
A Local-to-Global Framework: Simplicial Complex

Zhidan Li

Contents

1 Markov Chains and Local Properties 1
1.1 Spectral independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 High-Dimensional Expander: Simplicial Complex 3
2.1 Weight functions and random walks on the simplicial complex . . . . . . . . . . . . . . . . . . . . . 4
2.2 Garland’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Trickling-down theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 The local-to-global theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Variance and Entropy Contraction 10
3.1 Variance tensorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Optimal spectral gap for sparse graphical models . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Entropy tensorization and optimal mixing rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 From spectral independence and marginal boundedness to entropic independence . . . . . 15
3.2.2 Optimal mixing rate without marginal boundedness . . . . . . . . . . . . . . . . . . . . . . 16

1 Markov Chains and Local Properties

Given a distribution 𝜇 over state space Ω, let 𝑃 be a reversible Markov chain with respect to Ω. We define the mixing
time of 𝑃 at initial state 𝑥 ∈ Ω as

𝑡mix(𝑃, 𝑥, 𝜀) = inf
{
𝑡 ≥ 0

�� DTV
(
𝑃𝑡 (𝑥, ·)



 𝜇
)
≤ 𝜀

}
.

The functional inequality is introduced to bound the mixing time of 𝑃 . For two functions 𝑓 , 𝑔 : Ω → R, define
the Dirichlet form with assumption that all terms are well-defined to be

E𝑃 (𝑓 , 𝑔) := ⟨𝑓 , (𝐼 − 𝑃)𝑔⟩𝜇 =

∫
𝑥∈Ω

𝑓 (𝑥) (𝐼 − 𝑃)𝑔(𝑥) d𝜇 (𝑥) . (1)

Definition 1.1 (Functional Inequalities). Given a reversible Markov chain 𝑃 with respect to its stationary distribu-
tion 𝜇 over Ω, we define the spectral gap of 𝑃 as

Gap(𝑃) := inf
𝑓 :Ω→R

E𝑃 (𝑓 , 𝑓 )
Var𝜇 (𝑓 )

and we define the modified log-Sobolev inequality constant (MLSI) of 𝑃 as

𝜌LS(𝑃) := inf
𝑓 :Ω→R≥0

E𝑃 (𝑓 , log 𝑓 )
Ent𝜇 [𝑓 ]

where the variance and the entropy of 𝑓 with respect to 𝜇 are defined as

Var𝜇 (𝑓 ) = E𝜇
[
𝑓 2

]
− E𝜇 [𝑓 ]2 , Ent𝜇 [𝑓 ] = E𝜇 [𝑓 log 𝑓 ] − E𝜇 [𝑓 ] logE𝜇 [𝑓 ] .

Moreover, for every reversible 𝑃 , it holds that Gap(𝑃) = 1 − 𝜆2(𝑃).
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Previously several works have used the functional inequalities to bound the mixing time.

Lemma 1.2 (Theorem 12.4 in [LP17]). There exists a universal constant 𝐶 > 0 such that the followings hold for all
𝑥 ∈ Ω,

𝑡mix(𝑃, 𝑥, 𝜀) ≤
𝐶

Gap(𝑃)

(
log 1

𝜇 (𝑥) + log
1
𝜀

)
,

𝑡mix(𝑃, 𝑥, 𝜀) ≤
𝐶

𝜌LS(𝑃)

(
log log 1

𝜇 (𝑥) + log
1

𝜇 (𝑥)

)
.

Dirichlet form and continuous-time random walk

The Dirichlet form is introduced in Bobkov and Tetali [BT06] to analyze the mixing time of Markov chains. To
briefly see this, consider the following Markov process:

𝑃𝑡 = 𝑒−(𝐼−𝑃 )𝑡 , ∀𝑡 ≥ 0.

Let 𝜇0 be the initial distribution and 𝜇𝑡 = 𝜇0𝑃𝑡 . Consider the function 𝑓𝑡 supported on Ω as 𝑓𝑡 = d𝜇𝑡
d𝜇 . Thus ⟨𝑓𝑡 , 1⟩𝜇 = 1

and
d
d𝑡 𝑓𝑡 = −(𝐼 − 𝑃) 𝑓𝑡 ,

d
d𝑡 log 𝑓𝑡 = −(𝐼 − 𝑃)1.

Then,
d
d𝑡 Var𝜇 (𝑓𝑡 ) =

d
d𝑡

(
⟨𝑓𝑡 , 𝑓𝑡 ⟩𝜇 − ⟨𝑓𝑡 , 1⟩2𝜇

)
=

〈
d
d𝑡 𝑓𝑡 , 𝑓𝑡

〉
𝜇

+
〈
𝑓𝑡 ,

d
d𝑡 𝑓𝑡

〉
𝜇

− 2 ⟨𝑓𝑡 , 1⟩𝜇
〈

d
d𝑡 𝑓1, 1

〉
𝜇

= 2 ⟨𝑓𝑡 ,−(𝐼 − 𝑃) 𝑓𝑡 ⟩𝜇 − 2 ⟨𝑓𝑡 , 1⟩𝜇 ⟨−(𝐼 − 𝑃) 𝑓𝑡 , 1⟩𝜇
= −2E𝑃 (𝑓𝑡 , 𝑓𝑡 ).

Similarly for the relative entropy we have

d
d𝑡DKL (𝜇𝑡 ∥ 𝜇) =

d
d𝑡 Ent𝜇 [𝑓𝑡 ]

=
d
d𝑡 ⟨𝑓𝑡 , log 𝑓𝑡 ⟩𝜇

=

〈
d
d𝑡 𝑓𝑡 , log 𝑓𝑡

〉
𝜇

+
〈
𝑓𝑡 ,

d
d𝑡 log 𝑓𝑡

〉
𝜇

= ⟨−(𝐼 − 𝑃) 𝑓𝑡 , log 𝑓𝑡 ⟩𝜇 + ⟨𝑓𝑡 ,−(𝐼 − 𝑃)1⟩𝜇
= −2E𝑃 (𝑓𝑡 , log 𝑓𝑡 ).

The two inequalities drive us to bound the spectral gap and MLSI constant.

1.1 Spectral independence

Now we consider the case Ω ⊆ [𝑞]𝑛 for a positive integer 𝑞 ≥ 2. It makes common sense since we focus on the
mixing rate of the Glauber dynamics for the Gibbs distribution of 𝑞-spin systems.

The local property named spectral independence is firstly introduced in Anari, Liu and Oveis Gharan [ALOG20]
to evaluate the local dependence in hard-core models.

Definition 1.3 (Spectral Independence - Boolean Domain). Let 𝜇 be a distribution over Ω ⊆ {−1, +1}𝑛 . We define
the influence matrix Ψ𝜇 ∈ R𝑛×𝑛 to be

Ψ𝜇 (𝑖, 𝑗) =
1
2E𝑋∼𝜇

[
𝑋𝑖

�� 𝑋 𝑗 = 1
]
− 1
2E𝑋∼𝜇

[
𝑋𝑖

�� 𝑋 𝑗 = −1
]
, ∀𝑖, 𝑗 ∈ [𝑛] .

For 𝜂 > 0, we say 𝜇 is 𝜂-spectrally independent if


Ψ𝜇




OP ≤ 1 + 𝜂.
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For arbitrary 𝑞 ≥ 2, Feng, Guo, Yin and Zhang [FGYZ22] extend the definition of the influence matrix of 𝜇 and
introduce the generalized version of the spectral independence.

Definition 1.4 (Spectral Independence). Let 𝜇 be a distribution over Ω ⊆ [𝑞]𝑛 . For any Λ ⊆ [𝑛] and every feasible
pinning 𝜏 ∈ [𝑞]Λ, the absolute influence matrix Ψ𝜏

𝜇 ∈ R𝑛×𝑛≥0 is defined as, for every distinct 𝑢, 𝑣 ∈ [𝑛],

Ψ𝜏
𝜇 (𝑢, 𝑣) := inf

𝑖, 𝑗∈[𝑞 ]
DTV

(
𝜇
𝜏∪{𝑢←𝑖 }
𝑣




 𝜇
𝜏∪{𝑢←𝑗 }
𝑣

)
.

For 𝜂 > 0, we say 𝜇 is 𝜂-spectrally independent if for all Λ ⊆ [𝑛] and 𝜏 ∈ [𝑞]Λ, the spectral radius of the absolute
influence matrix satisfies 𝜌 (Ψ𝜏

𝜇 ) ≤ 1 + 𝜂.

Remark 1.5. In some cases, we also define the influence matrix Ψ̃𝜇 as

Ψ̃𝜇 ((𝑖, 𝑠), ( 𝑗, 𝑡)) := Pr𝜔∼𝜇 [𝜔 ( 𝑗) = 𝑡 | 𝜔 (𝑖) = 𝑠] − Pr𝜔∼𝜇 [𝜔 ( 𝑗) = 𝑡] .

It is well-known that 𝜆max
(
Ψ̃𝜇

)
≤ 𝜌 (Ψ𝜇).

The following argument relates the influence matrix to the correlation of the distribution. This might explain
the motivation and the intuition that we take the spectral independence into account and serve it as a local property
of the distribution.

Lemma 1.6. Given a distribution 𝜇 over Ω ⊆ {−1, +1}𝑛 , define the correlation matrix of 𝜇 as

Cor(𝜇) := diag (Cov (𝜇))−1/2 Cov (𝜇) diag (Cov (𝜇))−1/2 .

