
APPROXIMATELY COUNTING SIX-VERTEX MODELS

1. BACKGROUND ON SIX-VERTEX MODEL

The six-vertex model is originally built on Eulerian orientations of a 4-regular planar graph. In the six-
vertex model, we only allow that for every vertex 𝑣, the orientations of edges around 𝑣 satisfy that exactly two
edges point inwards and the remaining two edges point outwards. For every vertex, the valid configurations
in the six-vertex model around a vertex should be one of the following six cases:

FIGURE 1. Valid configurations

For a general model, we associate configurations with weights 𝑤1, 𝑤2, . . . , 𝑤6 respectively. We assume
the arrow reversal symmetry to correspond the physics law, i.e., 𝑤1 = 𝑤2 = 𝑎, 𝑤3 = 𝑤4 = 𝑏 and 𝑤5 = 𝑤6 = 𝑐.
We assume that 𝑎, 𝑏, 𝑐 ≥ 0 as in the real physics world. For a 4-regular graph 𝐺 with edges incident to each
vertex labelled from 1 to 4, we define the partition function of the six-vertex model as

𝑍 (𝐺; 𝑎, 𝑏, 𝑐) :=
∑

𝜏∈ΩEO (𝐺)
𝑎𝑛1+𝑛2𝑏𝑛3+𝑛4𝑐𝑛5+𝑛6

where ΩEO(𝐺) is the collection of all Eulerian orientations of 𝐺 and 𝑛𝑖 = 𝑛𝑖 (𝜏) is the number of vertices of
type 𝑖 under the orientation 𝜏 for 𝑖 = 1, 2, . . . , 6.

1.1. Six-vertex model as Holant problem. An alternative view for the six-vertex model is to see it as a
type of Holant problem. For a 4-regular graph 𝐺 = (𝑉, 𝐸), consider its edge-vertex incident graph 𝐺′ =
(𝑈𝑉 ,𝑈𝐸 , 𝐸

′). To model the orientation of an edge, we introduce the DISEQUALITY signature (denoted by
≠2), which receives two boolean bits as input and output whether they are not equal (that is to say, output
1 when input is 01 or 10 and 0 otherwise). We say an orientation on edge 𝑒 = {𝑤, 𝑣} is going out 𝑤
and into 𝑣 in 𝐺 if the edge (𝑢𝑤 , 𝑢𝑒) ∈ 𝐸 ′ takes value 1 and (𝑢𝑣 , 𝑢𝑒) ∈ 𝐸 ′ takes value 0. To model the
weights on valid configurations, we use a 4-arity signature 𝑓 , which is of the following matrix form on input
𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ {0, 1} that

𝑀 ( 𝑓 ) = 𝑀𝑥1,𝑥2,𝑥4,𝑥3 ( 𝑓 ) =


0 0 0 𝑎
0 𝑏 𝑐 0
0 𝑐 𝑏 0
𝑎 0 0 0

 .
If we order the left, down, right and up edges incident to a vertex by 1, 2, 3, 4, then we know that the partition
function 𝑍 (𝐺; 𝑎, 𝑏, 𝑐) is equal to Holant(𝐺′,≠2 | 𝑓 ). We certify the following families of signatures:

≤2 :=
{
𝑓
�� 𝑎2 ≤ 𝑏2 + 𝑐2, 𝑏2 ≤ 𝑎2 + 𝑐2, 𝑐2 ≤ 𝑎2 + 𝑏2} ,

≤ := { 𝑓 | 𝑎 ≤ 𝑏 + 𝑐, 𝑏 ≤ 𝑎 + 𝑐, 𝑐 ≤ 𝑎 + 𝑏} ,
= := { 𝑓 | 𝑐 = 𝑎 + 𝑏}
> := { 𝑓 | 𝑎, 𝑏, 𝑐 > 0, 𝑎 > 𝑏 + 𝑐 ∨ 𝑏 > 𝑎 + 𝑐 ∨ 𝑐 > 𝑎 + 𝑏} .
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1.2. Eulerian orientations and Eulerian pairings. From the graph theoretic term, there is a different view
of Eulerian orientations. An Eulerian partition of a graph 𝐺 is a partition of the edges of 𝐺 into edge-disjoint
circuits. A directed Eulerian partition is an Eulerian partition where every edge-disjoint circuit takes one of
the two cyclic orientations. Let 𝐺 = (𝑉, 𝐸) be a 4-regular graph and 𝑣 be a vertex of 𝐺. Let 𝑒1, 𝑒2, 𝑒3, 𝑒4 be
the four edges incident to 𝑣. A pairing 𝜚 at 𝑣 is a partition of {𝑒1, 𝑒2, 𝑒3, 𝑒4} into pairs. We use ·↭ · to denote
a pair. There are exactly 3 distinct pairings: (𝑒1 ↭ 𝑒2, 𝑒3 ↭ 𝑒4), (𝑒1 ↭ 𝑒4, 𝑒2 ↭ 𝑒3), (𝑒1 ↭ 𝑒3, 𝑒2 ↭ 𝑒4).
We label these cases by symbols 𝜌1, 𝜌2 and 𝜌3. Using this kind of language, an Eulerian partition can be
uniquely determined by a family of pairings 𝜑 = {𝜚𝑣}𝑣∈𝑉 where 𝜚𝑣 ∈ {𝜌1, 𝜌2, 𝜌3}.

For any vertex 𝑣 in a valid configuration 𝜏 of the six-vertex model, incoming edges can be paired with
outgoing edges in exactly two ways, corresponding to two of the three pairings at 𝑣. That is to say, 𝜏 can be
decomposed into 2 |𝑉 | distinct directed Eulerian partitions denoted by Φ(𝜏). Since no two Eulerian orienta-
tions share one directed Eulerian partition and every directed Eulerian partition corresponds to a particular
Eulerian orientation, the map from six-vertex configurations to directed Eulerian partitions is 1-to-2 |𝑉 | , non-
overlapping and surjective. Define 𝑤 as a function assigning a weight to every pairing at every vertex and let
the weight 𝑤(𝜑) of an Eulerian partition 𝜑 be the product of weights at each vertex. In particular, when 𝑤 is
defined as 

𝑤(𝜌1) = −𝑎+𝑏+𝑐
2

𝑤(𝜌2) = 𝑎−𝑏+𝑐
2

𝑤(𝜌3) = 𝑎+𝑏−𝑐
2

,

or equivalently 
𝑎 = 𝑤(𝜌2) + 𝑤(𝜌3)
𝑏 = 𝑤(𝜌1) + 𝑤(𝜌3)
𝑐 = 𝑤(𝜌1) + 𝑤(𝜌2)

.

for every vertex with the signature


0 0 0 𝑎
0 𝑏 𝑐 0
0 𝑐 𝑏 0
𝑎 0 0 0

 , then the weight of a six-vertex model configuration 𝜏 is

equal to
∑

𝜑∈Φ(𝜏 ) 𝑤(𝜑).

2. MARKOV CHAIN AND CANONICAL PATH

We employ the Holant view to compute the partition function by designing and analyzing a rapid-mixing
Markov chain  to construct an FPRAS. Let 𝐺 = (𝑉,𝑈, 𝐸) be the underlying bipartite graph of an instance
in Holant(≠2 |≤2). An assignment 𝜎 assigns a value in {0, 1} to each edge in 𝐸 . For every 𝑘 ∈ N, we
define Ω𝑘 as the collection of assignments which violate ≠2 at exactly 𝑘 vertices in 𝑉 . The Markov chain 
is defined on the state space Ω = Ω0 ∪Ω2.

