Properties of Non-Backtracking Matrix

1 Hashimoto Matrix

Given a graph $G = (V, E)$, let \vec{E} be the oriented edge set generated from E by separating each edge $(u, v) \in E$ into two oriented edges $u\to v$ and $v\to u$. The *Hashimoto matrix* (non-backtracking matrix) $H_G\in\mathbb{R}^{\vec{E}\times\vec{E}}$ of G is defined as

$$
H_G(u \to v, x \to y) = \begin{cases} 1 & v = x \land u \neq y \\ 0 & \text{otherwise} \end{cases}
$$

.

We would show some properties of non-backtracking matrices.

2 Ihara-Zeta Function and Determinant of H_G

For a graph $G = (V, E)$, a reduced closed walk of G is a path $p = \{v_0, \ldots, v_{\ell-1}\}$ satisfying for all $0 \le i \le \ell - 1$,

$$
(v_i, v_{(i+1) \bmod \ell}) \in E
$$

$$
v_i \neq v_{(i+2) \bmod \ell}
$$

Note that, any cyclic rotation of p is also a reduced closed walk. Let $\langle p \rangle$ be the cyclic group induced by p . We consider every two elements in the same cyclic group are equal, and so we pick any of $\langle p \rangle$ as a prime reduced closed walk. Obviously there is no reduced closed walk of length < 3.

We define *Ihara-Zeta function* $\zeta_G(u)$ as

$$
\zeta_G(u)=\prod_p \frac{1}{1-u^{L(p)}}
$$

where p ranges over all prime reduced closed walks and $L(p)$ is the length of p. Let Γ _G(ℓ) be the collection of all prime reduced closed walks with length ℓ . Thus we know

$$
\zeta_G(u) = \prod_{\ell \geq 1} \left(\frac{1}{1 - u^{\ell}} \right)^{\left| \Gamma_G(\ell) \right|} = \exp \left(\sum_{\ell=1}^{\infty} \left| \Gamma_G(\ell) \right| \frac{u^{\ell}}{\ell} \right).
$$

On the other hand, it holds that

$$
\mathrm{Tr}\big(H_G^{\ell}\big)=|\Gamma_G(\ell)|,\quad \forall \ell\in\mathbb{N}.
$$

Then, by Jacobi's identity, we know

$$
\zeta_G(u) = \exp\left(\sum_{\ell=1}^{\infty} |\Gamma_G(\ell)| \frac{u^{\ell}}{\ell}\right) = \exp\left(\sum_{\ell=1}^{\infty} \operatorname{Tr}\left(H^{\ell}\right) \frac{u^{\ell}}{\ell}\right) = \frac{1}{\det(I - uH_G)}.
$$

Let A_G be the adjacent matrix of G and $D_G =$ diag (\deg_G) be the degree matrix of G . The following identity holds for Ihara-Zeta function.

Lemma 2.1 (Ihara-Bass's formula). Given a graph $G = (V, E)$ and H_G , A_G , D_G , $\zeta_G(u)$ defined as above, it holds that

$$
\zeta_G(u) = \frac{1}{\det(I - uH_G)} = \frac{1}{(1 - u^2)^{|E| - |V|} \det(I - uA_G + u^2(D_G - I))}.
$$

3 Hashimoto Matrix of Erdős-Rényi Graphs

Now we consider the Hashimoto matrix of a random graph $G \sim \mathcal{G}(n, \alpha/n)$.

Lemma 3.1 (Theorem 3 in [\[BLM18\]](#page-1-0)). Given a fixed parameter $\alpha > 0$, let $G = (V, E)$ be a random graph generated from Erdős-Rényi graph $G(n, \alpha/n)$. Then with probability tending to 1 as $n \to \infty$, the eigenvalues $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ of its Hashimoto matrix H_G satisfy:

$$
\lambda_1 = \alpha + o(1), \quad |\lambda_2| \le \sqrt{\alpha} + o(1).
$$

References

[BLM18] Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Nonbacktracking Spectrum of Random Graphs: Community Detection and Nonregular Ramanujan Graphs. The Annals of Probability, 46(1):1–71, 2018. [2](#page-1-1)