Then Ψ𝜇 = Cov (𝜇) diag (Cov (𝜇))−1 and 

Ψ𝜇




OP = ∥Cor(𝜇)∥OP.

Proof. Let 𝑋 be a random variable drawn from 𝜇. For 𝑖, 𝑗 ∈ [𝑛], by calculation,

Cov (𝜇)𝑖, 𝑗 = E
[
𝑋𝑖𝑋 𝑗

]
− E [𝑋𝑖] E

[
𝑋 𝑗

]
= E

[
𝑋𝑖

�� 𝑋 𝑗 = 1
]
Pr

[
𝑋 𝑗 = 1

]
(1 − E

[
𝑋 𝑗

]
) − E

[
𝑋𝑖

�� 𝑋 𝑗 = −1
]
Pr

[
𝑋 𝑗 = 1

]
(1 + E

[
𝑋 𝑗

]
)

= Ψ𝜇 (𝑖, 𝑗)
(
1 − E

[
𝑋 𝑗

]2)
thus leading to the identity Ψ𝜇 = Cov (𝜇) diag (Cov (𝜇))−1. To prove the second identity, let v be an eigenvector of
Cor(𝜇) and its associated eigenvalue is 𝜆. For simplicity let 𝐷 = diag (Cov (𝜇)). Then,

𝜆v = 𝐷−1/2Cov (𝜇) 𝐷−1/2v.

Let u = 𝐷1/2v. Thus we obtain

𝜆u = Cov (𝜇) 𝐷−1/2v = Cov (𝜇) 𝐷−1u = Ψ𝜇u.

Then we know Ψ𝜇 and Cor(𝜇) share the same spectrum, meaning that their operator norms are equal. □

2 High-Dimensional Expander: Simplicial Complex

Now we introduce a framework relate the local property to the global rate of the mixing of Markov chains.

Definition 2.1 (Simplicial Complex). A simplicial complex C is a non-empty downwards closed collection of sets
(called faces) over a finite ground set of elements. It satisfies

• ∅ ∈ C;

• if 𝑆 ∈ C and 𝑇 ⊆ 𝑆 , then 𝑇 ∈ C.
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Additionally, we assume that C is pure, i.e., for all maximal elements 𝑆 ∈ C, they share the same size denoted
by 𝑑 = rank( C). For all 𝑆 ∈ C, let rank(𝑆) := |𝑆 |. According to the rank function, we partition C into 𝑑 + 1 parts
as: for every 0 ≤ 𝑘 ≤ 𝑑 , define the 𝑘-skeleton as

C(𝑘) := {𝑆 ∈ C | rank(𝑆) = 𝑘} .

For every face 𝑆 ∈ C, define the link at 𝑆 as

C𝑆 := {𝑇 ∈ C | 𝑆 ∩𝑇 = ∅, 𝑆 ∪𝑇 ∈ C}

and for all 0 ≤ 𝑘 ≤ 𝑑 − rank(𝑆), define the 𝑘-skeleton at 𝑆 as

C𝑆 (𝑘) := {𝑇 ∈ C𝑆 | rank(𝑇 ) = 𝑘} .

2.1 Weight functions and random walks on the simplicial complex

Given a distribution 𝜇 over Ω = C(𝑑), we define the weight function𝑤 : C→ R≥0 as

𝑤 (𝑆) =
{
𝜇 (𝑆) 𝑆 ∈ C(𝑑);∑

𝑇 ⊇𝑆,𝑇 ∈ C(𝑘+1) 𝑤 (𝑇 ) 𝑆 ∈ C(𝑘), 𝑘 < 𝑑.

For every link C𝑆 at face 𝑆 ∈ C, we define𝑤𝑆 (𝑇 ) = 𝑤 (𝑆 ∪𝑇 ) for every 𝑇 ∈ C𝑆 .
To see the random walks on C, firstly we introduce the distribution on it. For every 0 ≤ 𝑘 ≤ 𝑑 , we define the

distribution 𝜋𝑑 on C(𝑘) as

𝜋𝑘 (𝑆) =
𝑤 (𝑆)∑

𝑇 ∈ C(𝑘 ) 𝑤 (𝑇 )
, ∀𝑆 ∈ C(𝑘) .

Similarly for the link at 𝑆 , we can also define the distribution 𝜋𝑆,𝑘 over C𝑆 (𝑘).
For 0 ≤ 𝑘 ≤ 𝑑 and every 𝑆 ∈ C(𝑘), by calculation,

𝑤 (𝑆) = 𝑑!
𝑘!𝜇 (𝑆) .

This leads to the identity

𝜋𝑘 (𝑆) =
𝑤 (𝑆)∑

𝑇 ∈ C(𝑘 ) 𝑤 (𝑇 )
=

𝜇 (𝑆)∑
𝑇 ∈ C(𝑘 ) 𝜇 (𝑇 )

=
1(
𝑑
𝑘

) 𝜇 (𝑆).
For simplicity of notations and analysis, we assume that the dimension of all the matrices is C(1), and we add

zeros to appropriate positions. For every 0 ≤ 𝑘 ≤ 𝑑 , we define Π𝑘 := diag (𝜋𝑘 ) to be the diagonal matrix induced by
𝜋𝑘 , and similarly define Π𝑆,𝑘 ∈ RC𝜏 (𝑘 )× C𝜏 (𝑘 ) for all links at 𝑆 ∈ C and 0 ≤ 𝑘 ≤ 𝑑 − rank(𝑆), and the inverse of them
means taking inverse only on their non-zero entries. Additionally, we use the operator · to denote the actual vector
or matrix in the simplicial complex. Precisely speaking, for a matrix 𝐴 supported on C𝜏 (𝑘) × C𝜏 (𝑘),

𝐴(𝑆 ∪𝑇, 𝑆 ∪ 𝑅) := 𝐴(𝑇, 𝑅), ∀𝑇, 𝑅 ∈ C𝜏 (𝑘)

and 0 otherwise, meanwhile for a vector v supported on C𝜏 (𝑘),

v(𝑆 ∪𝑇 ) := v(𝑇 ), ∀𝑇 ∈ C𝜏 (𝑘)

and 0 otherwise.
There are two natural random walks on the simplicial complex C: up-walk and down-walk.

• ‘Up-Walk’ P↑
𝑘
: starting from 𝑆 ∈ C(𝑘), we add an element 𝑥 ∈ C𝑆 (1) as 𝜋𝑆,1.

• ‘Down-Walk’ P↓
𝑘
: starting from 𝑆 ∈ C(𝑘), we remove an element 𝑥 ∈ 𝑆 uniformly at random.
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We write them in a explicit form: for 0 ≤ 𝑘 ≤ 𝑑 − 1, 𝑆 ∈ C(𝑘), 𝑇 ∈ C(𝑘 + 1),

P↑
𝑘
(𝑆,𝑇 ) = 𝑤 (𝑇 )

𝑤 (𝑆) 1 [𝑆 ⊆ 𝑇 ]

and for 1 ≤ 𝑘 ≤ 𝑑 , 𝑆 ∈ C(𝑘), 𝑇 ∈ C(𝑘 − 1),

P↓
𝑘
(𝑆,𝑇 ) = 1

𝑘
1 [𝑇 ⊆ 𝑆] .

Based on the two walks, we define the following up-down walk and down-up walk (note that they are all lazy
random walks):

PΔ
𝑘
= P↑

𝑘
P↓
𝑘+1, ∀0 ≤ 𝑘 ≤ 𝑑 − 1,

P∇
𝑘
= P↓

𝑘
P↑
𝑘−1, ∀1 ≤ 𝑘 ≤ 𝑑.

For the up-down walks, usually we consider its non-lazy version P∧
𝑘
:= 𝑘+1

𝑘
PΔ
𝑘
− 1

𝑘
𝐼 . For the link C𝜏 at 𝜏 ∈ C, it

is similar to define the random walks PΔ
𝜏,𝑘

, P∇
𝜏,𝑘

and P∧
𝜏,𝑘

. Among all these walks, we pay quite a special attention
to the local walk P∧𝜏,1 and P∇𝜏,1. Define the matrix𝑊𝜏,2 supported on C𝜏 (1) × C𝜏 (1) as𝑊𝜏,2(𝑥,𝑦) = 𝜋𝜏,2({𝑥,𝑦}) for
𝑥,𝑦 ∈ C𝜏 (1) and {𝑥,𝑦} ∈ C𝜏 (2). By definition, it holds that

P∧𝜏,1 =
1
2Π
−1
𝜏,1𝑊𝜏,2, (2)

P∇𝜏,1 = 1𝜋⊤𝜏,1. (3)

Moreover, directly from the definition, for the distributions of the two adjacent layers, it holds that

Π𝑘+1P
↓
𝑘+1 =

(
P↑
𝑘

)⊤
Π𝑘 , ∀0 ≤ 𝑘 ≤ 𝑑 − 1. (4)

Multiplying all-ones vector on both sides, we obtain,

𝜋𝑘+1P
↓
𝑘+1 = 𝜋𝑘 , (5)

𝜋𝑘P
↑
𝑘
= 𝜋𝑘+1. (6)

For every 0 ≤ ℓ ≤ 𝑘 ≤ 𝑑 and 𝜎 ∈ C(𝑘), 𝜏 ∈ C(ℓ) with 𝜏 ⊆ 𝜎 , by definition,

𝜋𝑘 (𝜎) =
1(
𝑑
𝑘

) 𝜇 (𝜎)
=

1(
𝑑
𝑘

) 𝜇 (𝜏)𝜇𝜏 (𝜎 \ 𝜏)
=

(
𝑘

ℓ

)
𝜋ℓ (𝜏)𝜋𝜏,𝑘−ℓ (𝜎 \ 𝜏).

