
Canonical Paths, Multi-Commodity Flows and Windability

1 Canonical Paths and Multi-Commodity Flow

Fix a distribution 𝜇 over the state space Ω. Let 𝑃 be a Markov transition kernel which is reversible with respect
to 𝜇. Define the mixing time 𝑡mix as

𝑡mix(𝑃, 𝑥, 𝜀) := inf
{
𝑡 ≥ 0 : DTV

(
𝑃𝑡 (𝑥, ·)



 𝜇) ≤ 𝜀
}

where DTV (· ∥ ·) is the total variation distance between two distributions. Assume that the eigenvalues of 𝑃 are
1 = 𝜆1 > 𝜆2 ≥ . . . ≥ 𝜆𝑛 ≥ −1. Let 𝜆′ = max {𝜆2, |𝜆𝑛 |}. The following proposition upper bounds the mixing time
of 𝑃 .

Proposition 1.1 (Proposition 1 in [Sin92]). The following inequalities hold:

1. 𝑡mix(𝑃, 𝑥, 𝜀) ≤ 1
1−𝜆′

(
log 1

𝜇 (𝑥 ) + log 1
𝜀

)
.

2. max𝑥∈Ω 𝑡mix(𝜀) ≥ 𝜆′

2(1−𝜆′ ) log
1
2𝜀 .

To bound 𝜆′, we introduce the method of canonical paths and multi-commodity flows. Let G = (V = Ω, E) be
the transition graph of 𝑃 . Canonical paths Γ from Ω𝑥 ⊆ Ω to Ω𝑦 ⊆ Ω is a family of simple paths on G equipped
with weights𝑤 : Γ → R≥0 satisfying∑︁

𝛾 ∈Γ:𝛾 from 𝑥 to 𝑦

𝑤 (𝛾) = 𝜇 (𝑥)𝜇 (𝑦), ∀𝑥 ∈ Ω𝑥 , 𝑦 ∈ Ω𝑦 .

Define the congestion 𝜌 (Γ) of Γ as

𝜌 (Γ) := max
𝜎,𝜏∈Ω:(𝜎,𝜏 ) ∈E

1
𝜇 (𝜎)𝑃 (𝜎, 𝜏)

∑︁
𝛾 ∈Γ:𝛾 ∋ (𝜎,𝜏 )

𝑤 (𝛾) .

The following lemma connects the mixing time with the congestion.

Lemma 1.2 ([Sin92]). For every canonical paths Γ from Ω to Ω, every 𝜎 ∈ Ω and non-negative integer 𝑡 ∈ N, it
holds that

DTV
(
𝑃𝑡 (𝜎, ·)



 𝜇) ≤ 1
2
√︁
𝜇 (𝜎)

exp
(
− 𝑡

𝑛𝜌 (Γ)

)
.

On the other hand, the phenomenon of rapid mixing also implies low congestion.

Lemma 1.3 (Theorem 8 in [Sin92]). Let 𝜏 = max𝜎∈Ω 𝑡mix(𝑃, 𝜎, 1/4) and 𝜌 be the minimal congestion over all
canonical paths from Ω to Ω. Then it holds that

𝜌 ≤ 16𝑛𝜏 .
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2 Holant Problems and Windability

Now let 𝐺 = (𝑉 , 𝐸) be a graph. Let E be the collection of half-edges on 𝐺 , i.e.,

E := {(𝑒𝑢, 𝑒𝑣) | 𝑒 = (𝑢, 𝑣) ∈ 𝐸} .

For every vertex 𝑣 ∈ 𝑉 , let E(𝑣) be the half-edges incident to 𝑣 .
An instance of a Holant problem is a tuple Λ = (𝐺 = (𝑉 , 𝐸), {𝑓𝑣}𝑣∈𝑉 ) where for every 𝑣 ∈ 𝑉 , 𝑓𝑣 : {0, 1}E(𝑣) →

R+ is a function. For every configuration 𝜎 ∈ {0, 1}E , we define the weight of 𝜎 as

𝑤Λ(𝜎) :=
∏
𝑣∈𝑉

𝑓𝑣 (𝜎 |E(𝑣) ).

