APPROXIMATELY COUNTING SIX-VERTEX MODELS

1. BACKGROUND ON SIX-VERTEX MODEL

The six-vertex model is originally built on Eulerian orientations of a 4-regular planar graph. In the six-
vertex model, we only allow that for every vertex v, the orientations of edges around v satisfy that exactly two
edges point inwards and the remaining two edges point outwards. For every vertex, the valid configurations
in the six-vertex model around a vertex should be one of the following six cases:
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FiGURE 1. Valid configurations

For a general model, we associate configurations with weights w, wo, ..., wg respectively. We assume
the arrow reversal symmetry to correspond the physics law, i.e., w; = wy = a, wz = wqg = b and ws = wg = c.
We assume that a, b, ¢ > 0 as in the real physics world. For a 4-regular graph G with edges incident to each
vertex labelled from 1 to 4, we define the partition function of the six-vertex model as

Z(G;a,b,c) = Z a"rHm patha phs s
7eQE0(G)

where QE%(G) is the collection of all Eulerian orientations of G and n; = n;(7) is the number of vertices of
type i under the orientation 7 fori = 1,2, ...,6.

1.1. Six-vertex model as Holant problem. An alternative view for the six-vertex model is to see it as a
type of Holant problem. For a 4-regular graph G = (V, E), consider its edge-vertex incident graph G’ =
(Uy,Ug, E’). To model the orientation of an edge, we introduce the DISEQUALITY signature (denoted by
#7), which receives two boolean bits as input and output whether they are not equal (that is to say, output
1 when input is 01 or 10 and O otherwise). We say an orientation on edge e = {w,v} is going out w
and into v in G if the edge (uy,u.) € E’ takes value 1 and (u,,u.) € E’ takes value 0. To model the
weights on valid configurations, we use a 4-arity signature f, which is of the following matrix form on input
X1,X2,x3,%x4 € {0, 1} that

0 00 a
0 b c O

M(f) =My (D =g ¢ o
a 000

If we order the left, down, right and up edges incident to a vertex by 1, 2, 3, 4, then we know that the partition
function Z(G; a, b, ¢) is equal to Holant(G’, #, | f). We certify the following families of signatures:

Feo= {f|a2Sb2+cz,b2Sa2+c2,02Sa2+b2},
Fe={fla<b+c,b<a+c,c<a+b},
Fo:={f|c=a+b}

Fs={fla,b,c>0,a>b+cVb>a+cVc>a+b}.
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1.2. Eulerian orientations and Eulerian pairings. From the graph theoretic term, there is a different view
of Eulerian orientations. An Eulerian partition of a graph G is a partition of the edges of G into edge-disjoint
circuits. A directed Eulerian partition is an Eulerian partition where every edge-disjoint circuit takes one of
the two cyclic orientations. Let G = (V, E) be a 4-regular graph and v be a vertex of G. Let ey, e, 3, ¢4 be
the four edges incident to v. A pairing o atv is a partition of {e|, e, e3, e4} into pairs. We use - «w - to denote
apair. There are exactly 3 distinct pairings: (e] e €3, e3 e e4), (€] ¢ eq, e ¢ e3), (€] e~ €3, ) ¢~ e4).
We label these cases by symbols p1, oo and p3. Using this kind of language, an Eulerian partition can be
uniquely determined by a family of pairings ¢ = {0, },cy Where o, € {p1, P2, p3}.

For any vertex v in a valid configuration 7 of the six-vertex model, incoming edges can be paired with
outgoing edges in exactly two ways, corresponding to two of the three pairings at v. That is to say, 7 can be
decomposed into 2!V! distinct directed Eulerian partitions denoted by ®(7). Since no two Eulerian orienta-
tions share one directed Eulerian partition and every directed Eulerian partition corresponds to a particular
Eulerian orientation, the map from six-vertex configurations to directed Eulerian partitions is 1-to-2!V!, non-
overlapping and surjective. Define w as a function assigning a weight to every pairing at every vertex and let
the weight w(¢) of an Eulerian partition ¢ be the product of weights at each vertex. In particular, when w is
defined as

wipr) = =etbee
wioo) = S
w(ps) = 25he

or equivalently
a=w(p2) +w(p3)
b=w(p1) +w(p3)
c=w(p1) +w(p2)

0 0 0 a
: . 0 b c O . . . .
for every vertex with the signature 0 ¢ b ol then the weight of a six-vertex model configuration 7 is
a 00 O

equal t0 X yeq(r) W(9)-

2. MARKOV CHAIN AND CANONICAL PATH

We employ the Holant view to compute the partition function by designing and analyzing a rapid-mixing
Markov chain M to construct an FPRAS. Let G = (V, U, E) be the underlying bipartite graph of an instance
in Holant(#, |F.2). An assignment o assigns a value in {0, 1} to each edge in E. For every k € N, we
define Qy as the collection of assignments which violate #; at exactly k vertices in V. The Markov chain M
is defined on the state space Q = Qg U €.

