr [Ii = Ij = 1]−Pr [Ii = 1]Pr [Ij = 1])

=

t∑
i=1

t∑
j=1

(
Pr [Ii = Ij = 1]− p2eH

)
.
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Note that, when Hi and Hj are disjoint, Cov (Ii, Ij) = 0. When Hi and Hj intersect, we consider the intersection
of them.

Var (XH) = O

 ∑
K⊆H,eK>0

n2vH−vK
(
p2eH−eK − p2eH

)
= O

n2vHp2eH
∑

K⊆H,eK>0

n−vKp−eK

 .

On the other hand,

E [XH ] =

(
n

vH

)
vH !

aut(H)
peH = Ω (nvHpeH ) .

Then by the second-moment method,

Pr [XH = 0] ≤ Var (XH)

(E [XH ])2

= O

 ∑
K⊆H,eK>0

(
1

ωn1/d(K)−1/m(H)

)eK


= o (1) .

Hence w.h.p. the random graph Gn,p contains a copy of H when pn1/m(H) →∞. □

6.2. Asymptotic distributions. When p is relatively large, the asymptotic distribution of the occurrence of
H is interesting. However, for general cases, the distribution is seemingly impossible to compute, when p is at
the threshold. The situation, however, changes when we only consider the strictly balanced subgraphs.

Theorem 6.3. Let H be a strictly balanced subgraph and npm(H) → c, c > 0. Define a random variable XH to
denote the copies of H in the random graph Gn,p. Then as n→∞,

XH ∼ Poisson(λ), where λ =
cvH

aut(H)
.

Proof. Similarly, let H1, . . . ,Ht denote all copies of H in the complete graph Kn, and for every i ∈ [t], define
the indicator Ii as

Ii := 1 [Hi ⊆ Gn,p] .
Then XH =

∑t
i=1 Ii. To investigate the distribution of XH , by the Poisson approximation, we compute:

E [(XH)k] := E [XH(XH − 1) · · · (XH − k + 1)] .

By definition,

E [(XH)k] =
∑

i1,i2,...,ik

Pr [Ii1 = Ii2 = · · · = Iik = 1]

= Sk + Sk,

where the summation takes over all distinct k indices of {1, . . . , k}, and Sk and Sk denote the partial sums taken
over all elements which are respectively pairwise disjoint or not. For Sk, we have that

Sk =

(
n

vH , vH , . . . , vH

)(
vH !

aut(H)
peH
)k

≈
(
nvHpeH

aut(H)

)k

=

(
cvH

aut(H)

)k

by the assumption that H is strictly balanced.



24 ZHIDAN LI

On the other hand, we will show that Sk → 0. Consider the following family of graphs

Fk := {F = Hi1 ∪ · · · ∪Hik : Hi1 , . . . ,Hik are not pairwise disjoint} .

For the sake of simplicity, we assume that the graphs in Fk are mutually non-isomorphic. Firstly we prove the
following claim.

Claim. For every F ∈ Fk, it holds that d(F ) > m(H).

Assuming the claim, for every F ∈ Fk, let CF be the number of sequences such that Hi1 , . . . ,Hik are pairwise
disjoint and

k⋃
j=1

Hij
∼= F.

Then we conclude that

Sk =
∑
F∈Fk

(
n

vF

)
CF p

eF = O(nvF peF ) = o(1).

Thus we conclude that for every k ∈ N,

E [(XH)k]→
(

cvH

aut(H)

)k

and by Theorem 1.6, we obtain the asymptotic distribution.
What remains to do is to prove the claim. Define the function f over the domain of all graphs as

f(F ) := m(H)vF − eF .

Then it is equivalent to show that f(F ) < 0 for every F ∈ Fk. Observe that for each pair of graphs (F1, F2),

f(F1 ∪ F2) = f(F1) + f(F2)− f(F1 ∩ F2).