For a configuration 𝜎 ∈ {0, 1}E , let 𝑑 (𝜎) be the number of edges 𝑒 = (𝑢, 𝑣) such that 𝜎 (𝑒𝑢) disagrees with 𝜎 (𝑒𝑣),
i.e.,

𝑑 (𝜎) := |{𝑒 = (𝑢, 𝑣) ∈ 𝐸 | 𝜎 (𝑒𝑢) ≠ 𝜎 (𝑒𝑣)}|.

For every 𝑘 ≥ 0, let Ω𝑘 :=
{
𝜎 ∈ {0, 1}E

�� 𝑑 (𝜎) = 𝑘
}
and 𝑍𝑘 (Λ) :=

∑
𝜎∈Ω𝑘

𝑤Λ(𝜎).

2.1 Symmetric and Windable functions

Given an indexing set 𝐽 , for every 𝑥 ∈ {0, 1} 𝐽 , define |𝑥 | as the Hamming weight of 𝑥 , i.e., |𝑥 | = ∑
𝑖∈ 𝐽 𝑥𝑖 . A

function 𝑓 : {0, 1} 𝐽 → R+ is symmetric if the value of the function only depends on the Hamming weight of its
input. Thus, for a symmetric function 𝑓 : {0, 1} 𝐽 → R+ with |𝐽 | = 𝑑 , we write it as 𝑓 = [𝑓0, 𝑓1, . . . , 𝑓𝑑 ], where 𝑓𝑖 is
the value of 𝑓 on inputs with Hamming weight 𝑖 .

For a function 𝑓 : {0, 1} 𝐽 and a partial assignment 𝜏 ∈ {0, 1}𝐼 where 𝐼 ⊆ 𝐽 , we define the pinning of 𝑓 by 𝜏 as
the function𝐺 : {0, 1} 𝐽 \𝐼 → R+ such that for every 𝜎 ∈ {0, 1} 𝐽 \𝐼 ,𝐺 (𝜎) = 𝐹 (𝜎∪𝜏). For a function 𝑓 : {0, 1} 𝐽 → R+,
we define its complement function 𝑓 as 𝑓 (𝑥) := 𝑓 (𝐽 \ 𝑥). Note that for a symmetric function 𝑓 = [𝑓0, . . . , 𝑓𝑑 ], its
complement function 𝑓 is 𝑓 = [𝑓𝑑 , 𝑓𝑑−1, . . . , 𝑓0].

In [McQ13], a special family of symmetric functions called windable functions are introduced.

Definition 2.1 (Windable Functions). For any finite indexing set 𝐽 and any configuration 𝑥 ∈ {0, 1} 𝐽 , defineM𝑥

as the set of partitions of {𝑖 | 𝑥𝑖 = 1} into pairs and at most one singleton. A function 𝐹 : {0, 1} 𝐽 → R+ is windable
if there exist values 𝐵(𝑥,𝑦,𝑀) ≥ 0 for all 𝑥,𝑦 ∈ {0, 1} 𝐽 and all𝑀 ∈ M𝑥⊕𝑦 satisfying:

1. 𝐹 (𝑥)𝐹 (𝑦) = ∑
𝑀∈M𝑥⊕𝑦 𝐵(𝑥,𝑦,𝑀) for all 𝑥,𝑦 ∈ {0, 1} 𝐽 .

2. 𝐵(𝑥,𝑦,𝑀) = 𝐵(𝑥 ⊕ 𝑆,𝑦 ⊕ 𝑆,𝑀) for all 𝑥,𝑦 ∈ {0, 1} 𝐽 and all 𝑆 ∈ 𝑀 ∈ M𝑥⊕𝑦 .

The following result in [McQ13, HLZ16] shows the Holant problems equipped with windable functions can
be efficiently computed.

