APPROXIMATELY COUNTING SIX-VERTEX MODELS

1. BACKGROUND ON SIX-VERTEX MODEL

The *six-vertex model* is originally built on *Eulerian orientations* of a 4-regular planar graph. In the six-vertex model, we only allow that for every vertex v, the orientations of edges around v satisfy that exactly two edges point inwards and the remaining two edges point outwards. For every vertex, the valid configurations in the six-vertex model around a vertex should be one of the following six cases:

FIGURE 1. Valid configurations

For a general model, we associate configurations with weights w_1, w_2, \ldots, w_6 respectively. We assume the *arrow reversal symmetry* to correspond the physics law, *i.e.*, $w_1 = w_2 = a$, $w_3 = w_4 = b$ and $w_5 = w_6 = c$. We assume that $a, b, c \ge 0$ as in the real physics world. For a 4-regular graph G with edges incident to each vertex labelled from 1 to 4, we define the *partition function* of the six-vertex model as

$$Z(G; a, b, c) := \sum_{\tau \in \Omega^{\text{ED}}(G)} a^{n_1 + n_2} b^{n_3 + n_4} c^{n_5 + n_5} c^{n$$

where $\Omega^{E0}(G)$ is the collection of all Eulerian orientations of G and $n_i = n_i(\tau)$ is the number of vertices of type *i* under the orientation τ for i = 1, 2, ..., 6.

1.1. Six-vertex model as Holant problem. An alternative view for the six-vertex model is to see it as a type of Holant problem. For a 4-regular graph G = (V, E), consider its edge-vertex incident graph $G' = (U_V, U_E, E')$. To model the orientation of an edge, we introduce the DISEQUALITY signature (denoted by \neq_2), which receives two boolean bits as input and output whether they are not equal (that is to say, output 1 when input is 01 or 10 and 0 otherwise). We say an orientation on edge $e = \{w, v\}$ is going out w and into v in G if the edge $(u_w, u_e) \in E'$ takes value 1 and $(u_v, u_e) \in E'$ takes value 0. To model the weights on valid configurations, we use a 4-arity signature f, which is of the following matrix form on input $x_1, x_2, x_3, x_4 \in \{0, 1\}$ that

$$M(f) = M_{x_1, x_2, x_4, x_3}(f) = \begin{bmatrix} 0 & 0 & 0 & a \\ 0 & b & c & 0 \\ 0 & c & b & 0 \\ a & 0 & 0 & 0 \end{bmatrix}.$$

If we order the left, down, right and up edges incident to a vertex by 1, 2, 3, 4, then we know that the partition function Z(G; a, b, c) is equal to $Holant(G', \neq_2 | f)$. We certify the following families of signatures:

$$\begin{split} \mathcal{F}_{\leq^2} &:= \left\{ f \mid a^2 \leq b^2 + c^2, b^2 \leq a^2 + c^2, c^2 \leq a^2 + b^2 \right\}, \\ \mathcal{F}_{\leq} &:= \left\{ f \mid a \leq b + c, b \leq a + c, c \leq a + b \right\}, \\ \mathcal{F}_{=} &:= \left\{ f \mid c = a + b \right\} \\ \mathcal{F}_{>} &:= \left\{ f \mid a, b, c > 0, a > b + c \lor b > a + c \lor c > a + b \right\}. \end{split}$$

1.2. Eulerian orientations and Eulerian pairings. From the graph theoretic term, there is a different view of Eulerian orientations. An *Eulerian partition* of a graph *G* is a partition of the edges of *G* into edge-disjoint *circuits*. A *directed Eulerian partition* is an Eulerian partition where every edge-disjoint circuit takes one of the two cyclic orientations. Let G = (V, E) be a 4-regular graph and *v* be a vertex of *G*. Let e_1, e_2, e_3, e_4 be the four edges incident to *v*. A *pairing* ρ at *v* is a partition of $\{e_1, e_2, e_3, e_4\}$ into pairs. We use $\cdot \leftrightarrow \cdot$ to denote a pair. There are exactly 3 distinct pairings: $(e_1 \leftrightarrow e_2, e_3 \leftrightarrow e_4), (e_1 \leftrightarrow e_4, e_2 \leftrightarrow e_3), (e_1 \leftrightarrow e_3, e_2 \leftrightarrow e_4)$. We label these cases by symbols ρ_1, ρ_2 and ρ_3 . Using this kind of language, an Eulerian partition can be uniquely determined by a family of pairings $\varphi = \{\varrho_v\}_{v \in V}$ where $\varrho_v \in \{\rho_1, \rho_2, \rho_3\}$.