For every o € Q and any subset S C Q, define the weight function W by W(o) = [1,cu fu(o|E()) and

Z(S) = Y 5es W(0). Define the Gibbs measure for Q as (o) = yg((g)) . Note that if an assignment o~ € Q;
assigns 00 to edges incident to v/ € V (satisfying =; at v”), then it must assign 11 to both edges incident to
v’ eV,

Now we describe the transition graph of M. The transition includes three kinds of moves. Suppose that
o € Qp. An Qp-to-Q, move from o takes a 4-degree vertex u € U and two incident edges ¢’ = (V',u),
e’ = (v, u) satistying {o(e’),o(e””)} = {0, 1}, and changes it to 0» € €, which flips both o (e”) and
o(e”). An Qy-t0-Qy move is the opposite. An €,-to-Q; move is, intuitively, to shife one (=) from a vertex
v/ € V to another v* € V where for some u € U, v’ and v* are both incident to u and the “two-0, two-1" rule
at u is preserved. Formally, let o € Q; be the assignment with v/, v"” € V violating #,. Letv* € V\ {v/,v"’}
be a vertex in V such that for some u € U, both ¢’ = (v',u),e* = (v',u) € E and {o(¢’),0(e*)} = {0, 1}.
Then an €,-to-Q, move changes o to o* by flipping both o(e’) and o (e”).
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If o) can move to o in the transition graph, we denote by ~ the moves. Note that o can also move to oj.
The transition probability P(-, -) is defined as

#min{l,zg(‘z;}, o ~ O
P10 = 1= L 3 min (LA oy =0
0 otherwise

Since P is designed in a Metropolis way, we know that the stationary distribution of P should be & (if it
exists). The following fact comes directly from the definition.

Fact 2.1. The Markov kernel P is aperiodic, irreducible and reversible with respect to n.

2.1. Construction and analysis of canonical path. To show the rapid mixing of P, we use the method of
a flow argument. The key ingredient is to construct a flow with low congestion.

Theorem 2.2 (Lemma 4.2 in [ 1. Assume that Z(Qgy) > 0. There is a flow on Q with congestion at
2
most O (n3 (5((5%))) ) using path of length O (n).

Our goal is to construct the flow F : P — Ry from Q; to € satisfying that

> F(p) =rlo)n(o0), Vo € Q00 € Q

pepo'z,zro

where Py, o is the collection of all simple directed paths from o to o in M and P = U 4, eq,.04eqy Pos. o0
With & in hand, the flow from Qg to Q, can be symmetrically constructed by % . The flow from Q, to Q; or
from € to €y can be constructed by randomly picking an intermediate state in Qg or ;.

Now we illustrate the flow F. Let Q" = Q¢ U Q> U Q4. For 0,0’ € Q’, we use o & ¢’ to denote the
symmetric difference where we view them as bit strings in {0, 1}£. We also treat o @ o’ as an edge subset
of E and this induces a subgraph of G. Since at every u € U of degree 4, the “two-0 two-1" rule is satisfied
by o~ and o/, this induced subgraph has even degree (0, 2 or 4) at every u € U.

Let Uy C U be the set of degree-4 vertices in o @ o’. Then there are exactly 2/Y4| Eulerian partitions
for o @ o’. Recall that the Eulerian partition of o & ¢ is uniquely determined by a family of pairings
on Uy. This is a one-to-one correspondence. For any pairing in {p{, 02, 03} on a vertex u with signature

a _ —ad’+b’+c?

. b c . . . . Wt(pl) B 2 b22 2
matrix M(f) = c b , define the weight function wr for pairings as {wz(p;) = $=2+< or

a wilpy) = Cab=c

a? = wi(p2) + wi(p3)
equivalently { b? = wt(p1) + wt(p3) . Since f, € F.2, all weights take non-negative values. Let @ ;¢

c* = wi(py) +wi(p2)
be the collection of all Eulerian partitions for o @ o”’. For every ¢ € @, ¢, define

[ wt(w(u))).

uely

Wi o9 = || fulelew)fulelew)

ueU\Uy
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Then for all distinct o, o’ € Q’, we have

>, W o= | ] fulolew) fule lEw) (H Wt(so(u)))
QED g QED g5 \ucU\Uy uely
=| ] foleapfu@leap || D, | wrtew)
ueU\Uy QED g, ucly
= 1_[ fu(O-|E(u))fu(o-/|E(u)) (l_[ fu(o-lE(u))fu(O',|E(u)))
MEU\U4 uely
= W(r)W(o).