2.2 Garland’s method

The kernel of the local-to-global theorem is to establish the relationship between local walks and global walks. The
Garland’s method is implicit in the work of Oppenheim [Opp18] and we put it in a more direct and explicit form.

Lemma 2.2 (Garland’s Method). The following identities hold:

1. Π1 = E𝜏∼𝜋1
[
Π𝜏,1

]
.

2. Π1P∧1 = E𝜏∼𝜋1
[
Π𝜏,1P∧𝜏,1

]
.

3. Π1(P∧1 )2 = E𝜏∼𝜋1
[
𝜋𝜏,1𝜋

⊤
𝜏,1

]
.

Proof. We prove these identities entry by entry.
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1. For every 𝑥 ∈ C(1), by definition,

Π1(𝑥, 𝑥) = 𝜋1(𝑥)

=
∑︁

{𝑥,𝑦}∈ C(1)

1
2𝜋2({𝑥,𝑦})

=
∑︁

𝑦∈ C(1)
𝜋1(𝑦)

𝜋2({𝑥,𝑦})
2𝜋1(𝑦)

= E𝑦∼𝜋1
[
Π𝑦,1(𝑥, 𝑥)

]
.

2. By (2), it holds that

E𝜏∼𝜋1
[
Π𝜏,1P∧𝜏,1

]
= E𝜏∼𝜋1

[
1
2𝑊𝜏,2

]
= 2𝑊2.

On the other hand, by definition,

Π1P∧1 = 2Π1diag (𝜋1)−1𝑊2 = 2𝑊2.

Then we conclude the identity.

3. For every 𝑥,𝑦 ∈ C(1),

Π1(P∧1 )2(𝑥,𝑦) =
∑︁

𝜏∈ C(1)
𝜋1(𝑥)𝜋𝑥,1(𝜏)𝜋𝜏,1(𝑦) .

On the other hand,

E𝜏∼𝜋1
[
𝜋𝜏,1𝜋

⊤
𝜏,1

]
(𝑥,𝑦) =

∑︁
𝜏∈ C(1)

𝜋1(𝜏)𝜋𝜏,1(𝑥)𝜋𝜏,1(𝑦)

=
∑︁

𝜏∈ C(1)
𝜋1(𝑥)𝜋𝑥,1(𝜏)𝜋𝜏,1(𝑦).

Thus we conclude the identity.

□

Additionally the following two identities between two skeletons are important.

Lemma 2.3. The following identities hold

1. Π𝑘P∧𝑘 = E𝜏∼𝜋𝑘−1
[
Π𝜏,1P∧𝜏,1

]
.

2. Π𝑘P∇𝑘 = E𝜏∼𝜋𝑘−1
[
Π𝜏,1P∇𝜏,1

]
= E𝜏∼𝜋𝑘−1

[
𝜋𝜏,1𝜋⊤𝜏,1

]
.

Proof. The proofs of two identities are similar.

1. By direct calculation,

Π𝑘P∧𝑘 = Π𝑘 ·
1
𝑘

∑︁
𝜏∈ C(𝑘−1)

P∧
𝜏,1

=
∑︁

𝜏∈ C(𝑘−1)

1
𝑘
Π𝑘P∧𝜏,1

=
∑︁

𝜏∈ C(𝑘−1)
𝜋𝑘−1(𝜏)

Π𝑘

𝑘𝜋𝑘−1(𝜏)
P∧
𝜏,1

=
∑︁

𝜏∈ C(𝑘−1)
𝜋𝑘−1(𝜏)Π𝜏,1P∧𝜏,1.
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2. Similarly to above, we have

Π𝑘P∇𝑘 = Π𝑘 ·
1
𝑘

∑︁
𝜏∈ C(𝑘−1)

P∇
𝜏,1

=
∑︁

𝜏∈ C(𝑘−1)
𝜋𝑘−1(𝜏)

Π𝑘

𝑘𝜋𝑘−1(𝜏)
P∇
𝜏,1

=
∑︁

𝜏∈ C(𝑘−1)
𝜋𝑘−1(𝜏)Π𝜏,1P∇𝜏,1.

□

2.3 Trickling-down theorem

Based on the identities in Section 2.2, we establish more properties of the local walks.

Definition 2.4 (Local Spectral Expander). For a simplicial complex C equipped with distribution 𝜇, for 0 ≤ 𝑘 ≤ 𝑑−2
and 𝛾𝑘 ∈ [0, 1], we say C(𝑘) is a 𝛾𝑘 -local spectral expander if it holds that

𝜆2(P∧𝜏,1) ≤ 𝛾𝑘 , ∀𝜏 ∈ C(𝑘),

or equivalently,

Π𝜏,1P∧𝜏,1 − 𝜋𝜏,1𝜋⊤𝜏,1 ⪯ 𝛾𝑘
(
Π𝜏,1 − 𝜋𝜏,1𝜋⊤𝜏,1

)
.

Moreover, we say C is a (𝛾0, . . . , 𝛾𝑑−2)-local spectral expander if C(𝑘) is a 𝛾𝑘 -local spectral expander for all 0 ≤ 𝑘 ≤
𝑑 − 2.

The following lemma shows, if C(𝑘) is a local spectral expander, then we can see C(𝑘−1) is also a local spectral
expander.

Theorem 2.5 (Oppenheim’s Trickling-Down Theorem, [Opp18]). Suppose that C(𝑘) is a 𝛾-local spectral expander
for some 1 ≤ 𝑘 ≤ 𝑑 − 2. Then C(𝑘 − 1) is a 𝛾

1−𝛾 -local spectral expander (assuming the total connectivity of the random
walk).

Proof. When 𝑘 > 1, we can only focus the link at each face in C(𝑘) and this is the case 𝑘 = 1. Then we assume that
𝑘 = 1. By Lemma 2.2,

Π1P∧1 = E𝜏∼𝜋1
[
Π𝜏,1P∧𝜏,1

]
⪯ E𝜏∼𝜋1

[
𝛾Π𝜏,1 + (1 − 𝛾)𝜋𝜏,1𝜋⊤𝜏,1

]
= 𝛾Π1 + (1 − 𝛾)Π1(P∇1 )2

where the inequality comes from the fact that the local spectral expander means

Π𝜏,1 − Π𝜏,1P∧𝜏,1 ⪰ (1 − 𝛾) (Π𝜏,1 − 𝜋𝜏,1𝜋⊤𝜏,1) .

Now we consider the eigenvector v2 of P∇1 with respect to the second largest eigenvalue 𝜆2. Then,

𝜆2 ⟨v2, v2⟩𝜋1 ≤ 𝛾 ⟨v2, v2⟩𝜋1 + (1 − 𝛾)𝜆
2
2 ⟨v2, v2⟩𝜋1 .

This means (1 − 𝜆2) ((1 − 𝛾)𝜆2 − 𝛾) ≤ 0. Since 𝜆2 < 1 (otherwise the bound is meaningless), we have 𝜆2 ≤ 𝛾

1−𝛾 . □

Observe that in Theorem 2.5, we only consider the second largest eigenvalue of the local walk. When we take
more eigenvalues into account, the improved trickling-down theorem is introduced in Abdolazimi, Liu and Oveis
Gharan [ALOG21].

Theorem 2.6 (Matrix Trickling-Down Theorem, [ALOG21]). Given a simplicial complex C equipped with distribu-
tion 𝜇, suppose that the following holds:
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1. 𝜆2(P∧1 ) < 1, i.e., P∧1 is irreducible.

2. There exists a family of symmetric matrices
{
𝑀𝜏 ∈ RC(1)× C(1)}

𝜏∈ C(1) such that

Π𝜏,1P∧𝜏,1 − 𝛼𝜋𝜏,1𝜋⊤𝜏,1 ⪯ 𝑀𝜏 ⪯
1

2𝛼 + 1Π𝜏,1

for all 𝜏 ∈ C(1).

Then for every𝑀 ∈ RC(1)× C(1) satisfying𝑀 ⪯ 1
2𝛼Π1 and E𝜏∼𝜋𝜏,1 [𝑀𝜏 ] ⪯ 𝑀 − 𝛼𝑀Π−11 𝑀 , it holds that

Π1P∧1 −
(
2 − 1

𝛼

)
𝜋1𝜋

⊤
1 ⪯ 𝑀.

In particular, 𝜆2(P∧1 ) ≤ 𝜌 (Π−11 𝑀).

Proof. We take expectation on all sides of the assumption and by Lemma 2.2,

Π1P∧1 − 𝛼Π1(P∧1 )2 ⪯ E𝜏∼𝜋1 [𝑀𝜏 ] ⪯
1

2𝛼 + 1Π1.

Therefore, Π1P∧1 − 𝛼Π1(P∧1 )2 ⪯ 𝑀 − 𝛼𝑀Π−11 𝑀 . Set 𝑄 = P∧1 − 𝛽 · 1𝜋⊤1 with 𝛽 = 2 − 1
𝛼
. Then we know

Π1P∧1 − 𝛼Π1(P∧1 )2 = Π1𝑄 − 𝛼Π1𝑄
2.