For any vertex v in a valid configuration τ of the six-vertex model, incoming edges can be paired with outgoing edges in exactly two ways, corresponding to two of the three pairings at v. That is to say, τ can be decomposed into $2^{|V|}$ distinct directed Eulerian partitions denoted by $\Phi(\tau)$. Since no two Eulerian orientations share one directed Eulerian partition and every directed Eulerian partition corresponds to a particular Eulerian orientation, the map from six-vertex configurations to directed Eulerian partitions is 1-to- $2^{|V|}$, non-overlapping and surjective. Define w as a function assigning a weight to every pairing at every vertex and let the weight $\tilde{w}(\varphi)$ of an Eulerian partition φ be the product of weights at each vertex. In particular, when w is defined as

$$\begin{pmatrix}
w(\rho_1) = \frac{-a+b+c}{2} \\
w(\rho_2) = \frac{a-b+c}{2} \\
w(\rho_3) = \frac{a+b-c}{2}
\end{cases}$$

or equivalently

$$\begin{cases} a = w(\rho_2) + w(\rho_3) \\ b = w(\rho_1) + w(\rho_3) \\ c = w(\rho_1) + w(\rho_2) \end{cases}$$

for every vertex with the signature $\begin{bmatrix} 0 & 0 & 0 & a \\ 0 & b & c & 0 \\ 0 & c & b & 0 \\ a & 0 & 0 & 0 \end{bmatrix}$, then the weight of a six-vertex model configuration τ is

equal to $\sum_{\varphi \in \Phi(\tau)} \widetilde{w}(\varphi)$.

2. MARKOV CHAIN AND CANONICAL PATH

We employ the Holant view to compute the partition function by designing and analyzing a rapid-mixing Markov chain \mathcal{M} to construct an **FPRAS**. Let G = (V, U, E) be the underlying bipartite graph of an instance in Holant($\neq_2 | \mathcal{F}_{\leq^2}$). An assignment σ assigns a value in {0, 1} to each edge in E. For every $k \in \mathbb{N}$, we define Ω_k as the collection of assignments which violate \neq_2 at exactly k vertices in V. The Markov chain \mathcal{M} is defined on the state space $\Omega = \Omega_0 \cup \Omega_2$.

For every $\sigma \in \Omega$ and any subset $S \subseteq \Omega$, define the *weight function* \mathcal{W} by $\mathcal{W}(\sigma) = \prod_{u \in U} f_u(\sigma|_{E(v)})$ and $\mathcal{Z}(S) = \sum_{\sigma \in S} \mathcal{W}(\sigma)$. Define the Gibbs measure for Ω as $\pi(\sigma) = \frac{\mathcal{W}(\sigma)}{\mathcal{Z}(\Omega)}$. Note that if an assignment $\sigma \in \Omega_2$ assigns 00 to edges incident to $v' \in V$ (satisfying $=_2$ at v'), then it must assign 11 to both edges incident to $v'' \in V$.

Now we describe the transition graph of \mathcal{M} . The transition includes three kinds of moves. Suppose that $\sigma \in \Omega_0$. An Ω_0 -to- Ω_2 move from σ takes a 4-degree vertex $u \in U$ and two incident edges e' = (v', u), e'' = (v'', u) satisfying $\{\sigma(e'), \sigma(e'')\} = \{0, 1\}$, and changes it to $\sigma_2 \in \Omega_2$ which flips both $\sigma(e')$ and $\sigma(e'')$. An Ω_2 -to- Ω_0 move is the opposite. An Ω_2 -to- Ω_2 move is, intuitively, to shife one (=₂) from a vertex $v' \in V$ to another $v^* \in V$ where for some $u \in U$, v' and v^* are both incident to u and the "two-0, two-1" rule at u is preserved. Formally, let $\sigma \in \Omega_2$ be the assignment with $v', v'' \in V$ violating \neq_2 . Let $v^* \in V \setminus \{v', v''\}$ be a vertex in V such that for some $u \in U$, both $e' = (v', u), e^* = (v^*, u) \in E$ and $\{\sigma(e'), \sigma(e^*)\} = \{0, 1\}$. Then an Ω_2 -to- Ω_2 move changes σ to σ^* by flipping both $\sigma(e')$ and $\sigma(e^*)$.