For every 𝜎 ∈ Ω and any subset 𝑆 ⊆ Ω, define the weight function  by  (𝜎) = ∏
𝑢∈𝑈 𝑓𝑢 (𝜎 |𝐸 (𝑣) ) and

(𝑆) = ∑
𝜎∈𝑆  (𝜎). Define the Gibbs measure for Ω as 𝜋(𝜎) =  (𝜎)(Ω) . Note that if an assignment 𝜎 ∈ Ω2

assigns 00 to edges incident to 𝑣′ ∈ 𝑉 (satisfying =2 at 𝑣′), then it must assign 11 to both edges incident to
𝑣′′ ∈ 𝑉 .

Now we describe the transition graph of . The transition includes three kinds of moves. Suppose that
𝜎 ∈ Ω0. An Ω0-to-Ω2 move from 𝜎 takes a 4-degree vertex 𝑢 ∈ 𝑈 and two incident edges 𝑒′ = (𝑣′, 𝑢),
𝑒′′ = (𝑣′′, 𝑢) satisfying {𝜎(𝑒′), 𝜎(𝑒′′)} = {0, 1}, and changes it to 𝜎2 ∈ Ω2 which flips both 𝜎(𝑒′) and
𝜎(𝑒′′). An Ω2-to-Ω0 move is the opposite. An Ω2-to-Ω2 move is, intuitively, to shife one (=2) from a vertex
𝑣′ ∈ 𝑉 to another 𝑣∗ ∈ 𝑉 where for some 𝑢 ∈ 𝑈, 𝑣′ and 𝑣∗ are both incident to 𝑢 and the “two-0, two-1” rule
at 𝑢 is preserved. Formally, let 𝜎 ∈ Ω2 be the assignment with 𝑣′, 𝑣′′ ∈ 𝑉 violating ≠2. Let 𝑣∗ ∈ 𝑉 \ {𝑣′, 𝑣′′}
be a vertex in 𝑉 such that for some 𝑢 ∈ 𝑈, both 𝑒′ = (𝑣′, 𝑢), 𝑒∗ = (𝑣∗, 𝑢) ∈ 𝐸 and {𝜎(𝑒′), 𝜎(𝑒∗)} = {0, 1}.
Then an Ω2-to-Ω2 move changes 𝜎 to 𝜎∗ by flipping both 𝜎(𝑒′) and 𝜎(𝑒∗).
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If 𝜎1 can move to 𝜎2 in the transition graph, we denote by ∼ the moves. Note that 𝜎2 can also move to 𝜎1.
The transition probability 𝑃(·, ·) is defined as

𝑃(𝜎1, 𝜎2) =


1
𝑛2 min

{
1, 𝜋 (𝜎2 )

𝜋 (𝜎1 )

}
, 𝜎2 ∼ 𝜎1

1 − 1
𝑛2

∑
𝜎′∼𝜎1 min

{
1, 𝜋 (𝜎′ )

𝜋 (𝜎1 )

}
𝜎1 = 𝜎2

0 otherwise

.

Since 𝑃 is designed in a Metropolis way, we know that the stationary distribution of 𝑃 should be 𝜋 (if it
exists). The following fact comes directly from the definition.

Fact 2.1. The Markov kernel 𝑃 is aperiodic, irreducible and reversible with respect to 𝜋.

2.1. Construction and analysis of canonical path. To show the rapid mixing of 𝑃, we use the method of
a flow argument. The key ingredient is to construct a flow with low congestion.

Theorem 2.2 (Lemma 4.2 in [CLL19]). Assume that (Ω0) > 0. There is a flow on Ω with congestion at

most 𝑂
(
𝑛3

( (Ω)(Ω0 )

)2
)
, using path of length 𝑂 (𝑛).