Thus we know

Π1𝑄 − 𝛼Π1𝑄
2 ⪯ 𝑀 − 𝛼𝑀Π−11 𝑀.

Since 𝜆2(P∧𝜏,1) ≤ 1
2𝛼+1 for every 𝜏 ∈ C(1), by Theorem 2.5, 𝜆2(P∧1 ) ≤ 1

2𝛼 . Combined with 𝛽 = 2− 1
𝛼
≥ 1− 1

2𝛼 we have
𝑄 ⪯ 1

2𝛼 𝐼 . By Lemma 2.3 in [ALOG21], we have Π1𝑄 ⪯ 𝑀 . □

Commonly in use we apply the following proposition induced by Theorem 2.6.

Proposition 2.7. Given a simplicial complex C equipped with distribution 𝜇, if there exists a family of symmetric
matrices

{
𝑀𝜏 ∈ RC(1)× C(1)}

𝜏∈ C
satisfying

1. Base Cases: For every 𝜏 ∈ C(𝑑 − 2),

Π𝜏,1P∧𝜏,1 − 2𝜋𝜏,1𝜋⊤𝜏,1 ⪯ 𝑀𝜏 ⪯
1
5Π𝜏,1.

2. Recursive Conditions: For every 𝜏 ∈ C(𝑑 − 𝑘) with 𝑘 ≥ 3, one of the followings holds:

• The matrices satisfy

𝑀𝜏 ⪯
𝑘 − 1
3𝑘 − 1Π𝜏,1, E𝑥∼𝜋𝜏,1

[
𝑀𝜏∪{𝑥 }

]
⪯ 𝑀𝜏 −

𝑘 − 1
𝑘 − 2𝑀𝜏Π

−1
𝜏,1𝑀𝜏 .

• ( C𝜏 , 𝜋𝜏,𝑘 ) is the product of𝑚 pure weighted simplicial complexes ( C(1) , 𝜋 (1) ), . . . , ( C(𝑚) , 𝜋 (𝑚) ) of dimen-
sion 𝑑1, . . . , 𝑑𝑚 respectively and,

𝑀𝜏 =

𝑚∑︁
𝑗=1

𝑑 𝑗 (𝑑 𝑗 − 1)
𝑘 (𝑘 − 1) 𝑀𝜏∪𝜂 𝑗

where 𝜂 𝑗 = 𝜂 \ C( 𝑗 ) (1) for an arbitrary 𝜂 ∈ C𝜏 (𝑘).

Then for every 𝜏 ∈ C(𝑑 − 𝑘) with 𝑘 ≥ 2, it holds that

Π𝜏,1P∧𝜏,1 −
𝑘

𝑘 − 1𝜋𝜏,1𝜋
⊤
𝜏,1 ⪯ 𝑀𝜏 ⪯

𝑘 − 1
3𝑘 − 1Π𝜏,1.

In particular, 𝜆2(P∧𝜏,1) ≤ 𝜌 (Π−1𝜏,1𝑀𝜏 ) for all 𝜏 ∈ C(𝑑 − 𝑘) with 𝑘 ≥ 2.
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2.4 The local-to-global theorem

Now we are ready to introduce the method named Alev-Lau’s Local-to-Global Theorem introduced in Alev and
Lau [AL20].

Theorem 2.8 (Alev-Lau’s Local-to-Global Theorem, [AL20]). Assume that C is an (𝛼0, . . . , 𝛼𝑑−2)-local spectral ex-
pander. Then for any 1 ≤ 𝑘 ≤ 𝑑 , it holds that

Gap(P∇
𝑘
) = Gap(PΔ

𝑘−1) ≥
1
𝑘

𝑘−2∏
𝑖=0
(1 − 𝛼𝑖) .

Proof. It suffices to show that for all 1 ≤ 𝑘 ≤ 𝑑 − 1,

Gap(P∇
𝑘+1) = Gap(PΔ

𝑘
) ≥ 𝑘

𝑘 + 1 (1 − 𝛼𝑘−1)Gap(P
∇
𝑘
) . (7)

Together with the hypothesis induction and Gap(P∇1 ) = 1 we can conclude the theorem.
To prove (7), firstly observe that P∇

𝑘+1 and PΔ
𝑘
share the same non-zero eigenvalues and thus their spectral gaps

are the same. By Lemma 2.3, for every 1 ≤ 𝑘 ≤ 𝑑 − 1,

Π𝑘P∧𝑘 − Π𝑘P∇𝑘 = E𝜏∼𝜋𝑘−1
[
Π𝜏,1P∧𝜏,1 − 𝜋𝜏,1𝜋⊤𝜏,1

]
.

Since C is an (𝛼0, . . . , 𝛼𝑑−2)-local spectral expander, for every 𝜏 ∈ C(𝑘 − 1), the local walks satisfy:

Π𝜏,1P∧𝜏,1 − 𝜋𝜏,1𝜋⊤𝜏,1 ⪯ 𝛼𝑘−1(Π𝜏,1 − 𝜋𝜏,1𝜋⊤𝜏,1) .

Plugging it into above, by Lemmas 2.2 and 2.3, we obtain

Π𝑘P∧𝑘 − Π𝑘P∇𝑘 ⪯ 𝛼𝑘−1E𝜏∼𝜋𝑘−1
[
Π𝜏,1 − 𝜋𝜏,1𝜋⊤𝜏,1

]
= 𝛼𝑘−1(Π𝑘 − Π𝑘P∇𝑘 ).

This means

Π𝑘 (𝐼 C(𝑘 ) − P∧𝑘 ) ⪰ (1 − 𝛼𝑘−1)Π𝑘 (𝐼 C(𝑘 ) − P∇𝑘 )

thus leading to Gap(P∧
𝑘
) ≥ (1 − 𝛼𝑘−1)Gap(P∇𝑘 ). To finish the proof, note that

PΔ
𝑘
=

𝑘

𝑘 + 1P
∧
𝑘
+ 1
𝑘 + 1 𝐼 C(𝑘 ) ,

meaning that

Gap(PΔ
𝑘
) = 𝑘

𝑘 + 1Gap(P
∧
𝑘
) ≥ 𝑘

𝑘 + 1 (1 − 𝛼𝑘−1)Gap(P
∇
𝑘
) .

□

Remark 2.9. Note that, the random walk P∇
𝑑
is the typical single-site Glauber dynamics 𝑃GD. When 𝜇 is 𝜂-spectrally

independent, it was shown in [ALOG20] that the corresponding simplicial complex C equippedwith 𝜇 is a ( 𝜂

𝑑−1 ,
𝜂

𝑑−2 , . . . , 𝜂)-
local spectral expander. Then we know the spectral gap of 𝑃GD is bounded by

Gap(𝑃GD) ≥ 1
𝑑

𝑘−2∏
𝑖=0

(
1 − 𝜂

𝑑 − 𝑖 − 1

)
.

By Lemma 1.2 we can show the mixing rate of 𝑃GD.
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3 Variance and Entropy Contraction

Now we give an alternative view of Theorem 2.8. Given a simplicial complex C of dimension 𝑑 , for 0 ≤ ℓ < 𝑘 ≤ 𝑑 ,
we define the following random walks

P↓
𝑘→ℓ

= P↓
𝑘
P↓
𝑘−1 . . . P

↓
ℓ+1,

P↑
ℓ→𝑘

= P↑
ℓ
P↑
ℓ+1 . . . P

↑
𝑘−1,

P∇
𝑘↔ℓ

= P↓
𝑘→ℓ

P↑
ℓ→𝑘

,

PΔ
ℓ↔𝑘

= P↑
ℓ→𝑘

P↓
𝑘→ℓ

.

Then we consider the Dirichlet form of P∇
𝑘↔ℓ

. By definition,

EP∇
𝑘↔ℓ
(𝑓 , 𝑓 ) =

〈
𝑓 ,

(
𝐼 − P∇

𝑘↔ℓ

)
𝑓

〉
𝜋𝑘

= 𝑓 ⊤Π𝑘 𝑓 − 𝑓 ⊤Π𝑘P∇𝑘↔ℓ
𝑓

= 𝑓 ⊤Π𝑘 𝑓 − 𝑓 ⊤Π𝑘P
↓
𝑘→ℓ

P↑
ℓ→𝑘

𝑓

(𝑎)
= 𝑓 ⊤Π𝑘 𝑓 − 𝑓 ⊤

(
P↑
ℓ→𝑘

)⊤
ΠℓP

↑
ℓ→𝑘

𝑓

(𝑏 )
= Var𝜋𝑘 (𝑓 ) − Var𝜋ℓ

(
P↑
ℓ→𝑘

𝑓

)
where (𝑎) holds from (4) and (𝑏) holds from (6). Similarly, for the Dirichlet form of PΔ

ℓ↔𝑘
, we have

EPΔ
ℓ↔𝑘
(𝑓 , 𝑓 ) =

〈
𝑓 ,

(
𝐼 − PΔ

ℓ↔𝑘

)
𝑓

〉
𝜋ℓ

= 𝑓 ⊤Πℓ 𝑓 − 𝑓 ⊤ΠℓPΔℓ↔𝑘
𝑓

= 𝑓 ⊤Πℓ 𝑓 − 𝑓 ⊤ΠℓP
↑
ℓ→𝑘

P↓
𝑘→ℓ

𝑓

= Var𝜋ℓ (𝑓 ) − Var𝜋𝑘
(
P↓
𝑘→ℓ

𝑓

)
.