If σ_1 can move to σ_2 in the transition graph, we denote by ~ the moves. Note that σ_2 can also move to σ_1 . The transition probability $P(\cdot, \cdot)$ is defined as

$$P(\sigma_1, \sigma_2) = \begin{cases} \frac{1}{n^2} \min\left\{1, \frac{\pi(\sigma_2)}{\pi(\sigma_1)}\right\}, & \sigma_2 \sim \sigma_1\\ 1 - \frac{1}{n^2} \sum_{\sigma' \sim \sigma_1} \min\left\{1, \frac{\pi(\sigma')}{\pi(\sigma_1)}\right\} & \sigma_1 = \sigma_2\\ 0 & \text{otherwise} \end{cases}$$

Since P is designed in a Metropolis way, we know that the stationary distribution of P should be π (if it exists). The following fact comes directly from the definition.

Fact 2.1. The Markov kernel P is aperiodic, irreducible and reversible with respect to π .

2.1. Construction and analysis of canonical path. To show the rapid mixing of P, we use the method of a flow argument. The key ingredient is to construct a flow with low congestion.

Theorem 2.2 (Lemma 4.2 in [CLL19]). Assume that $\mathcal{Z}(\Omega_0) > 0$. There is a flow on Ω with congestion at most $O\left(n^3 \left(\frac{\mathcal{Z}(\Omega)}{\mathcal{Z}(\Omega_0)}\right)^2\right)$, using path of length O(n).

Our goal is to construct the flow $\mathscr{F} : \mathcal{P} \to \mathbb{R}_{\geq 0}$ from Ω_2 to Ω_0 satisfying that

$$\sum_{p \in \mathcal{P}_{\sigma_2,\sigma_0}} \mathcal{F}(p) = \pi(\sigma_2)\pi(\sigma_0), \quad \forall \sigma_2 \in \Omega_2, \sigma_0 \in \Omega_0$$

where $\mathcal{P}_{\sigma_2,\sigma_0}$ is the collection of all simple directed paths from σ_2 to σ_0 in \mathcal{M} and $\mathcal{P} = \bigcup_{\sigma_2 \in \Omega_2, \sigma_0 \in \Omega_0} \mathcal{P}_{\sigma_2,\sigma_0}$. With \mathcal{F} in hand, the flow from Ω_0 to Ω_2 can be symmetrically constructed by \mathcal{F} . The flow from Ω_2 to Ω_2 or from Ω_0 to Ω_0 can be constructed by randomly picking an intermediate state in Ω_0 or Ω_2 .

Now we illustrate the flow \mathscr{F} . Let $\Omega' = \Omega_0 \cup \Omega_2 \cup \Omega_4$. For $\sigma, \sigma' \in \Omega'$, we use $\sigma \oplus \sigma'$ to denote the symmetric difference where we view them as bit strings in $\{0, 1\}^E$. We also treat $\sigma \oplus \sigma'$ as an edge subset of *E* and this induces a subgraph of *G*. Since at every $u \in U$ of degree 4, the "two-0 two-1" rule is satisfied by σ and σ' , this induced subgraph has even degree (0, 2 or 4) at every $u \in U$.

Let $U_4 \subseteq U$ be the set of degree-4 vertices in $\sigma \oplus \sigma'$. Then there are exactly $2^{|U_4|}$ Eulerian partitions for $\sigma \oplus \sigma'$. Recall that the Eulerian partition of $\sigma \oplus \sigma'$ is uniquely determined by a family of pairings on U_4 . This is a one-to-one correspondence. For any pairing in $\{\rho_1, \rho_2, \rho_3\}$ on a vertex u with signature

matrix
$$M(f) = \begin{bmatrix} a \\ b \\ c \\ b \end{bmatrix}$$
, define the weight function wt for pairings as
$$\begin{cases} wt(\rho_1) = \frac{-a^2+b^2+c^2}{2} \\ wt(\rho_2) = \frac{a^2-b^2+c^2}{2} \\ wt(\rho_3) = \frac{a^2+b^2-c^2}{2} \end{cases}$$
 or $wt(\rho_3) = \frac{a^2+b^2-c^2}{2}$