Theorem 2.2 (Theorem 3 in [HLZ16]). There exists an FPRAS to compute the partition function 𝑍 (Λ) for instances
Λ = (𝐺 = (𝑉 , 𝐸), {𝑓𝑣}𝑣∈𝑉 ) with |𝑉 | = 𝑛, if it holds that:

1. The instance is self-reducible in the sense of [JVV86].

2. For every 𝑣 ∈ 𝑉 , the function 𝑓𝑣 is windable.

3. 𝑍2(Λ)/𝑍0(Λ) = 𝑛𝑂 (1) .
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The FPRAS in Theorem 2.2 is a metropolis Markov chain over state Ω0 ∪ Ω2. For every two configurations
𝜎, 𝜏 ∈ Ω, the transition probability 𝑃 ′(𝜎, 𝜏) is defined as

𝑃 ′(𝜎, 𝜏) =


2
𝑛2 min

{
1, 𝑤Λ (𝜏 )

𝑤Λ (𝜎 )

}
|𝜎 ⊕ 𝜋 | = 2

1 − 2
𝑛2

∑
𝜌 : |𝜎⊕𝜌 |=2min

{
1, 𝑤Λ (𝜌 )

𝑤Λ (𝜎 )

}
𝜎 = 𝜏

0 otherwise

and 𝑃 = 1
2 (𝐼 + 𝑃 ′). To prove Theorem 2.2 we apply the canonical paths and for completeness we include it

in Appendix A.

2.1.1 Windability for symmetric functions

Usually it is hard to verify the windability by definition. For symmetric functions, we have another way to verify
it.

Definition 2.3. A function 𝐻 : {0, 1} 𝐽 → R+ has a 2-decomposition if there are values 𝐷 (𝑥,𝑀) ≥ 0 where 𝑥
ranges over {0, 1} 𝐽 and𝑀 ranges over partitions of 𝐽 into pairs and at most one singleton such that

1. 𝐻 (𝑥) =
∑

𝑀 𝐷 (𝑥,𝑀) for all 𝑥 where the sum ranges over all partitions of 𝐽 into pairs and at most one
singleton.

2. 𝐷 (𝑥,𝑀) = 𝐷 (𝑥 ⊕ 𝑆,𝑀) for all 𝑥,𝑀 and all 𝑆 ∈ 𝑀 .

Lemma 2.4 (Lemma 5 in [HLZ16]). A function 𝐹 is windable, if and only if for all pinnings 𝐺 of 𝐹 , 𝐺 · 𝐺 has a
2-decomposition.
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A Construction and Analysis of Canonical Paths

Now we prove Theorem 2.2. Given an instance Λ = (𝐺 = (𝑉 , 𝐸), {𝑓𝑣}𝑣∈𝑉 where |𝑉 | = 𝑛 and 𝑓𝑣 is windable for all
𝑣 ∈ 𝑉 , consider the distribution 𝜇 = 𝜇Λ over Ω = Ω0 ∪ Ω2 defined as

𝜇Λ(𝜎) =
𝑤Λ(𝜎)
𝑍0 + 𝑍2

,∀𝜎 ∈ Ω.

As described above, our chain is define as

𝑃 (𝜎, 𝜏) =


1
𝑛2 min

{
1, 𝑤Λ (𝜏 )

𝑤Λ (𝜎 )

}
|𝜎 ⊕ 𝜋 | = 2

1 − 1
𝑛2

∑
𝜌 : |𝜎⊕𝜌 |=2min

{
1, 𝑤Λ (𝜌 )

𝑤Λ (𝜎 )

}
𝜎 = 𝜏

0 otherwise
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and we use G(Ω, E) to denote the transition graph of 𝑃 . Now what we need to do is to construct canonical paths
Γ with 𝜌 (Γ) ≤ 𝑛3

𝜌Λ (Ω0 )2 .

A.1 Construction of canonical paths

Now we construct the canonical paths as the following steps. Firstly we construct the paths with weighted flow
from Ω0 to Ω and then based on them we construct the canonical paths from Ω to Ω.