Follow the similar routine together with Jenssen’s inequality, and we obtain the following identities and inequal-
ities:

EP∇
𝑘↔ℓ
(𝑓 , 𝑓 ) = Var𝜋𝑘 (𝑓 ) − Var𝜋ℓ

(
P↑
ℓ→𝑘

𝑓

)
, (8)

EPΔ
ℓ↔𝑘
(𝑓 , 𝑓 ) = Var𝜋ℓ (𝑓 ) − Var𝜋𝑘

(
P↓
𝑘→ℓ

𝑓

)
, (9)

EP∇
𝑘↔ℓ
(𝑓 , log 𝑓 ) ≥ Ent𝜋𝑘 [𝑓 ] − Ent𝜋ℓ

[
P↑
ℓ→𝑘

𝑓

]
, (10)

EPΔ
ℓ↔𝑘
(𝑓 , log 𝑓 ) ≥ Ent𝜋ℓ [𝑓 ] − Ent𝜋𝑘

[
P↓
𝑘→ℓ

𝑓

]
. (11)

The identities or inequalities as above show us that, when we want to show a Poincaré’s inequality, it suffices to
show the variance/entropy contraction.

Lemma 3.1 ([CGM21]). Let 0 ≤ ℓ ≤ 𝑘 ≤ 𝑑 and 𝑓 (𝑘 ) : C(𝑘) → R≥0 be a function on C(𝑘). Then

Ent𝜋𝑘
[
𝑓 (𝑘 )

]
= E𝜏∼𝜋ℓ

[
Ent𝜋𝜏,𝑘−ℓ

[
𝑓
(𝑘−ℓ )
𝜏

] ]
+ Ent𝜋ℓ

[
𝑓 (ℓ )

]
where 𝑓 (𝑘−ℓ )𝜏 (𝜎) := 𝑓 (𝑘 ) (𝜏 ∪ 𝜎) for every 𝜎 ∈ C𝜏 (𝑘 − ℓ), and 𝑓 (ℓ ) := P↑

ℓ
P↑
ℓ+1 . . . P

↑
𝑘−1 𝑓

(𝑘 ) .
Similarly, for all 𝑓 (𝑘 ) : C(𝑘) → R, it holds that

Var𝜋𝑘
(
𝑓 (𝑘 )

)
= E𝜏∼𝜋ℓ

[
Var𝜋𝜏,𝑘−ℓ

(
𝑓
(𝑘−ℓ )
𝜏

)]
+ Var𝜋ℓ

(
𝑓 (ℓ )

)
.
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Proof. We prove the identity for variance and the identity for entropy is similar. Note that, as a simple extended
version of Lemma 2.3, it holds that

Π𝑘 = E𝜏∼𝜋ℓ
[
Π𝜏,𝑘−ℓ

]
.

Without loss of generality, assume that E𝜋𝑘
[
𝑓 (𝑘 )

]
= 0. Then,

Var𝜋𝑘
(
𝑓 (𝑘 )

)
=

(
𝑓 (𝑘 )

)⊤
Π𝑘 𝑓

(𝑘 )

=

(
𝑓 (𝑘 )

)⊤
E𝜏∼𝜋ℓ

[
Π𝜏,𝑘−ℓ

]
𝑓 (𝑘 )

= E𝜏∼𝜋ℓ

[(
𝑓
(𝑘−ℓ )
𝜏

)⊤
Π𝜏,𝑘−ℓ 𝑓

(𝑘−ℓ )
𝜏

]
= E𝜏∼𝜋ℓ

[
Var𝜋𝜏,𝑘−ℓ

(
𝑓
(𝑘−ℓ )
𝜏

)]
+ E𝜏∼𝜋ℓ

[
E𝜋𝜏,𝑘−ℓ

[(
𝑓
(𝑘−ℓ )
𝜏

)2] ]
= E𝜏∼𝜋ℓ

[
Var𝜋𝜏,𝑘−ℓ

(
𝑓
(𝑘−ℓ )
𝜏

)]
+ Var𝜋ℓ

(
𝑓 (ℓ )

)
.

For entropy the proof is similar and we can just assume that E𝜋𝑘
[
𝑓 (𝑘 )

]
= 1. □

3.1 Variance tensorizations

To establish a Poincaré inequality via spectral independence, it’s time to introduce the tensorization of variance. The
kernel of this method is law of total covariance.

Theorem 3.2 (Law of Total Covariance). Let 𝑋,𝑌, 𝑍 be three random variables. Then it holds that

Cov (𝑋,𝑌 ) = E [Cov (𝑋,𝑌 | 𝑍 )] + Cov (E [𝑋 | 𝑍 ] , E [𝑌 | 𝑍 ]) .

Proof. By law of total expectation, it holds that

Cov (𝑋,𝑌 ) = E [𝑋𝑌 ] − E [𝑋 ] E [𝑌 ]
= E [E [𝑋𝑌 | 𝑍 ]] − E [E [𝑋 | 𝑍 ]] E [E [𝑌 | 𝑍 ]]
= E [Cov (𝑋,𝑌 | 𝑍 ) + E [𝑋 | 𝑍 ] E [𝑌 | 𝑍 ]] − E [E [𝑋 | 𝑍 ]] E [E [𝑌 | 𝑍 ]]
= E [Cov (𝑋,𝑌 | 𝑍 )] + Cov (E [𝑋 | 𝑍 ] , E [𝑌 | 𝑍 ]) .

□

Note that when we consider 𝜎 ∼ 𝜇 where 𝜇 is the distribution over Ω ⊆ [𝑞]𝑛 and let 𝑋 = 𝑌 = 𝑓 (𝜔), 𝑍 = 𝜔 (Λ)
for a fixed arbitrary subset Λ ⊆ [𝑛], it holds that

Var𝜇 (𝑓 ) = E𝜎Λ∼𝜇Λ
[
Var𝜇𝜎Λ (𝑓 𝜎Λ)

]
+ Var𝜎Λ∼𝜇Λ

(
E𝜇𝜎Λ [𝑓 𝜎Λ]

)
.

Given 1 ≤ ℓ ≤ 𝑛, adding all identities for Λ ∈
([𝑛]
ℓ

)
, it holds that

Var𝜇 (𝑓 ) =
1(
𝑛
ℓ

) ∑︁
Λ⊆[𝑛], |Λ |=ℓ

(
E𝜎Λ∼𝜇Λ

[
Var𝜇𝜎Λ (𝑓 𝜎Λ)

]
+ Var𝜎Λ∼𝜇Λ

(
E𝜇𝜎Λ [𝑓 𝜎Λ]

) )
.

To illustrate it in the form of law of total variance, consider the pinning set Pℓ defined as:

Pℓ :=
{
(Λ, 𝜎Λ)

���� Λ ∈ (
[𝑛]
ℓ

)
, 𝜎Λ ∈ [𝑞]Λ

}
.

Consider the distribution 𝜇ℓ on Pℓ defined as

𝜇ℓ (Λ, 𝜎Λ) :=
1([𝑛]
ℓ

) Pr𝜔∼𝜇 [𝜔 (Λ) = 𝜎Λ] , ∀(Λ, 𝜎Λ) ∈ Pℓ ,
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and the function 𝑓 (ℓ ) : Pℓ → R as

𝑓 (ℓ ) (Λ, 𝜎Λ) := E𝜇𝜎Λ [𝑓 𝜎Λ] .

Then by direct calculation, we obtain

Var𝜇 (𝑓 ) = Var𝜇ℓ
(
𝑓 (ℓ )

)
+ E(Λ,𝜎Λ )∼𝜇ℓ

[
Var𝜇𝜎Λ (𝑓 𝜎ℓ )

]
. (12)

We remark here that (12) is exactly what we have shown in Lemma 3.1.

Definition 3.3 (Variance Independence). We say a distribution 𝜇 is 𝜂-variance independent if for all functions
𝑓 : Ω → R, (

1 − 1 + 𝜂
𝑛

)
Var𝜇 (𝑓 ) ≤ E(𝑖,𝑠 )∼P1

[
Var𝜇𝑖←𝑠 (𝑓 )

]
,

or equivalently

Var𝜇1
(
𝑓 (1)

)
≤ 1 + 𝜂

𝑛
Var𝜇 (𝑓 ) .

Lemma 3.4. Let 𝜇 be a distribution over Ω ⊆ [𝑞]𝑛 . Suppose that 𝜇 is 𝜂-spectrally independent. Then 𝜇 is 𝜂-variance
independent.

Proof. We consider the term Var𝜇1
(
𝑓 (1)

)
. By definition,

Var𝜇1
(
𝑓 (1)

)
=

〈
𝑓 (1) , 𝑓 (1)

〉
𝜇1
−

〈
𝑓 (1) , 1

〉2
𝜇1

= 𝑓 ⊤
©­«1𝑛

∑︁
(𝑖,𝑠 ) ∈P1

𝜇𝑖 (𝑠)
(
𝜇𝑖←𝑠

)
(𝜇𝑖←𝑠)⊤ª®¬ 𝑓 − ⟨𝑓 , 1⟩2𝜇 .

