PATH COUPLING FOR RAPID MIXING OF MARKOV CHAINS

ZHIDAN LI

1. Path Coupling

For a Markov chain *M*, in the classical coupling method, given a metric *d* on a state space Ω, if a coupling decreases the distance between every pair of configurations in Ω , then the mixing time of $\mathcal M$ can be bounded. The following concepts formalize this argument.

Definition 1.1 (Contraction). Given a metric *d* on a state space Ω and a Markov chain *M* on Ω with stationary distribution μ , we say that a coupling $(X, Y) \to (X', Y')$ satisfies γ -contraction for some factor γ if for every initial configurations $(X, Y) \in \Omega \times \Omega$,

$$
\mathbf{E}\left[d(X',Y')\bigm(X,Y\right]\leq \gamma d(X,Y).
$$

Theorem 1.2 (Coupling theorem). For some factor $\gamma \in [0,1]$, if there exists a coupling satisfying γ -contraction, *then*

$$
\tau_{\text{mix}}(\mathcal{M}) \le O\left(\frac{1}{1-\gamma}\log d_{\text{max}}\right)
$$

where d_{max} *is the diameter of the metric d.*

However, defining distances and couplings between all configurations in Ω is hard. The path coupling theorem allows us to determine distances and coupling between some pairs of configurations, and the whole metric and coupling can be naturally extended.

Definition 1.3 (Pre-metric). A *pre-metric* on Ω is a pair (Γ, ω) where Γ is a connected, undirected graph on Ω and ω is a positive real-valued function assigning values to edges (X, Y) in Γ satisfying that for every edge (X, Y) , $\omega(X, Y)$ is the minimum among all paths between X and Y. We refer to these adjacent vertices as *neighboring pairs*.

Note that from this pre-metric, we can naturally construct a metric d on Ω using the shortest paths.

Theorem 1.4 (Path coupling theorem). Let (Γ, ω) be the pre-metric in Ω and *d* be the induced metric. If a *coupling defined on the edges in* Γ *satisfies* γ -contraction for some $\gamma \in [0,1]$ *, then there exists a coupling on* Ω *satisfying γ-contraction. Therefore,*

$$
\tau_{\text{mix}}(\mathcal{M}) \le O\left(\frac{1}{1-\gamma}\log d_{\text{max}}\right)
$$

where d_{max} *is the diameter of the metric d.*

2. Application: Vigoda's Algorithm for Proper Colorings

We show the application of Theorem [1.4](#page-0-0) to sampling proper colorings by Vigoda $\lbrack \text{Vig00} \rbrack$ $\lbrack \text{Vig00} \rbrack$ $\lbrack \text{Vig00} \rbrack$. Given a graph $G = (V, E)$ and an integer $q \geq 2$, let Ω be all (not necessarily proper) *q*-colorings on *G*.

Before we introduce the Markov chain applied, there are some related concepts. Given a coloring $X \in \Omega$, we say a path $v = v_0, v_1, \ldots, v_t = w$ is an *alternating path* between v and w using c and $X(v)$ if $(v_i, v_{i+1}) \in E$, $\sigma(v_i) \in \{X(v), c\}$ and $X(v_i) \neq X(v_{i+1})$. Then the Kempe component $S_X(v, c)$ is the following cluster of vertices

 $S_X(v, c) := \{w \in V \mid \text{there exists an alternating path between } v \text{ and } w \text{ using colors } \sigma \text{ and } c\}.$

For convenience, we redefine $S_X(v, X(v)) = \emptyset$. For every vertex $w \in S_X(v, c)$, it holds that $S_X(v, c) = S_X(w, c)$ if $X(v) = X(w)$ and $S_X(v, c) = S_X(w, X(v))$ otherwise. This means that every Kempe component *S* can be relabelled in $|S|$ ways. Let S_X be the set of all Kempe components induced by X.

2 ZHIDAN LI

Now we introduce the *flip dynamics* M_{FD} to sample proper colorings. Given a sequence of weights $\{p_i\}_{i>0}$ satisfying $p_1 = 1$, at a proper coloring X, we run transition in the following way:

- Choose $v \in V$ and $c \in [q]$ uniformly at random.
- Let $\alpha = |S_X(v, c)|$. With probability $p = \frac{p_\alpha}{\alpha}$ $\frac{\partial \alpha}{\partial x}$, we flip cluster $S_X(v, c)$ by interchanging colors *c* and $X(v)$ in the cluster.