 $c^2 = wt(\rho_1) + wt(\rho_2)$

be the collection of all Eulerian partitions for $\sigma \oplus \sigma'$. For every $\varphi \in \Phi_{\sigma \oplus \sigma'}$, define

$$\mathscr{W}(\sigma,\sigma',\varphi) := \left(\prod_{u \in U \setminus U_4} f_u(\sigma|_{E(u)}) f_u(\sigma'|_{E(u)})\right) \left(\prod_{u \in U_4} wt(\varphi(u))\right).$$

Then for all distinct $\sigma, \sigma' \in \Omega'$, we have

$$\sum_{\varphi \in \Phi_{\sigma \oplus \sigma'}} \mathcal{W}(\sigma, \sigma', \varphi) = \sum_{\varphi \in \Phi_{\sigma \oplus \sigma'}} \left(\prod_{u \in U \setminus U_4} f_u(\sigma|_{E(u)}) f_u(\sigma'|_{E(u)}) \right) \left(\prod_{u \in U_4} wt(\varphi(u)) \right)$$
$$= \left(\prod_{u \in U \setminus U_4} f_u(\sigma|_{E(u)}) f_u(\sigma'|_{E(u)}) \right) \left(\sum_{\varphi \in \Phi_{\sigma \oplus \sigma'}} \prod_{u \in U_4} wt(\varphi(u)) \right)$$
$$= \left(\prod_{u \in U \setminus U_4} f_u(\sigma|_{E(u)}) f_u(\sigma'|_{E(u)}) \right) \left(\prod_{u \in U_4} f_u(\sigma|_{E(u)}) f_u(\sigma'|_{E(u)}) \right)$$
$$= \mathcal{W}(\sigma) \mathcal{W}(\sigma').$$

Now we specify the paths in the flow. For a pair of assignments $\sigma_2 \in \Omega_2$ and $\sigma_0 \in \Omega_0$, to transit from σ_2 to σ_0 , paths in $\mathcal{P}_{\sigma_2,\sigma_0}$ go through states in Ω that gradually decrease the number of conflicting assignments along walks and circuits in $\sigma_2 \oplus \sigma_0$. We assume an order on *E*. This induces a total order on circuits in $\sigma_2 \oplus \sigma_0$. By definition, in the induced subgraph $\sigma_2 \oplus \sigma_0$, there are exactly two vertices in *V* of degree 1 (we call them *endpoints*) and all other vertices are of degree 2 or 4. Note that every path in $\mathcal{P}_{\sigma_2,\sigma_0}$ corresponds to an element in $\Phi_{\sigma_2\oplus\sigma_0}$. Then given any family of pairings $\varphi \in \Phi_{\sigma_2\oplus\sigma_0}$, we have a unique decomposition of the induced subgraph $\sigma_2 \oplus \sigma_0$ as an edge-disjoint union of one walk $[e_1](v_1, e'_1, u_1, e_2, v_2, e'_2, u_2, \ldots, e_k, v_k)[e'_k]$ where e_1, e'_k are not part of the walk, and some edge-disjoint circuits which are ordered lexicographically. Here $v_i \in V$ and $u_i \in U$, and assume that $\sigma_2(e_1) = \sigma_2(e'_1) = 0, \sigma_2(e_2) = 1, \sigma_2(e'_2) = 0, \ldots, \sigma_2(e_k) = \sigma_2(e'_k) = 1$. Thus we know that v_1, v_k satisfy =2. The unique path p_{φ} firstly "pushes" =2 from v_1 to v_2 , then to v_3, \ldots, v_{k-1} , and finally "merges" at v_k , arriving at a configuration in Ω_0 . Then we reverse all arrows on each circuit in lexicographic order, and within each circuit *C* it starts at the least edge *e* and reverses all arrows on P_{φ} be $\frac{\mathcal{W}(\sigma_2, \sigma_0, \varphi)}{\mathcal{Z}(\Omega)^2}$.