Now we define the random walk R𝜇,1 over Ω as:

R𝜇,1 =
1
𝑛

∑︁
(𝑖,𝑠 ) ∈P1

1
𝜇𝑖 (𝑠)

(
1𝑖←𝑠

)
(1𝑖←𝑠)⊤diag (𝜇) .

It’s not hard to observe that its stationary distribution is 𝜇. Then we know

Var𝜇1
(
𝑓 (1)

)
Var𝜇 (𝑓 )

=

〈
𝑓 ,R𝜇,1 𝑓

〉
𝜇
− ⟨𝑓 , 1⟩2𝜇

⟨𝑓 , 𝑓 ⟩𝜇 − ⟨𝑓 , 1⟩2𝜇
≤ 𝜆2(R𝜇,1) = 𝜆2

(
diag (𝜇)1/2 R𝜇,1diag (𝜇)−1/2

)
.

Then it suffices to bound the second largest eigenvalue of R𝜇,1. Although R𝜇,1 is the transition matrix in RΩ×Ω , it
has a decomposition as

diag (𝜇)1/2 R𝜇,1diag (𝜇)−1/2 =
1
𝑛
𝑈𝜇,1𝑈

⊤
𝜇,1

where 𝑈𝜇,1 ∈ RΩ×P1 has columns 𝜇𝑖 (𝑠)−1/2diag (𝜇)1/2 1𝑖←𝑠 for each (𝑖, 𝑠) ∈ P1. Then we only need to consider the
eigenvalue of the matrix 1

𝑛
𝑈 ⊤𝜇,1𝑈𝜇,1. By definition, for every (𝑖, 𝑠), ( 𝑗, 𝑡) ∈ P1,(
1
𝑛
𝑈 ⊤𝜇,1𝑈𝜇,1

)
((𝑖, 𝑠), ( 𝑗, 𝑡)) = 1

𝑛

Pr𝜔∼𝜇 [𝜔 (𝑖) = 𝑠 ∧ 𝜔 ( 𝑗) = 𝑡]√︁
Pr𝜔∼𝜇 [𝜔 (𝑖) = 𝑠]

√︁
Pr𝜔∼𝜇 [𝜔 (𝑖) = 𝑠]

.

Note that, this is the symmetrized version of the random walk 𝑄𝜇,1 with stationary distribution 𝜇1, i.e.,

𝑄𝜇,1((𝑖, 𝑠), ( 𝑗, 𝑡)) =
1
𝑛
Pr𝜔∼𝜇 [𝜔 ( 𝑗) = 𝑡 | 𝜔 (𝑖) = 𝑠] .

Thus we know

𝜆2(R𝜇,1) = 𝜆2(𝑄𝜇,1) = 𝜆max(𝑄𝜇,1 − 1𝜇⊤1 ) .

Observe that 𝑄𝜇,1 − 1𝜇⊤1 is exactly 1
𝑛
Ψ̃𝜇 where Ψ̃𝜇 is defined as Remark 1.5. Then we conclude 𝜆2(R𝜇,1) ≤ 1+𝜂

𝑛
. □
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Since for the Glauber dynamics 𝑃GD, we have already known for every function 𝑓 : Ω → R,

E𝑃GD (𝑓 , 𝑓 ) = E𝑖∼[𝑛]
[
E𝜏∼𝜇 [𝑛]\{𝑖}

[
Var𝜇𝜏 (𝑓 )

] ]
,

the spectral independence immediately implies the mixing rate of 𝑃GD.

Theorem 3.5 (A Reformulation of Theorem 2.8). Let 𝜇 be a distribution over Ω ⊆ [𝑞]𝑛 . Suppose that 𝜇 is 𝜂-spectrally
independent. Then Glauber dynamics for the distribution 𝜇 has a spectral gap Ω

(
𝑛−(1+𝜂 )

)
, and thus has the mixing

time 𝑂 (𝑛2+𝜂).

Proof. We only need to show the spectral gap of 𝑃GD. Since 𝜇 is 𝜂-spectrally independent, by Lemma 3.4, for 1 ≤
ℓ ≤ 𝑛 and every (Λ, 𝜎Λ) ∈ Pℓ , 𝜇𝜎Λ is 𝜂-variance independent. Then it holds that

Var𝜇 (𝑓 ) ≤
(
1 − 1 + 𝜂

𝑛

)−1
E(𝑖,𝑠 )∼𝜇1

[
Var𝜇𝑖←𝑠 (𝑓 )

]
≤

(
1 − 1 + 𝜂

𝑛

)−1 (
1 − 1 + 𝜂

𝑛 − 1

)−1
E({𝑖, 𝑗 },𝜎{𝑖,𝑗 } )∼𝜇2

[
Var

𝜇
{𝑖,𝑗 }←𝜎{𝑖,𝑗 } (𝑓 )

]
≤ · · ·

≤
ℓ−1∏
𝑗=0

(
1 − 1 + 𝜂

𝑛 − 𝑗

)−1
E(Λ,𝜎Λ )∼𝜇ℓ

[
Var𝜇𝜎Λ (𝑓 )

]
≲ exp

(
(1 + 𝜂)

ℓ−1∑︁
𝑗=0

1
𝑛 − 𝑗

)
E(Λ,𝜎Λ )∼𝜇ℓ

[
Var𝜇𝜎Λ (𝑓 )

]
≲

( 𝑛

𝑛 − 𝑘

)1+𝜂
E(Λ,𝜎Λ )∼𝜇ℓ

[
Var𝜇𝜎Λ (𝑓 )

]
.

Let ℓ = 𝑛 − 1, and we conclude the result. □

We remark here that, when 𝜂 > 1, it holds that 1 − 1+𝜂
𝑛−ℓ < 0 for ℓ = 𝑛 − 1. To avoid this case, alternatively we

define: for every 0 ≤ ℓ ≤ 𝑛,

𝜂ℓ = max
(Λ,𝜎Λ ) ∈Pℓ

𝜆max
(
Ψ𝜎Λ
𝜇

)
.

Usually 𝜂ℓ has the upper bound

𝜂ℓ ≤ min {𝜂,𝐶 (𝑛 − ℓ)}

where 0 < 𝐶 < 1. However, this is only a technical issue and is not the heart of most cases.

3.1.1 Optimal spectral gap for sparse graphical models

For graphical models with constant degree, it is well-known that the mixing time of a single-site Markov chain is
at least ΩΔ (𝑛 log𝑛) in Hayes and Sinclair [HS05]. To achieve an optimal mixing rate, we show how to improve the
result in Theorem 3.5.

Definition 3.6 (Graphic Markov Property). For a distribution 𝜇, we say it has the graphic Markov property if there
exists a graph 𝐺 = (𝑉 (𝐺), 𝐸 (𝐺)) such that 𝜇 is a Markov distribution with respect to 𝐺 , i.e., for every partition

𝑉 (𝐺) = 𝐴 ⊔ Λ ⊔ 𝐵

such that 𝐴 is isolated with 𝐵 by Λ, it holds that for every pinning 𝜎Λ on Λ, the distribution 𝜇
𝜎Λ
𝐴⊔𝐵 is the product

probability measure as 𝜇𝜎Λ
𝐴⊔𝐵 = 𝜇

𝜎Λ
𝐴
⊗ 𝜇

𝜎Λ
𝐵
.

Also the following shattering lemma is of great importance.
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Lemma 3.7 (Shattering Lemma for Sparse Graph). Let 𝐺 = (𝑉 (𝐺), 𝐸 (𝐺)) be an 𝑛-vertex graph of maximum degree
Δ. Then for every positive integer ℓ > 0,

Pr𝑆 [|𝑆𝑣 | = ℓ] ≤ (2𝑒Δ𝜃 )ℓ−1

where 𝑆 is a uniformly random subset of𝑉 (𝐺) of size ⌈𝜃𝑛⌉, and 𝑆𝑣 is the unique maximal connected component of𝐺 [𝑆]
containing 𝑣 .

Theorem 3.8. Let 𝜇 be a distribution over Ω ⊆ [𝑞]𝑛 . Suppose that 𝜇 is 𝜂-spectrally independent and graphic Markov.
Then the Glauber dynamics for 𝜇 has spectral gap Gap

(
𝑃GD)

≥ Ω(1/𝐶𝑛) for some constant 𝐶 = 𝐶 (Δ, 𝜂) > 0.

Proof. Let ℓ = (1 − 𝜃 )𝑛 for some parameter 0 ≤ 𝜃 ≤ 1. By Lemma 3.7, we have

Var𝜇 (𝑓 ) ≤ 𝜃−(1+𝜂 )E𝑆∼(𝑛ℓ )
[
E𝜏∼𝜇𝑉 \𝑆

[
Var𝜇𝜏 (𝑓 )

] ]
≤ 𝜃−(1+𝜂 )E𝑆∼(𝑛ℓ )

E𝜏∼𝜇𝑉 \𝑆


∑︁
𝑈 is the maximal connected component in 𝑆

Var𝜇𝜏
𝑈
(𝑓 )




≤ 𝜃−(1+𝜂 )
∑︁
𝑣∈𝑉

E𝜏∼𝜇−𝑣
[
Var𝜇𝜏𝑣 (𝑓 )

]
E𝑆∼(𝑛ℓ )

[
𝐶 |𝑆𝑣 |

]
≤ 𝜃−(1+𝜂 )𝑛E𝑣∼𝑉

[
E𝜏∼𝜇−𝑣

[
Var𝜇𝜏𝑣 (𝑓 )

] ] ∞∑︁
𝑘=1
(2𝑒Δ𝜃 )𝑘−1𝐶ℓ .

when 𝜃 ≤ 𝑂 (1/Δ), it holds that Var𝜇 (𝑓 ) ≤ 𝐶 (Δ, 𝜂)𝑛 · E𝑣∼𝑉
[
E𝜏∼𝜇−𝑣

[
Var𝜇𝜏𝑣 (𝑓 )

] ]
, thus leading to the result. □

Remark 3.9. Theorem 3.8 shows us the mixing rate of the Glauber dynamics for a distribution with spectral inde-
pendence is 𝑂Δ,𝜂 (𝑛2).