A.1.1 Paths from Ω0 to Ω

Let 𝜎 ∈ Ω0 and 𝜏 ∈ Ω be two configurations. Furthermore let 𝑧 = 𝜎 ⊕ 𝜏 . Consider a tuple(
𝑀𝑣 ∈ M𝑧 |E(𝑣)

)
𝑣∈𝑉

and we define 𝑇 as the set of singletons in
⋃

𝑣∈𝑉 𝑀𝑣 , i.e.,
𝑇 := {𝑆 ∈ 𝑀𝑣 | 𝑣 ∈ 𝑉 , 𝑆 is a singleton} .

It is not hard to see |𝑇 | is even. Then we partition 𝑇 into pairs. Denote this partition by 𝑀 ′. Define 𝑀 :=⋃
𝑣∈𝑉 𝑀𝑣 ∪𝑀 ′ ∈ 𝑀𝑧 . We say𝑀 is the partition induced by

(
𝑀𝑣 ∈ M𝑧 |E(𝑣)

)
𝑣∈𝑉

.
Under the terms described as above, we construct a canonical path 𝛾𝜎,𝜏,𝑀 as follows. Firstly we construct a

graph 𝐺𝑀,𝑧 = (𝑉𝑧, 𝐸𝑀 ) with
𝑉𝑧 = {𝑒𝑣 ∈ E | 𝑧 (𝑒𝑣) = 1} ,
𝐸𝑀 = 𝑀 ∪ {(𝑒𝑢, 𝑒𝑣) ∈ 𝑉𝑧 ×𝑉𝑧 | (𝑢, 𝑣) ∈ 𝐸} .

Observe that 𝐺𝑀,𝑧 is a union of disjoint cycles and a path. We recursively choose an order of edges {𝑒1, . . . , 𝑒𝑚}
in 𝐸𝑀 as follows:

• If there is an unique path 𝑃 = (𝑒1, . . . , 𝑒𝑘 ), then start from 𝑒1 and choose edges along the path in the same
order. After this, we remove the path 𝑃 .

• If there is no path, then choose a cycle𝐶 = {𝑒1, 𝑒2, . . . , 𝑒𝑘 , 𝑒1} where (𝑒1, 𝑒2) ∈ 𝑀 . Then start at 𝑒1 and choose
edges along the cycle. After this, remove 𝐶 .

This order induces an order in𝑀 . We denote this order by 𝑆1, . . . , 𝑆𝑡 where 𝑆𝑘 ∈ 𝑀 is a pair of half-edges.
For every 𝑘 = 0, 1, . . . , 𝑡 , let 𝐸𝑘 =

⋃𝑘
𝑖=1 𝑆𝑘 . We construct 𝛾𝜎,𝜏,𝑀 as

𝜎 = 𝜎 ⊕ 𝐸0 → 𝜎 ⊕ 𝐸1 → · · · → 𝜎 ⊕ 𝐸𝑡 = 𝜏

and equip the path with weight

𝑤 (𝛾𝜎,𝜏,𝑀 ) =
∏
𝑣∈𝑉

𝐵𝑣

(
𝜎 |E(𝑣) , 𝜏 |E(𝑣) , 𝑀𝑣

)
/(𝑍0 + 𝑍1)2

where for every 𝑣 ∈ 𝑉 , 𝐵𝑣 is the set of values in the definition of the windability of 𝑓𝑣 .
Then for every 𝜎 ∈ Ω0 and 𝜏 ∈ Ω, it holds that∑︁

𝑀∈M𝑧

𝑤 (𝛾𝜎,𝜏,𝑀 ) = 1
(𝑍0 + 𝑍2)2

∑︁
(𝑀𝑣∈M𝑧∩E(𝑣) )𝑣∈𝑉

∏
𝑣∈𝑉

𝐵𝑣

(
𝜎 |E(𝑣) , 𝜏 |E(𝑣) , 𝑀𝑣

)
=

1
(𝑍0 + 𝑍2)2

∏
𝑣∈𝑉

∑︁
𝑀𝑣∈M𝑧∩E(𝑣)

𝐵𝑣

(
𝜎 |E(𝑣) , 𝜏 |E(𝑣) , 𝑀𝑣

)
=

1
(𝑍0 + 𝑍2)2

∏
𝑣∈𝑉

𝑓𝑣 (𝜎 |E(𝑣) ) 𝑓𝑣 (𝜏 |E(𝑣) )