Our goal is to construct the flow F :  → R≥0 from Ω2 to Ω0 satisfying that∑
𝑝∈𝜎2 ,𝜎0

F(𝑝) = 𝜋(𝜎2)𝜋(𝜎0), ∀𝜎2 ∈ Ω2, 𝜎0 ∈ Ω0

where𝜎2,𝜎0 is the collection of all simple directed paths from 𝜎2 to 𝜎0 in and =
⋃

𝜎2∈Ω2,𝜎0∈Ω0 𝜎2,𝜎0 .
With F in hand, the flow from Ω0 to Ω2 can be symmetrically constructed by F. The flow from Ω2 to Ω2 or
from Ω0 to Ω0 can be constructed by randomly picking an intermediate state in Ω0 or Ω2.

Now we illustrate the flow F. Let Ω′ = Ω0 ∪ Ω2 ∪ Ω4. For 𝜎, 𝜎′ ∈ Ω′, we use 𝜎 ⊕ 𝜎′ to denote the
symmetric difference where we view them as bit strings in {0, 1}𝐸 . We also treat 𝜎 ⊕ 𝜎′ as an edge subset
of 𝐸 and this induces a subgraph of 𝐺. Since at every 𝑢 ∈ 𝑈 of degree 4, the “two-0 two-1” rule is satisfied
by 𝜎 and 𝜎′, this induced subgraph has even degree (0, 2 or 4) at every 𝑢 ∈ 𝑈.

Let 𝑈4 ⊆ 𝑈 be the set of degree-4 vertices in 𝜎 ⊕ 𝜎′. Then there are exactly 2 |𝑈4 | Eulerian partitions
for 𝜎 ⊕ 𝜎′. Recall that the Eulerian partition of 𝜎 ⊕ 𝜎′ is uniquely determined by a family of pairings
on 𝑈4. This is a one-to-one correspondence. For any pairing in {𝜌1, 𝜌2, 𝜌3} on a vertex 𝑢 with signature

matrix 𝑀 ( 𝑓 ) =


𝑎

𝑏 𝑐
𝑐 𝑏

𝑎

 , define the weight function 𝑤𝑡 for pairings as


𝑤𝑡 (𝜌1) = −𝑎2+𝑏2+𝑐2

2
𝑤𝑡 (𝜌2) = 𝑎2−𝑏2+𝑐2

2
𝑤𝑡 (𝜌3) = 𝑎2+𝑏2−𝑐2

2

or

equivalently


𝑎2 = 𝑤𝑡 (𝜌2) + 𝑤𝑡 (𝜌3)
𝑏2 = 𝑤𝑡 (𝜌1) + 𝑤𝑡 (𝜌3)
𝑐2 = 𝑤𝑡 (𝜌1) + 𝑤𝑡 (𝜌2)

. Since 𝑓𝑢 ∈ ≤2 , all weights take non-negative values. Let Φ𝜎⊕𝜎′

be the collection of all Eulerian partitions for 𝜎 ⊕ 𝜎′. For every 𝜑 ∈ Φ𝜎⊕𝜎′ , define

W(𝜎, 𝜎′, 𝜑) := ©­«
∏

𝑢∈𝑈\𝑈4

𝑓𝑢 (𝜎 |𝐸 (𝑢) ) 𝑓𝑢 (𝜎′ |𝐸 (𝑢) )
ª®¬
( ∏
𝑢∈𝑈4

𝑤𝑡 (𝜑(𝑢))
)
.
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Then for all distinct 𝜎, 𝜎′ ∈ Ω′, we have∑
𝜑∈Φ𝜎⊕𝜎′

W(𝜎, 𝜎′, 𝜑) =
∑

𝜑∈Φ𝜎⊕𝜎′

©­«
∏

𝑢∈𝑈\𝑈4

𝑓𝑢 (𝜎 |𝐸 (𝑢) ) 𝑓𝑢 (𝜎′ |𝐸 (𝑢) )
ª®¬
( ∏
𝑢∈𝑈4

𝑤𝑡 (𝜑(𝑢))
)