3.2 Entropy tensorization and optimal mixing rate

To show the optimal mixing of the Markov chain, we consider the standard/modified log-Sobolev inequality con-
stant.

Definition 3.10 (Marginal Boundedness). For a distribution 𝜇 on Ω ⊆ [𝑞]𝑛 and a parameter 𝛽 ∈ (0, 1/2], we say 𝜇

is 𝛽-marginally bounded if for every Λ ⊆ [𝑛], every feasible pinning 𝜎Λ on Λ and 𝑖 ∈ [𝑛] \Λ, it holds that for every
feasible (𝑖, 𝑠) ∈ [𝑞],

𝜇
𝜎Λ
𝑖
(𝑠) ≥ 𝛽.

Theorem 3.11. Let 𝜇 be a distribution over Ω ⊆ [𝑞]𝑛 . Suppose that 𝜇 is 𝜂-spectrally independent, graphic Markov and
𝛽-marginally bounded. Then the Glauber dynamics for 𝜇 has the modified log-Sobolev inequality constant

𝜌LS(𝑃GD) ≥ ΩΔ,𝜂,𝛽 (1/𝑛)

thus leading to the mixing time 𝑂Δ,𝜂,𝛽 (𝑛 log𝑛).

Similarly to the definition of variance independence Definition 3.3, we introduce the following concept of en-
tropic independence firstly in Anari et al. [AJK+22].

Definition 3.12 (Entropic Independence [AJK+22]). For a distribution 𝜇 over Ω ⊆ [𝑞]𝑛 , we say 𝜇 is 𝜂-spectrally
independent if for all function 𝑓 : Ω → R>0,(

1 − 1 + 𝜂
𝑛

)
Ent𝜇 [𝑓 ] ≤ E𝑖∼[𝑛]

[
E𝑠∼𝜇𝑖

[
Ent𝜇𝑖←𝑠 [𝑓 ]

] ]
.

Note that it is equivalent to the following inequality

Ent𝜇1
[
𝑓 (1)

]
≤ 1 + 𝜂

𝑛
Ent𝜇 [𝑓 ] .
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Often we write the entropic independence as the following form:

DKL (𝜈1 ∥ 𝜇1) ≤
1 + 𝜂
𝑛
DKL (𝜈 ∥ 𝜇) , ∀probability measure 𝜈 over Ω.

Similarly to Theorem 3.5, the entropic independence also implies a factorization of entropy.

Proposition 3.13. Let 𝜇 be a distribution over Ω ⊆ [𝑞]𝑛 and fix an integer 1 ≤ ℓ ≤ 𝑛. Suppose that there exists
𝜂 ≤ 𝑂 (1) such that for every Λ ⊆ [𝑛] with |Λ| ≤ 𝑛 − ℓ − 1 and every pinning 𝜎Λ ∈ [𝑞]Λ, the conditional probability
distribution 𝜇𝜎Λ is 𝜂-entropically independent. Then for every function 𝑓 : Ω → R>0,

Ent𝜇 [𝑓 ] ≤ 𝐶ℓE𝑆∼( [𝑛]ℓ )
[
E𝜏∼𝜇 [𝑛]\𝑆

[
Ent𝜇𝜏 [𝑓 ]

] ]
where 𝐶ℓ ≲

(
𝑛
ℓ

)1+𝜂 .
The proof of Proposition 3.13 is similar to the proof of Theorem 3.5 and just replace all Var· (·) with Ent· [·].
When ℓ = 1, it is easy to see the result of Proposition 3.13 establish an approximate tensorization of entropy. As

a corollary, we can obtain the bound of 𝜌LS(𝑃GD).

Corollary 3.14. Let 𝜇 be a distribution over Ω ⊆ [𝑞]𝑛 . Suppose that there exists 𝜂 ≤ 𝑂 (1) such that for every
Λ ⊆ [𝑛] and every pinning 𝜎Λ ∈ [𝑞]Λ, the conditional probability distribution 𝜇𝜎Λ is 𝜂-entropically independent. Then
𝜌LS(𝑃GD) ≥ Ω(1/𝐶) where 𝐶 ≤ 𝑛1+𝜂 .

Together with the graphic Markov property and marginal boundedness, the spectral independence implies the
entropic independence for the conditional probability measures under an arbitrary pinning.

Lemma 3.15 (Spectral Independence Implies Entropic Independence [CE22]). Let 𝜇 be a distribution over Ω ⊆
{−1, +1}𝑛 . Suppose that 𝜇 is graphic Markov, 𝜇-spectrally independence and 𝛽-marginally bounded. Then 𝜇 and all its
conditional distributions are 𝑂 (𝜂/𝛽2)-entropically independent.

Assuming Proposition 3.13 and lemma 3.15, we can prove the full version of Theorem 3.11. See [CLV21] for
detailed proof.

3.2.1 From spectral independence and marginal boundedness to entropic independence

The most important step from rapid mixing to optimal mixing is to establish entropic independence from spectral
independence and marginal boundedness. We follow a way to establish a ‘local-to-global’ framework, and under
this kind of framework, we compare the ‘local entropies’ with ‘local variance’ via marginal boundedness.

Fix a function 𝑓 : Ω → R. For every 0 ≤ ℓ ≤ 𝑛, recall the function 𝑓 (ℓ ) as

𝑓 (ℓ ) (𝜎Λ) := E𝜔∼𝜇 [𝑓 (𝜔) | 𝜔 (Λ) = 𝜎Λ] , ∀(Λ, 𝜎Λ) ∈ Pℓ .

Here we omit the symbol denoting the subset Λ since it can be known from the pinning 𝜎Λ. For every feasible partial
pinning 𝜏𝑆 on 𝑆 ⊆ [𝑛], we define:

𝑓 (𝜏𝑆 ,ℓ ) (𝜎Λ) = 𝑓 (ℓ+|𝑆 | ) (𝜏𝑆 ⊔ 𝜎Λ), ∀(Λ, 𝜎Λ) ∈ Pℓ ,Λ ∩ 𝑆 = ∅.

Accordingly we define the distribution 𝜇
𝜏𝑆
ℓ

as

𝜇
𝜏𝑆
ℓ
(𝜎Λ) =

1(
𝑛−|𝑆 |

ℓ

) Pr𝜔∼𝜇 [𝜔 (Λ) = 𝜎Λ | 𝜔 (𝑆) = 𝜏𝑆 ] , ∀(Λ, 𝜎Λ) ∈ Pℓ ,Λ ∩ 𝑆 = ∅.

For the sake of simplicity, we use Ent𝜏𝑆 ,ℓ [·] to denote Ent
𝜇
𝜏𝑆
ℓ
[·].

Definition 3.16 (Local-Entropy Contraction). For 0 ≤ 𝛼 ≤ 1, we say 𝜇 satisfies 𝛼-local entropy contraction if for
every function 𝑓 : Ω → R>0, it holds that

Ent1
[
𝑓 (1)

]
≤ 1

2

(
1 − 𝛼

𝑛

)−1
Ent2

[
𝑓 (2)

]
.
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Proposition 3.17 ([CLV21]). Let 𝜇 be a distribution over Ω ⊆ [𝑞]𝑛 . Suppose that 𝜇 is graphically Markov, 𝜂-spectrally
independent and 𝛽-marginally bounded. Then 𝜇 satisfies 𝛼-local entropy contraction with 𝛼 = 𝑂 (𝜂/𝛽2).

Theorem 3.18 (Local-to-Global Entropy Contraction Theorem [CLV21]). Suppose that there exists 0 ≤ 𝛼 ≤ 1 such
that for every 0 ≤ 𝑘 ≤ 𝑛 − 2, every 𝑆 ⊆ [𝑛] and every feasible pinning 𝜏𝑆 ∈ [𝑞]𝑆 , the probability measure 𝜇𝜏𝑆 satisfies

Ent𝜏𝑆 ,1
[
𝑓 (𝜏𝑆 ,1)

]
≤ 1

2

(
1 − 𝛼

𝑛 − 𝑘

)−1
Ent𝜏𝑆 ,2

[
𝑓 (𝜏𝑆 ,2)

]
.

Then for every 0 ≤ 𝑘 ≤ ℓ ≤ 𝑛 and every function 𝑓 : Ω → R>0,

Ent𝑘
[
𝑓 (𝑘 )

]
𝛽𝑘

≤
Entℓ

[
𝑓 (ℓ )

]
𝛽ℓ

where 𝛽𝑖 :=
∑𝑖−1

𝑗=0
∏𝑗−1

𝑡=0
(
1 − 2𝛼

𝑛−𝑡
)
.