We prove the claim by hypothesis induction on k ≥ 2. For k = 2, by the assumption that H is strictly balanced,
it holds that for every K ⫋ H, f(K) > 0. Then for every F = Hi1 ∪Hi2 , it holds that

f(F ) = −f(Hi1 ∩Hi2) < 0.

Thus we prove the case k = 2. For arbitrary k ≥ 3, let F ′ =
⋃k−1

j=1 Hij and K = F ′ ∩Hik . Then it holds that
f(F ′) < 0 by induction and f(K) > 0 by the fact that K ⫋ H. Thus we know

f(F ) = f(F ′) + f(Hik)− f(K) = f(F ′)− f(K) < 0.

Then we conclude the claim. □

When p is beyond the threshold, regardless of whether or not H is strictly balanced, the following result holds.

Theorem 6.4. Let H be a non-empty graph. If npm(H) →∞ and n2(1− p)→∞, then as n→∞,

XH −E [XH ]

(Var (XH))1/2
D→ N (0, 1).

7. Spanning Subgraphs

Now we concern ourselves with some large subgraphs, such as perfect matchings and Hamilton cycles. We
will apply some tools introduced in graph theory.

7.1. Perfect matchings. To show the existence of perfect matchings, firstly we will investigate random bipartite
graphs. We show the bipartite case with the famous Hall’s theorem. Then to expand the results to general
random graphs, we apply the Tutte’s theorem instead.
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7.1.1. Random bipartite graphs. Firstly we consider the graph G(n, n, p). The following theorem illustrates the
picture of the threshold.

Theorem 7.1. Let ω = ω(n), c > 0 be a constant and p = logn+ω
n . Then it holds that

lim
n→∞

Pr [G(n, n, p) has a perfect matching] =


0 ω → −∞
e−2e−c

ω → c

1 ω →∞
.

Moreover,
lim
n→∞

Pr [G(n, n, p) has a perfect matching] = lim
n→∞

Pr [δ(G(n, n, p)) ≥ 1] .

Proof. Recall the Hall’s theorem: a bipartite graph G = (L,R,E) admits a perfect matching if and only if

|NG(S)| ≥ |S|, ∀S ⊆ L.

For simplicity, we use the following equivalent condition instead of the one stated above:

|NG(S)| ≥ |S|, ∀S ⊆ L, |S| ≤ |L|/2,
|NG(T )| ≥ |T |, ∀T ⊆ R, |T | ≤ |R|/2.

Now we restrict our attention to S, T satisfying that
(1) |S| = |T |+ 1, and
(2) each vertex in T has at least two neighbors in S.

Take a pair of S, T with least |S|+ |T |. Note that if δ ≥ 1, then |S| ≥ 2. Then it is trivial to see that

Pr [∃v is isolated] ≤ Pr [G has no perfect matching]
≤ Pr [∃v is isolated]
+ 2Pr [∃S ⊆ L, T ⊆ R, 2 ≤ |S| = k ≤ n/2, |T | = k − 1, N(S) ⊆ T, |E(S, T )| ≥ 2k − 2] .

Now suppose that p = logn+c
n for some constant c. Let Y denote the number of the pairs of subsets S ⊆

L, T ⊆ R not satisfying Hall’s condition. Then

E [Y ] ≤ 2

n/2∑
k=2

(
n

k

)(
n

k − 1

)(
k(k − 1)

2k − 2

)
p2k−2(1− p)k(n−k)

≤ 2

n/2∑
k=2

(en
k

)k( en

k − 1

)k−1(ek(log n+ c)

2n

)2k−2

e−npk(1−k/n)

≤
n/2∑
k=2

n

(
eO(1)nk/n(log n)2

n1−1/k

)k

.

For every k, define

uk = n

(
eO(1)nk/n(log n)2

n1−1/k

)k

.

Case 1: 2 ≤ k ≤ n3/4. Then it holds that

uk = n
(
eO(1)n−1 log n

)2k
.

Hence we know that
n3/4∑
k=2

uk = O

(
1

n1/2−o(1)

)
.
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Case 2: n3/4 < k ≤ n/2. Then it holds that

uk = n1−k(1/2−o(1)).