= ©­«
∏

𝑢∈𝑈\𝑈4

𝑓𝑢 (𝜎 |𝐸 (𝑢) ) 𝑓𝑢 (𝜎′ |𝐸 (𝑢) )
ª®¬©­«

∑
𝜑∈Φ𝜎⊕𝜎′

∏
𝑢∈𝑈4

𝑤𝑡 (𝜑(𝑢))ª®¬
= ©­«

∏
𝑢∈𝑈\𝑈4

𝑓𝑢 (𝜎 |𝐸 (𝑢) ) 𝑓𝑢 (𝜎′ |𝐸 (𝑢) )
ª®¬
( ∏
𝑢∈𝑈4

𝑓𝑢 (𝜎 |𝐸 (𝑢) ) 𝑓𝑢 (𝜎′ |𝐸 (𝑢) )
)

=  (𝜎) (𝜎′).

Now we specify the paths in the flow. For a pair of assignments 𝜎2 ∈ Ω2 and 𝜎0 ∈ Ω0, to transit from 𝜎2
to 𝜎0, paths in 𝜎2,𝜎0 go through states in Ω that gradually decrease the number of conflicting assignments
along walks and circuits in 𝜎2⊕𝜎0. We assume an order on 𝐸 . This induces a total order on circuits in 𝜎2⊕𝜎0.
By definition, in the induced subgraph 𝜎2 ⊕ 𝜎0, there are exactly two vertices in 𝑉 of degree 1 (we call them
endpoints) and all other vertices are of degree 2 or 4. Note that every path in 𝜎2,𝜎0 corresponds to an
element in Φ𝜎2⊕𝜎0 . Then given any family of pairings 𝜑 ∈ Φ𝜎2⊕𝜎0 , we have a unique decomposition of the
induced subgraph 𝜎2⊕𝜎0 as an edge-disjoint union of one walk [𝑒1] (𝑣1, 𝑒

′
1, 𝑢1, 𝑒2, 𝑣2, 𝑒

′
2, 𝑢2, . . . , 𝑒𝑘 , 𝑣𝑘) [𝑒′𝑘]

where 𝑒1, 𝑒
′
𝑘 are not part of the walk, and some edge-disjoint circuits which are ordered lexicographically.

Here 𝑣𝑖 ∈ 𝑉 and 𝑢𝑖 ∈ 𝑈, and assume that 𝜎2(𝑒1) = 𝜎2(𝑒′1) = 0, 𝜎2(𝑒2) = 1, 𝜎2(𝑒′2) = 0, . . . , 𝜎2(𝑒𝑘) =
𝜎2(𝑒′𝑘) = 1. Thus we know that 𝑣1, 𝑣𝑘 satisfy =2. The unique path 𝑝𝜑 firstly “pushes” =2 from 𝑣1 to 𝑣2, then
to 𝑣3, . . . , 𝑣𝑘−1, and finally “merges” at 𝑣𝑘 , arriving at a configuration in Ω0. Then we reverse all arrows
on each circuit in lexicographic order, and within each circuit 𝐶 it starts at the least edge 𝑒 and reverses all
arrows on 𝐶 in the direction defined by the starting cyclic orientation of 𝜎2. Then we make the value of the
flow on 𝑝𝜑 be W (𝜎2,𝜎0,𝜑)(Ω)2 .

Proposition 2.3. The flow F :  → R≥0 defined as above satisfies that∑
𝑝∈𝜎2 ,𝜎0

F(𝑝) = 𝜋(𝜎2)𝜋(𝜎0), ∀𝜎2 ∈ Ω2, 𝜎0 ∈ Ω0.

Proof. Note that only the flows on 𝑝𝜑 have non-zero flow. Then we verify that∑
𝑝𝜑∈𝜎2 ,𝜎0

F(𝑝𝜑) =
∑

𝜑∈Φ𝜎2 ,𝜎0

W(𝜎2, 𝜎0, 𝜑)(Ω)2

=
 (𝜎2) (𝜎0)(Ω)2

= 𝜋(𝜎2)𝜋(𝜎0).