= 𝜇Λ(𝜎)𝜇Λ(𝜏)
where the last but second equality holds from the definition of windability. We denote the canonical paths con-
structed as above by Γ0.
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A.1.2 Paths from Ω to Ω

For every 𝜎, 𝜏 ∈ Ω, every 𝜌 ∈ Ω0, every 𝑀1 ∈ M𝜎⊕𝜌 and every 𝑀2 ∈ M𝜌⊕𝜏 , we construct a path 𝛾𝜎,𝜏,𝜌,𝑀1,𝑀2 by
concatenating the two paths 𝛾𝜎,𝜌,𝑀1 and 𝛾𝜌,𝜏,𝑀2 (note that it is safe to reverse paths in Γ0 since the transition graph
is undirected). We set the weight as

𝑤 (𝛾𝜎,𝜏,𝜌,𝑀1,𝑀2) =
𝑤 (𝛾𝜎,𝜌,𝑀1)𝑤 (𝛾𝜌,𝜏,𝑀2)

𝜇Λ(𝜌)𝜇Λ(Ω0)
.

We verify that ∑︁
𝜌∈Ω0

∑︁
𝑀1∈M𝜎⊕𝜌

∑︁
𝑀2∈M𝜌⊕𝜏

𝑤 (𝛾𝜎,𝜏,𝜌,𝑀1,𝑀2) =
∑︁
𝜌∈Ω0

∑︁
𝑀1∈M𝜎⊕𝜌

∑︁
𝑀2∈M𝜌⊕𝜏

𝑤 (𝛾𝜎,𝜌,𝑀1)𝑤 (𝛾𝜌,𝜏,𝑀2)
𝜇Λ(𝜌)𝜇Λ(Ω0)

=
∑︁
𝜌∈Ω0

𝜇Λ(𝜎)𝜇Λ(𝜌)𝜇Λ(𝜏)
𝜇Λ(Ω0)

= 𝜇Λ(𝜎)𝜇Λ(𝜏).

A.2 Analysis of the congestion

Now we analyze the congestion of Γ.
Lemma A.1 (Lemma 31 in [HLZ16]). Let Γ = (𝐺 = (𝑉 , 𝐸), {𝑓𝑣}𝑣∈𝑉 ) be an instance where every 𝑓𝑣 is windable.
Then 𝑍0𝑍4 ≤ 𝑍2𝑍2.

Lemma A.2 (Lemma 32 in [HLZ16]). Let Γ0 be the canonical paths from Ω0 to Ω constructed as above. Then

𝜌 (Γ0) ≤
𝑛3

𝜇Λ(Ω0)
.

Proof. For every 𝑋,𝑌 ∈ Ω with 𝑃 (𝑋,𝑌 ) > 0, it holds that

𝜇Λ(𝑋 )𝑃 (𝑋,𝑌 ) = 1
𝑛2

min {𝜇Λ(𝑋 ), 𝜇Λ(𝑌 )} .

Then,
1

𝜇Λ(𝑋 )𝑃 (𝑋,𝑌 )
∑︁

𝛾 ∈Γ0:𝛾 ∋ (𝑋,𝑌 )
𝑤 (𝛾) = 𝑛2

min {𝜇Λ(𝑋 ), 𝜇Λ(𝑌 )}
∑︁

𝛾 ∈Γ0:𝛾 ∋ (𝑋,𝑌 )
𝑤 (𝛾)

≤ 𝑛2

𝜇Λ(𝑌 )
∑︁

𝜎∈Ω0,𝜏∈Ω

∑︁
(
𝑀𝑣∈M𝑧 |E (𝑣)

)
𝑣∈𝑉

:𝑌 ∈𝛾𝜎,𝜏,𝑀

𝑤 (𝛾𝜎,𝜏,𝑀 )

=
𝑛2

𝑤Λ(𝑌 ) (𝑍0 + 𝑍2)
∑︁

𝜎∈Ω0,𝜏∈Ω

∑︁
(
𝑀𝑣∈M𝑧 |E (𝑣)