Hence
n/2∑

k=n3/4+1

uk = O
(
n−n3/4/3

)
.

Combining two cases, we obtain that

Pr [G has no perfect matching] = Pr [∃v is isolated] + o(1).

Let X0 be the number of the isolated vertices in G(n, n, p). Then

E [X0] = 2n(1− p)n ≈ 2e−c.

It is not hard to see Pr [X0 = 0] = e−2e−c . To prove the case |ω| → ∞, we can use the monotoncity and the fact
that

e−e−2c → 0, c→ −∞ and e−e−2c → 1, c→∞.

□

7.1.2. Perfect matchings in random graphs. Now we consider the general random graphs Gn,p. The proof was first
stated in Erdős and Rényi [ER66]. Firstly we introduce Tutte’s theorem to check whether a graph G = (V,E)
has a perfect matching. For a graph G, let Odd(G) denote the number of odd components of G.

Theorem 7.2 (Tutte’s Theorem). A graph G = (V,E) has a perfect matching if and only if for every S ⊆ V ,
it holds that

Odd(G \ S) ≤ |S|.

Note that if we let S = ∅ in Theorem 7.2, it implies that |V | is even.

Theorem 7.3. Suppose that n is even and m = 1
2n log n+ ω(n)n. If ω(n)→∞, then

lim
n→∞

Pr [Gn,m has a perfect matching] = 1.

Remark 7.4. Actually, in Bollobás and Frieze [BF85], the following result is trackable:

lim
n→∞

Pr [Gn,m has a perfect matching] = lim
n→∞

Pr [δ(Gn,m) ≥ 1] .

Therefore, it can be shown that for the random graph Gn,p with p = logn+cn
n ,

lim
n→∞

Pr [Gn,p has a perfect matching] =


0 cn → −∞
e−e−c

cn → c

1 cn →∞
.

The tool they use is a combinatoric structure of graphs without perfect matchings, instead of Tutte’s theorem.
However, as a simple extension of the bipartite case, we will show the original proof given by Erdős and Rényi
of Theorem 7.3.

Proof of Theorem 7.3. Note that since n is even, it holds that

|S| ≡ Odd(G \ S)(mod 2).

Then,
{G has no perfect matching} = {∃S ⊆ V, |S| = r,Odd(G \ S) ≥ r + 2} .

For every r ∈ N, define the family of graphs as

Fr := {G = (V,E) | ∃S ⊆ V, |S| = r,Odd(G \ S) ≥ r + 2}

We separate the proof into the following cases corresponding to r.
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Case (a): r ≥ n
√

2
logn . For G ∈ Fr, observe that G \ S must contain r + 2 vertices and they are disconnected.

Then

Pr [Gn,m ∈ Fr] ≤
(

n

r + 2

)((n2)−(r+2
2 )

m

)((n2)
m

) ≤
(
n

r

)
e−n.

Then we obtain that ∑
r≥n

√
2

logn

Pr [Gn,m ∈ Fr] ≤
(
2

e

)n

= o(1).

Case (b): 4n log logn
logn < r < n

√
2

logn . Since Gn,m is connected w.h.p., we assume that Gn,m is connected. When
Gn,m ∈ Fr, we call the vertices in the desired S ‘separating points’, and for every component, there
must be a ‘contacting point’ connected with separating points. Observe that a contacting point must be
connected with a separating point, and any two contacting points must be disconnected. Therefore, we
obtain that

Pr [Gn,m ∈ Fr] ≤
(
n

r

)(
n− r

r + 2

)rr+2
((n2)−(r+2

2 )
m−(r+2)

)
((n2)
m

) .

Hence, we have the following bound∑
4n log logn

logn
<r<n

√
2

logn

Pr [Gn,m ∈ Fr] ≤ log2 n
∑

4n log logn
logn

<r

(
n

r

)(
3

log n

)r

= O
(
e
− n√

logn

)
= o(1).