Proposition 2.3. The flow $\mathcal{F} : \mathcal{P} \to \mathbb{R}_{>0}$ defined as above satisfies that

$$\sum_{p \in \mathcal{P}_{\sigma_2,\sigma_0}} \mathcal{F}(p) = \pi(\sigma_2)\pi(\sigma_0), \quad \forall \sigma_2 \in \Omega_2, \sigma_0 \in \Omega_0$$

Proof. Note that only the flows on p_{φ} have non-zero flow. Then we verify that

$$\sum_{p_{\varphi} \in \mathcal{P}_{\sigma_{2},\sigma_{0}}} \mathcal{F}(p_{\varphi}) = \sum_{\varphi \in \Phi_{\sigma_{2},\sigma_{0}}} \frac{\mathcal{W}(\sigma_{2},\sigma_{0},\varphi)}{\mathcal{Z}(\Omega)^{2}}$$
$$= \frac{\mathcal{W}(\sigma_{2})\mathcal{W}(\sigma_{0})}{\mathcal{Z}(\Omega)^{2}}$$
$$= \pi(\sigma_{2})\pi(\sigma_{0}).$$

Lemma 2.4. The flow \mathscr{F} has congestion at most $O(n^3)\frac{\mathcal{Z}(\Omega_2)}{\mathcal{Z}(\Omega_0)}$.

Proof. For any transition $(\sigma', \sigma'') \in \mathcal{M}$ where $\sigma' \neq \sigma''$, we bound $P(\sigma', \sigma'')$ by

$$P(\sigma', \sigma'') = \frac{1}{n^2} \min\left\{1, \frac{\pi(\sigma'')}{\pi(\sigma')}\right\} = \Omega\left(n^{-2}\right)$$

since the quantity $\frac{\pi(\sigma'')}{\pi(\sigma')}$ is a constant. Let

$$H_{\sigma'} := \left\{ \sigma_2 \oplus \sigma_0 \mid \sigma_2 \in \Omega_2, \sigma_0 \in \Omega_0, \exists \varphi \in \Phi_{\sigma_2 \oplus \sigma_0}, \sigma' \in p_{\varphi} \right\}.$$

We bound the congestion ρ of \mathcal{F} as

$$\begin{split} \rho &= \max_{(\sigma',\sigma'')\in\mathcal{M}} \frac{1}{\pi(\sigma')P(\sigma',\sigma'')} \sum_{\sigma_2\in\Omega_2, \sigma_0\in\Omega_0} \sum_{p_{\varphi}\in\mathcal{P}_{\sigma_2,\sigma_0}, p_{\varphi}\ni(\sigma',\sigma'')} \frac{\mathscr{W}(\sigma_2,\sigma_0,\varphi)}{\mathscr{Z}(\Omega)^2} \\ &\leq \max_{\sigma'\in\Omega} \frac{O(n^2)}{\mathscr{W}(\sigma')\mathscr{Z}(\Omega)} \sum_{\sigma\in\Omega_2, \sigma_0\in\Omega_0} \sum_{\varphi\in\Phi_{\sigma_2,\sigma_0}, p_{\varphi}\ni\sigma'} \mathscr{W}(\sigma_2,\sigma_0,\varphi) \\ &\leq \max_{\sigma'\in\Omega} \frac{O(n^2)}{\mathscr{W}(\sigma')\mathscr{Z}(\Omega)} \sum_{\sigma_2\in\Omega_2} \sum_{\eta\in H_{\sigma'}} \sum_{\varphi\in\Phi_{\eta}} \mathscr{W}(\sigma_2,\sigma_2\oplus\eta,\varphi). \end{split}$$

Now we fix $\sigma' \in \Omega$. For any $\sigma_2 \in \Omega_2$ and $\eta \in H_{\sigma'}$ consisting of exactly one connected component with two endpoints of degree 1 and all other vertices having even degrees, observe that $\sigma' \oplus \eta \in \Omega'$. Note that if $\sigma' \in \Omega_0$ then $\sigma' \oplus \eta \in \Omega_2$; if $\sigma' \in \Omega_2$, then depending on whether σ'

- (1) is σ_2 , or
- (2) appears in the process of reversing arrows on the walk with two endpoints, or
- (3) appears after reversing arrows on the walk with endpoints,

the assignment $\sigma' \oplus \eta$ is in Ω_0 , Ω_2 or Ω_4 respectively. Note that

$$\mathscr{W}(\sigma_2, \sigma_2 \oplus \eta, \varphi) = \left(\prod_{u \in U \setminus U_4} f_u(\sigma_2|_{E(u)}) f_u((\sigma_2 \oplus \eta)|_{E(u)})\right) \left(\prod_{u \in U_4} wt(\varphi(u))\right).$$