□

Lemma 2.4. The flow F has congestion at most 𝑂 (𝑛3)(Ω2 )(Ω0 ) .

Proof. For any transition (𝜎′, 𝜎′′) ∈  where 𝜎′ ≠ 𝜎′′, we bound 𝑃(𝜎′, 𝜎′′) by

𝑃(𝜎′, 𝜎′′) = 1
𝑛2 min

{
1,

𝜋(𝜎′′)
𝜋(𝜎′)

}
= Ω

(
𝑛−2

)
since the quantity 𝜋 (𝜎′′ )

𝜋 (𝜎′ ) is a constant. Let

𝐻𝜎′ :=
{
𝜎2 ⊕ 𝜎0

�� 𝜎2 ∈ Ω2, 𝜎0 ∈ Ω0, ∃𝜑 ∈ Φ𝜎2⊕𝜎0 , 𝜎
′ ∈ 𝑝𝜑

}
.
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We bound the congestion 𝜌 of F as

𝜌 = max
(𝜎′ ,𝜎′′ ) ∈

1
𝜋(𝜎′)𝑃(𝜎′, 𝜎′′)

∑
𝜎2∈Ω2,𝜎0∈Ω0

∑
𝑝𝜑∈𝜎2 ,𝜎0 , 𝑝𝜑∋ (𝜎′ ,𝜎′′ )

W(𝜎2, 𝜎0, 𝜑)(Ω)2

≤ max
𝜎′∈Ω

𝑂 (𝑛2)
 (𝜎′)(Ω)

∑
𝜎∈Ω2,𝜎0∈Ω0

∑
𝜑∈Φ𝜎2 ,𝜎0 , 𝑝𝜑∋𝜎′

W(𝜎2, 𝜎0, 𝜑)

≤ max
𝜎′∈Ω

𝑂 (𝑛2)
 (𝜎′)(Ω)

∑
𝜎2∈Ω2

∑
𝜂∈𝐻𝜎′

∑
𝜑∈Φ𝜂

W(𝜎2, 𝜎2 ⊕ 𝜂, 𝜑).

Now we fix 𝜎′ ∈ Ω. For any 𝜎2 ∈ Ω2 and 𝜂 ∈ 𝐻𝜎′ consisting of exactly one connected component with
two endpoints of degree 1 and all other vertices having even degrees, observe that 𝜎′ ⊕ 𝜂 ∈ Ω′. Note that if
𝜎′ ∈ Ω0 then 𝜎′ ⊕ 𝜂 ∈ Ω2; if 𝜎′ ∈ Ω2, then depending on whether 𝜎′

(1) is 𝜎2, or
(2) appears in the process of reversing arrows on the walk with two endpoints, or
(3) appears after reversing arrows on the walk with endpoints,

the assignment 𝜎′ ⊕ 𝜂 is in Ω0, Ω2 or Ω4 respectively. Note that

W(𝜎2, 𝜎2 ⊕ 𝜂, 𝜑) = ©­«
∏

𝑢∈𝑈\𝑈4

𝑓𝑢 (𝜎2 |𝐸 (𝑢) ) 𝑓𝑢 ((𝜎2 ⊕ 𝜂) |𝐸 (𝑢) )
ª®¬
( ∏
𝑢∈𝑈4

𝑤𝑡 (𝜑(𝑢))
)
.