Case (c): r ≤ 4n log logn
logn . Let D(d) denote the set of graphs G from the points of which one can select a subset

S1 of k ≥ d points and S2 disjoint from S1 of ℓ ≥ d points so that, no point belonging to the set S1 is
connected with a point in S2. Then,

Pr

[
Gn,m ∈ D

(
n

√
2

log n

)]
≤

∑
k≥n

√
2

logn

∑
ℓ≥n

√
2

logn

(
n

k

)(
n

ℓ

)((n2)−kℓ
m

)((n2)
m

) ≤
(
2

e

)2n

= o(1).

Before our proof, the following simple result is useful: if α0 ≥ · · · ≥ αs > 0 is a sequence of positive
integers with sum A =

∑s
i=0 αi satisfying that there exists no j for which

∑j
k=0 αk ≥ B and

∑s
k=j+1 αk ≥

B where 0 < B ≤ A
3 , then α0 > A−B.

Now let α0 ≥ · · · ≥ αs denote the numbers of vertices of the connected components of Gn,m \S. Then
we can show that the condition of the simple result is satisfied with choice A = n − r, B = n

√
2

logn

w.h.p.. Then

α0 ≥ n− 4n log log n

log n
− n

√
2

log n
.

Equivalently,
s∑

k=1

αk <
4n log log n

log n
+ n

√
2

log n
.

Now, consider the family of graphs Hn(k, r) containing those graphs with n vertices such that, there
exists a subset of vertices S1 with size k and another subset of vertices S2 with size n − k − r disjoint
from S1 satisfying that, there is no vertex in S1 connecting S2 directly. Then it can be shown that for
0 < δ < 1

2 , 0 < ε < 1
2 , there exists c = c(δ)

1−ε−δ such that∑
cn

logn
<k<εn,0≤r<δn

Pr [Gn,m ∈ Hn(k, r)] = o(1).
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Then picking δ = 4 log logn
logn , ε = δ +

√
2

logn , we safely suppose that

s∑
k=1

αk <
8n log log2 n

log2 n
.

Then without loss of generality, suppose that s = r + 1 and α1, . . . , αr+1 are all odd. Furthermore,
suppose that

r + 1 ≤ α1 + · · ·+ αr+1 = k <
8n log log2 n

log2 n
.

Now we abuse the notation that we let s be the number of edges connecting one of the separating
points with one of the points in odd components. Then there are two cases: s ≥ r + 8 or s < r+ 8. For
s ≥ r + 8, the probability is at most

∆ :=
∑

r+1≤k< 8n log log2 n

log2 n

(
n

r

)(
n− r

k

) ∑
r+8≤s≤kr

(
kr

s

)((n2)−k(n−k)
m−s

)
((n2)
m

) = o(1).

Then we assume that s ≤ r + 7. Now we prove that k ≤ s w.h.p.. Define Ek as the set of graphs
containing a subset S of k vertices which are connected by ≤ k − 1 edges with vertices outside S. Then∑

1≤k≤ n
2 logn

Pr [Gn,m ∈ Ek] = o(1).

For simplicity of the proof, we omit the proof here. Observe that, there must be two components Ci1 , Ci2

connecting to the same separating vertex. Also it holds that αi1 + αi2 ≤ 8, and the sum of the numbers
βi1 and βi2 of edges going out from Ci1 and Ci2 does not exceed 8 either. Thus,

∑
r≤ 4n log logn

logn

Pr [Gn,m ∈ Fr] ≤ o(1) +
∑

1≤αi1
+αi2

≤8,1≤βi1
+βi2

≤8

n

(
n

αi1

)(
n

αi2

)(
nαi1

βi1 − 1

)(
nαi2

βi2 − 1

)((n−αi1
−αi2

2
)

m−βi1
−βi2

)
((n2)
m

)
≤ O

(
log8 n

n

)
= o(1).

Combining all together, we conclude the theorem. □
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