For every degree-0 vertex $u \in U$, f_u takes the same value in $\sigma_2, \sigma_2 \oplus \eta, \sigma'$ and $\sigma' \oplus \eta$. Otherwise, for every 2-degree vertex $u \in U$, $f_u(\sigma_2|_{E(u)})$, $f_u((\sigma_2 \oplus \eta)|_{E(u)})$ take two different values in $\{a, b, c\}$. Similarly $f_u(\sigma'|_{E(u)}), f_u((\sigma' \oplus \eta)|_{E(u)})$ also take two these different values in $\{a, b, c\}$. Then we know that $\mathcal{W}(\sigma_2, \sigma_2 \oplus \eta, \varphi) = \mathcal{W}(\sigma', \sigma' \oplus \eta, \varphi)$. Then we can show that

$$\begin{split} \rho &\leq \max_{\sigma' \in \Omega} \frac{O(n^2)}{\mathcal{W}(\sigma')\mathcal{Z}(\Omega)} \sum_{\sigma_2 \in \Omega_2} \sum_{\eta \in H_{\sigma'}} \sum_{\varphi \in \Phi_{\eta}} \mathcal{W}(\sigma_2, \sigma_2 \oplus \eta, \varphi) \\ &\leq \max_{\sigma' \in \Omega} \frac{O(n^2)|E|}{\mathcal{W}(\sigma')\mathcal{Z}(\Omega)} \sum_{\eta \in H_{\sigma'}} \sum_{\varphi \in \Phi_{\eta}} \mathcal{W}(\sigma', \sigma' \oplus \eta, \varphi) \\ &\leq \max_{\sigma' \in \Omega} \frac{O(n^3)}{\mathcal{W}(\sigma')\mathcal{Z}(\Omega)} \sum_{\eta \in H_{\sigma'}} \mathcal{W}(\sigma' \oplus \eta) \\ &\leq O(n^3) \frac{\mathcal{Z}(\Omega')}{\mathcal{Z}(\Omega)} \end{split}$$

with a standard argument $\mathcal{Z}(\Omega_4)/\mathcal{Z}(\Omega_2) \leq \mathcal{Z}(\Omega_2)/\mathcal{Z}(\Omega_0)$. Therefore, the congestion is bounded by $O(n^3)\frac{\mathcal{Z}(\Omega_2)}{\mathcal{Z}(\Omega_0)}$

2.2. Windability in six-vertex models. In [McQ13, HLZ16], a standard way to establish an **FPRAS** for Holant problems is to show the *windability* of signatures.

Definition 2.5 (Windability). For any finite set *J* and any configuration $x \in \{0, 1\}^J$, define \mathcal{M}_x as the set of partitions of $\{i \in J \mid x_i = 1\}$ into pairs and at most one singleton. We say a signature $f : \{0, 1\}^J \to \mathbb{R}_{\geq 0}$ is *windable* if there exists values $B(x, y, M) \geq 0$ for any distinct $x, y \in \{0, 1\}^J$ and $M \in \mathcal{M}_{x \oplus y}$ satisfying that

- $f(x)f(y) = \sum_{M \in \mathcal{M}_{x \oplus y}} B(x, y, M)$ for any distinct $x, y \in \{0, 1\}^J$;
- $B(x, y, M) = B(x \oplus S, y \oplus S, M)$ for all distinct $x, y \in \{0, 1\}^J$ and $S \in M \in \mathcal{M}_{x \oplus y}$.

Lemma 2.6 (Windability of $\mathcal{F}_{\leq 2}$). For any nonnegative real numbers a, b, c, the function f with signature matrix $M(f) = \begin{bmatrix} a \\ b & c \\ c & b \end{bmatrix}$ is windable if and only if $a^2 \leq b^2 + c^2$, $b^2 \leq a^2 + c^2$ and $c^2 \leq a^2 + b^2$.

3. Hardness

By now, the intractability of the six-vertex model is consistent with what has been established in physics.

Theorem 3.1 (Theorem 5.1 in [CLL19]). If $f \in \mathcal{F}_{>}$, then $\text{Holant}(\neq_2 | f)$ does not have an **FPRAS** unless **RP** = **NP**.

References

- [CLL19] Jin-Yi Cai, Tianyu Liu, and Pinyan Lu. Approximability of the six-vertex model. In Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2248–2261, 2019. 3, 6
- [HLZ16] Lingxiao Huang, Pinyan Lu, and Chihao Zhang. Canonical paths for MCMC: from art to science. In Proceedings of the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 514–527, 2016. 5
- [McQ13] Colin McQuillan. Approximating holant problems by winding, 2013. 5