For every degree-0 vertex 𝑢 ∈ 𝑈, 𝑓𝑢 takes the same value in 𝜎2, 𝜎2 ⊕ 𝜂, 𝜎′ and 𝜎′ ⊕ 𝜂. Otherwise, for
every 2-degree vertex 𝑢 ∈ 𝑈, 𝑓𝑢 (𝜎2 |𝐸 (𝑢) ), 𝑓𝑢 ((𝜎2 ⊕ 𝜂) |𝐸 (𝑢) ) take two different values in {𝑎, 𝑏, 𝑐}. Sim-
ilarly 𝑓𝑢 (𝜎′ |𝐸 (𝑢) ), 𝑓𝑢 ((𝜎′ ⊕ 𝜂) |𝐸 (𝑢) ) also take two these different values in {𝑎, 𝑏, 𝑐}. Then we know that
W(𝜎2, 𝜎2 ⊕ 𝜂, 𝜑) = W(𝜎′, 𝜎′ ⊕ 𝜂, 𝜑). Then we can show that

𝜌 ≤ max
𝜎′∈Ω

𝑂 (𝑛2)
 (𝜎′)(Ω)

∑
𝜎2∈Ω2

∑
𝜂∈𝐻𝜎′

∑
𝜑∈Φ𝜂

W(𝜎2, 𝜎2 ⊕ 𝜂, 𝜑)

≤ max
𝜎′∈Ω

𝑂 (𝑛2) |𝐸 |
 (𝜎′)(Ω)

∑
𝜂∈𝐻𝜎′

∑
𝜑∈Φ𝜂

W(𝜎′, 𝜎′ ⊕ 𝜂, 𝜑)

≤ max
𝜎′∈Ω

𝑂 (𝑛3)
 (𝜎′)(Ω)

∑
𝜂∈𝐻𝜎′

 (𝜎′ ⊕ 𝜂)

≤ 𝑂 (𝑛3)(Ω′)
(Ω)

with a standard argument(Ω4)/(Ω2) ≤ (Ω2)/(Ω0). Therefore, the congestion is bounded by𝑂 (𝑛3)(Ω2 )(Ω0 ) .
□

2.2. Windability in six-vertex models. In [McQ13, HLZ16], a standard way to establish an FPRAS for
Holant problems is to show the windability of signatures.

Definition 2.5 (Windability). For any finite set 𝐽 and any configuration 𝑥 ∈ {0, 1}𝐽 , define 𝑥 as the set of
partitions of {𝑖 ∈ 𝐽 | 𝑥𝑖 = 1} into pairs and at most one singleton. We say a signature 𝑓 : {0, 1}𝐽 → R≥0 is
windable if there exists values 𝐵(𝑥, 𝑦, 𝑀) ≥ 0 for any distinct 𝑥, 𝑦 ∈ {0, 1}𝐽 and 𝑀 ∈ 𝑥⊕𝑦 satisfying that

• 𝑓 (𝑥) 𝑓 (𝑦) = ∑
𝑀∈𝑥⊕𝑦 𝐵(𝑥, 𝑦, 𝑀) for any distinct 𝑥, 𝑦 ∈ {0, 1}𝐽 ;

• 𝐵(𝑥, 𝑦, 𝑀) = 𝐵(𝑥 ⊕ 𝑆, 𝑦 ⊕ 𝑆, 𝑀) for all distinct 𝑥, 𝑦 ∈ {0, 1}𝐽 and 𝑆 ∈ 𝑀 ∈ 𝑥⊕𝑦 .



6 APPROXIMATELY COUNTING SIX-VERTEX MODELS

Lemma 2.6 (Windability of ≤2). For any nonnegative real numbers 𝑎, 𝑏, 𝑐, the function 𝑓 with signature

matrix 𝑀 ( 𝑓 ) =


𝑎

𝑏 𝑐
𝑐 𝑏

𝑎

 is windable if and only if 𝑎2 ≤ 𝑏2 + 𝑐2, 𝑏2 ≤ 𝑎2 + 𝑐2 and 𝑐2 ≤ 𝑎2 + 𝑏2.

3. HARDNESS

By now, the intractability of the six-vertex model is consistent with what has been established in physics.

Theorem 3.1 (Theorem 5.1 in [CLL19]). If 𝑓 ∈ >, then Holant(≠2 | 𝑓 ) does not have an FPRAS unless
RP = NP.
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