Now we specify the paths in the flow. For a pair of assignments o, € €, and oy € €y, to transit from o,
to oy, paths in P, +, go through states in Q that gradually decrease the number of conflicting assignments
along walks and circuits in 05 ®07p. We assume an order on E. This induces a total order on circuits in o ®0y.
By definition, in the induced subgraph o» @ oy, there are exactly two vertices in V of degree 1 (we call them
endpoints) and all other vertices are of degree 2 or 4. Note that every path in P, ., corresponds to an
element in @, ,. Then given any family of pairings ¢ € ®,g,, We have a unique decomposition of the
induced subgraph o, &0 as an edge-disjoint union of one walk [e{] (v, e’l, ui, e, va, e’z, Up,...,€k, Vi) [e;c]
where ey, e} are not part of the walk, and some edge-disjoint circuits which are ordered lexicographically.
Here v; € V and u; € U, and assume that o»(eq) = 0'2(e’1) = 0,07%(ep) = 1,0'2(@’2) =0,...,00(er) =
0'2(6;{) = 1. Thus we know that vy, v satisfy =». The unique path p, firstly “pushes” =, from v; to v, then
to vs3,..., Vi1, and finally “merges” at vg, arriving at a configuration in €. Then we reverse all arrows
on each circuit in lexicographic order, and within each circuit C it starts at the least edge e and reverses all

arrows on C in the direction defined by the starting cyclic orientation of 0. Then we make the value of the
W(o2,00.¢)

flow on p, be HOE

Proposition 2.3. The flow F : P — Ry defined as above satisfies that

> F(p) =rlo)r(o0), Vo € Q00 € Q.

pepcrz,o-o

Proof. Note that only the flows on p, have non-zero flow. Then we verify that

Z F(py) = Z W (o2, 00, ¢)

2
Pe€Pay 0 PELo). 0 2
_ W(o2)W(00)
Z(Q)?

= n(o2)m(00).

Lemma 2.4. The flow F has congestion at most 0(n3) —gggg

Proof. For any transition (o', 0c"’) € M where o’ # ¢”’, we bound P(o”’, c"’) by

P(o’,0") = %min {1, 7;(((::))} =Q (n_z)

71_(0_//)

(o) is a constant. Let

since the quantity

Hy = {0'2 @ oy | o €Q,00€Qp,3p € Dyygery, 0 € p(p} .
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We bound the congestion p of & as

_ 1 W (o2, 00, )
(o oy em (o) P(o, o) 2 2 Z(Q)?

02€Q),00€Q) p¢€7)(,—2’(,-0,p4,9(0",0”)

0(n?)
OB @ L )

TEQ,00€Q) 9Dy, agPe30”

<?2QW(S-S;Z(Q) Z Z ZW(O'z,Uz@U ®).

026Q) neEH ;1 pedy,

Now we fix 0’ € Q. For any o € Q) and n € H, consisting of exactly one connected component with
two endpoints of degree 1 and all other vertices having even degrees, observe that o’ @ n € Q’. Note that if
o’ € Qythen o’ @& n € Qy; if 0’ € Qy, then depending on whether o~

(1) is o7, or
(2) appears in the process of reversing arrows on the walk with two endpoints, or
(3) appears after reversing arrows on the walk with endpoints,

the assignment o’ @ 1 is in Qg, £, or Qq respectively. Note that

Wionmene) = || ful@lew)ful(o@n)lew) (]‘[ wrw(u))).

MEU\U4 MEU4

For every degree-0 vertex u € U, f, takes the same value in 0»,0% ® 17,0’ and ¢’ @ 5. Otherwise, for
every 2-degree vertex u € U, fu,(02lEw)), fu((02 ® 1)|Ew)) take two different values in {a, b, c}. Sim-
ilarly f,,(0|Ew)), fu((0" ® 1)|Ew)) also take two these different values in {a, b, c}. Then we know that
W(op, 00 ®n,¢) =W (o',0’ &n,¢). Then we can show that

p < max W(?rffz)(g) Z Z Z W(o2, 02 @1, ¢)

026Q) n€EH ;1 pe®yy

O(n*)|E| .
= PR WEHZ(@ U;U, g;.;,,w((r ey
o(n?) /
S P wez@ 2 e
3, Z2(&)
<0(n’) Z()

with a standard argument Z(Q4)/Z(Qy) < Z(£)/Z(L0). Therefore, the congestion is bounded by O (n3) (

O

2.2. Windability in six-vertex models. In [ , ], a standard way to establish an FPRAS for
Holant problems is to show the windability of signatures.

Definition 2.5 (Windability). For any finite set J and any configuration x € {0, 1}”, define M as the set of
partitions of {i € J | x; = 1} into pairs and at most one singleton. We say a signature f : {0, 1} - Rsgis
windable if there exists values B(x, y, M) > 0 for any distinct x, y € {0,1}’ and M € M xey satisfying that

o f(X)f(Y) = Xpmem,s, B(x,y, M) for any distinct x, y € {0, 1}/,
o B(x,y,M)=B(x®S,y®S, M) for all distinct x, y € {0, 1}’ and S € M € M,q,.
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Lemma 2.6 (Windability of F_2). For any nonnegative real numbers a, b, c, the function f with signature
a

matrix M(f) =

b . . .
c is windable if and only if a*> < b* + ¢?, b* < a®> + ¢ and ¢* < a® + b°.

c
b

3. HARDNESS
By now, the intractability of the six-vertex model is consistent with what has been established in physics.

Theorem 3.1 (Theorem 5.1 in [ D. If f € Fs, then Holant(#; |f) does not have an FPRAS unless
RP = NP.
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