)
𝑣∈𝑉

:𝑌 ∈𝛾𝜎,𝜏,𝑀

∏
𝑣∈𝑉

𝐵𝑣 (𝜎 |E(𝑣) , 𝜏 |E(𝑣) , 𝑀𝑣)

=
𝑛2

𝑤Λ(𝑌 ) (𝑍0 + 𝑍2)
∑︁

𝜎∈Ω0,𝜏∈Ω

∑︁
(
𝑀𝑣∈M𝑧 |E (𝑣)

)
𝑣∈𝑉

:𝑌 ∈𝛾𝜎,𝜏,𝑀

∏
𝑣∈𝑉

𝐵𝑣 (𝑌 |E(𝑣) , (𝑌 ⊕ 𝜎 ⊕ 𝜏) |E(𝑣) , 𝑀𝑣)

≤ 𝑛2

𝑤Λ(𝑌 ) (𝑍0 + 𝑍2)
∑︁
𝜔∈Ω

∏
𝑣∈𝑉

𝑓𝑣 (𝑌 |E(𝑣) ) 𝑓𝑣 ((𝑌 ⊕ 𝜔) |E(𝑣) )

≤ 𝑛2
𝑍0 + 𝑍2 + 𝑍4
𝑍0 + 𝑍2

≤ 𝑛3

𝜇Λ(Ω0)
where the last inequality holds from Lemma A.1. □
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Lemma A.3. Let Γ be the canonical paths from Ω to Ω constructed as above. Then

𝜌 (Γ) ≤ 𝑛3

𝜇Λ(Ω0)2
.

Proof. By definition, we know

𝜌 (Γ) = max
(𝑋,𝑌 )

1
𝜇Λ(𝑋 )𝑃 (𝑋,𝑌 )

∑︁
𝜎,𝜏∈Ω,𝜌∈Ω0

∑︁
𝑀1∈M𝜎⊕𝜌

∑︁
𝑀2∈M𝜌⊕𝜏

1
[
(𝑋,𝑌 ) ∈ (𝛾𝜎,𝜌,𝑀1 ∪ 𝛾𝜌,𝜏,𝑀2)

] 𝑤 (𝛾𝜎,𝜌,𝑀1)𝑤 (𝛾𝜌,𝜏,𝑀2)
𝜇Λ(𝜌)𝜇Λ(Ω0)

= max
(𝑋,𝑌 )

1
𝜇Λ(𝑋 )𝑃 (𝑋,𝑌 )

∑︁
𝜎,𝜏∈Ω,𝜌∈Ω0

∑︁
𝑀1∈M𝜎⊕𝜌 :(𝑋,𝑌 ) ∈𝛾𝜎,𝜏,𝑀1

∑︁
𝑀2∈M𝜌⊕𝜏

𝑤 (𝛾𝜎,𝜌,𝑀1)𝑤 (𝛾𝜌,𝜏,𝑀2)
𝜇Λ(𝜌)𝜇Λ(Ω0)

= max
(𝑋,𝑌 )

1
𝜇Λ(𝑋 )𝑃 (𝑋,𝑌 )

∑︁
𝜎,𝜏∈Ω,𝜌∈Ω0

∑︁
𝑀1∈M𝜎⊕𝜌 :(𝑋,𝑌 ) ∈𝛾𝜎,𝜏,𝑀1

𝑤 (𝛾𝜎,𝜌,𝑀1)𝜇Λ(𝜏)
𝜇Λ(Ω0)

= max
(𝑋,𝑌 )

1
𝜇Λ(𝑋 )𝑃 (𝑋,𝑌 )

∑︁
𝜎𝜌∈Ω0

∑︁
𝑀1∈M𝜎⊕𝜌 :(𝑋,𝑌 ) ∈𝛾𝜎,𝜏,𝑀1

𝑤 (𝛾𝜎,𝜌,𝑀1)
𝜇Λ(Ω0)

=
𝜌 (Γ0)
𝜇Λ(Ω0)

≤ 𝑛3

𝜇Λ(Ω0)2
.

□
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