Proof. Note that it suffices to prove the case ℓ = 𝑘 + 1. We prove it by induction. When 𝑘 = 0, it is just the definition
of the local-entropy contraction. Otherwise, by Lemma 3.1,

Ent𝑘+1
[
𝑓 (𝑘+1)

]
− Ent𝑘−1

[
𝑓 (𝑘−1)

]
= E𝜎∼𝜇𝑘−1

[
Ent𝜎,2

[
𝑓 (𝜎,2)

] ]
≥ 2

(
1 − 𝛼

𝑛 − 𝑘 + 1

)
E𝜎∼𝜇𝑘−1

[
Ent𝜎,1

[
𝑓 (𝜎,1)

] ]
= 2

(
1 − 𝛼

𝑛 − 𝑘 + 1

) (
Ent𝑘

[
𝑓 (𝑘 )

]
− Ent𝑘−1

[
𝑓 (𝑘−1)

] )
.

By induction hypothesis, 1
𝛽𝑘−1

Ent𝑘−1
[
𝑓 (𝑘−1)

]
≤ 1

𝛽𝑘
Ent𝑘

[
𝑓 (𝑘 )

]
. Then we obtain

Ent𝑘+1
[
𝑓 (𝑘+1)

]
≥ 2

(
1 − 𝛼

𝑛 − 𝑘 + 1

)
Ent𝑘

[
𝑓 (𝑘 )

]
−

(
1 − 2𝛼

𝑛 − 𝑘 + 1

)
Ent𝑘−1

[
𝑓 (𝑘−1)

]
≥

(
2
(
1 − 𝛼

𝑛 − 𝑘 + 1

)
− 𝛽𝑘

𝛽𝑘−1

(
1 − 2𝛼

𝑛 − 𝑘 + 1

))
Ent𝑘

[
𝑓 (𝑘 )

]
=

(
1 −

(
1 − 2𝛼

𝑛 − 𝑘 + 1

) (
𝛽𝑘

𝛽𝑘−1
− 1

))
Ent𝑘

[
𝑓 (𝑘 )

]
=
𝛽𝑘+1
𝛽𝑘

Ent𝑘
[
𝑓 (𝑘 )

]
.

□

Proof of Lemma 3.15. By Proposition 3.17, it holds that 𝜇 satisfies 𝛼-local entropy contraction with 𝛼 = 𝑂 (𝜂/𝛽2).
Then, by Theorem 3.18 with 𝑘 = 1 and ℓ = 𝑛, for all function 𝑓 : Ω → R>0,

Ent1
[
𝑓 (1)

]
≤ 1

𝛽𝑛
Ent𝜇 [𝑓 ]

where

𝛽𝑛 =

𝑛−1∑︁
𝑗=0

𝑗−1∏
𝑖=0

(
1 − 2𝛼

𝑛 − 𝑖

)
≳

𝑛−1∑︁
𝑗=0

(
𝑛

𝑛 − 𝑗

)−𝑂 (𝜂/𝛽2 )
≳ 𝜃 (1 − 𝜃 )𝑂 (𝜂/𝛽2 )𝑛, ∀𝜃 ∈ (0, 1).

It is easy to show the optimal choice of 𝜃 is 𝑂 (𝛽2/𝜂). □

3.2.2 Optimal mixing rate without marginal boundedness

Recall that in Theorem 3.11, the marginal boundedness property seems to be necessary. However, in most graphic
models, the marginal bound might be bad than what we expect. In this section, we will show how to derive an
optimal mixing rate without the assumption marginal boundedness, but with a stricter assumption on spectral
independence.
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Definition 3.19 (Exponential Tilt). For a vector 𝜃 ∈ R𝑛 and a distribution 𝜇 over {−1, +1}𝑛 , define the exponential
tilt T𝜃 𝜇 as the distribution over {−1, +1}𝑛 by:

T𝜃 𝜇 (𝑥) =
𝜇 (𝑥) exp(⟨𝜃, 𝑥⟩)∑

𝑦∈{−1,+1}𝑛 𝜇 (𝑦) exp(⟨𝜃,𝑦⟩)
, ∀𝑥 ∈ {−1, +1}𝑛 .

Remark 3.20. The exponential tilt is introduced by the principle of maximum entropy. Consider the following
optimization problem:

inf
𝜈
DKL (𝜈 ∥ 𝜇) 𝑠 .𝑡 . E𝑥∼𝜈 [𝜑 (𝑥)] =𝑚.

The principle of maximum entropy says the optimal distribution will be of the form

𝜇𝜃 (𝑥) ∝ 𝜇 (𝑥) exp(⟨𝜃, 𝜑 (𝑥)⟩)

for some vector 𝜃 ∈ R𝑛 .

Theorem 3.21 ([AJK+22, CE22]). Let 𝜇 be a distribution over {−1, +1}𝑛 and fix a parameter 𝜂. The followings are
equivalent.

• For every 𝜃 ∈ R𝑛 , the tilted distribution T𝜃 𝜇 is 𝜂-spectrally independent.

• For every 𝜃 ∈ R𝑛 , the tilted distribution T𝜃 𝜇 is 𝜂-entropically independent.

To prove Theorem 3.21, we introduce the logarithmic Laplace transform of 𝜇. Given a distribution 𝜇 over
{−1, +1}𝑛 , define the function L𝜇 : R𝑛 → R as

L𝜇 (𝜃 ) := logE𝑥∼𝜇 [exp(⟨𝜃, 𝑥⟩)], ∀𝜃 ∈ R𝑛 .

The following properties of L𝜇 (·) are proved by Bubeck and Eldan [BE19].

Proposition 3.22 ([BE19]). Let 𝜇 be a distribution over R𝑛 . Then the followings hold:

• L𝜇 (·) is smooth and strictly convex.

• It holds that

∇L𝜇 (𝜃 ) = E𝑥∼T𝜃 𝜇 [𝑥] , ∇2L𝜇 (𝜃 ) = Cov (T𝜃 𝜇) .

• Its convex conjugate L∗𝜇 (𝑥) := sup𝜃
{
⟨𝑥, 𝜃⟩ − L𝜇 (𝜃 )

}
has the form

L∗𝜇 (𝑥) = DKL
(
T𝜃 ∗ (𝑥 )𝜇



 𝜇
)

where 𝜃 ∗(𝑥) = ∇L∗𝜇 (𝑥) is the optimizer of the convex conjugate. Furthermore, if all mappings are invertible, then

∇2L∗𝜇 (𝑥) = Cov
(
T𝜃 ∗ (𝑥 )𝜇

)−1
.

Proof of Theorem 3.21. For convenience we use b(·) to denote the mean of a distribution. Firstly observe that

𝜇1((𝑖, +1)) =
1
𝑛

1 + b(𝜇)𝑖
2 , 𝜇1((𝑖,−1))

1
𝑛

1 − b(𝜇)𝑖
2 .

Then it follows that

DKL (𝜈1 ∥ 𝜇1) =
1
𝑛

𝑛∑︁
𝑖=1

(
1 + b(𝜈)𝑖

2 log 1 + b(𝜈)𝑖
1 + b(𝜇)𝑖

+ 1 − b(𝜈)𝑖
2 log 1 − b(𝜈)𝑖

1 − b(𝜇)𝑖

)
.

Define the function 𝐻 : [−1, +1]𝑛 × [−1, +1]𝑛 → R as

𝐻 (𝑥,𝑦) := 1
𝑛

𝑛∑︁
𝑖=1

(
1 + 𝑥𝑖
2 log 1 + 𝑥𝑖

1 + 𝑦𝑖
+ 1 − 𝑥𝑖

2 log 1 − 𝑥𝑖
1 − 𝑦𝑖

)
,∀𝑥,𝑦 ∈ [−1, +1]𝑛
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Then it suffices to show for all distribution 𝜈 over {−1, +1}𝑛 ,

𝐻 (b(𝜈), b(𝜇)) ≤ (1 + 𝜂)DKL (𝜈 ∥ 𝜇) .

Then by the principle of maximum entropy, we only need to consider 𝜈 = T𝜃 𝜇. By Proposition 3.22, it is equivalent
to

𝐹𝜇 (𝑥) := (1 + 𝜂)L∗𝜇 (𝑥) − 𝐻 (𝑥, b(𝜇)) ≥ 0, ∀𝑥 ∈ R𝑛 .

Observe that 𝐹𝜇 (b(𝜇)) = 0, and by calculation, ∇𝐹𝜇 (b(𝜇)) = 0. On the other hand, note that

∇𝐹𝜇 (𝑥) = (1 + 𝜂)Cov
(
T𝜃 ∗ (𝑥 )𝜇

)−1 − diag (
1 − 𝑥2

)−1
.

Then ∇𝐹𝜇 (𝑥) ⪯ 0 comes directly from the spectral independence of all exponential tilt distributions.
Conversely, assume that the entropic independence holds for all exponential tilt distributions. Observe that

𝐹𝜇 (𝑥) − 𝐹𝜇 (b(𝜇)) −
〈
∇𝐹𝜇 (b(𝜇)), 𝑥 − b(𝜇)

〉
= 𝐹T𝜃∗ (𝑥 ) 𝜇 (𝑥) ≥ 0.

Then we know 𝐹𝜇 (𝑥) is globally convex, meaning that the spectral independence holds for all tilts. □
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