Note that for a cluster *S*, there are $|S|$ different pairs of (v, c) to choose *S*. So the probability of flipping *S* is exactly $p_{|S|}$. Then we have the following equivalent way to describe \mathcal{M}_{FD} .

- Choose a Kempe component $S \in \mathcal{S}_X$ with probability $1/nq$.
- Let $\alpha = |S|$ and with probability p_{α} flip *S*.

It is not hard to verify that M_{FD} is irreducible and aperiodic. It is not hard to verify that M is stationary with respect to the uniform distribution of proper *q*-colorings on *G*.

2.1. **Coupling of the flip dynamics.** To apply Theorem [1.4,](#page-0-0) we construct a coupling for every $(X, Y) \in \Omega \times \Omega$ such that *X* and *Y* differ at exactly one vertex $v \in V$. We consider when clusters $S_X(w, c)$, $S_Y(w, c)$ might be different in the sense that $S_X(w, c) \neq S_Y(w, c)$ or $S_X(w, c) = S_Y(w, c)$ but there is a vertex *y* in this with $X(y) \neq Y(y)$.

Let $\mathcal{D} = \mathcal{D}(X, Y)$ be the collection of clusters that are different in X, Y. Note that these clusters must involve *v*. Then we know that

$$
\mathcal{D} := \{ S_X(v, c) : c \in [q] \} \cup \{ S_Y(v, c) : c \in [q] \} \cup \{ S_X(w, Y(v)), S_Y(w, X(v)) : w \in N_G(v) \}.
$$

For every Kempe component $S \notin \mathcal{D}$, we use the identity coupling for its move and this does not change the distance. So we only consider *D*.

We decompose \mathcal{D} in sets $\cup_{c \in [q]} \mathcal{D}_c$ where \mathcal{D}_c is the set of Kempe components consisting of $S_X(v, c)$, $S_Y(v, c)$ and $S_X(w, Y(v)), S_Y(w, X(v))$ for all $w \in N_G(v)$ satisfying $X(w) = Y(w) = c$.

We use the Hamming distance denoted by $H(\cdot, \cdot)$ as the metric *d*. For any $X \in \Omega$ and $S \in \mathcal{D}$, let $X_{\oplus S}$ be the coloring obtained from *X* after flipping *S*. Then we know that

$$
\mathbf{E}\left[\Delta H \mid X, Y\right] = \mathbf{E}\left[\Delta H \mid X, Y, S \notin \mathcal{D}\right] \mathbf{Pr}\left[S \notin \mathcal{D} \mid X, Y\right] + \sum_{c \in [q]} \mathbf{E}\left[\Delta H \mid X, Y, S \in \mathcal{D}_c\right] \mathbf{Pr}\left[S \in \mathcal{D}_c \mid X, Y\right]
$$
\n
$$
= \frac{1}{nq} \sum_{c \in [q]} \sum_{S \in \mathcal{D}_c} \mathbf{E}\left[H(X_{\oplus S}, Y_{\oplus S}) - H(X, Y) \mid X, Y\right].
$$

Let U_c be the set of neighbors of v that are colored c. Let $\delta_c = |U_c|$. We denote $U_c = \{u_1^c, \ldots, u_{\delta_c}^c\}$ or simply $\{u_1, \ldots, u_{\delta_c}\}\$ when *c* is clear. Then

$$
\mathcal{D}_c = \{S_X(v, c), S_Y(v, c)\} \cup \left(\bigcup_{w \in U_c} \{S_X(v, Y(v)), S_Y(v, X(v))\}\right).
$$

We mark that sets in \mathcal{D}_c are disjoint except possibly $\mathcal{D}_{X(v)}$ and $\mathcal{D}_{Y(v)}$. If $c \notin \{X(v), Y(v)\}$, we obtain that

$$
S_X(v,c) = \left(\bigcup_{i=1}^{\delta_c} S_Y(u_i^c, X(v))\right) \cup \{v\}, \quad S_Y(v,c) = \left(\bigcup_{i=1}^{\delta_c} S_X(u_i^c, Y(v))\right) \cup \{v\}.
$$

For $c = X(v)$, we have $S_X(v, c) = S_Y(u, X(v)) = \emptyset$ for all $u \in U_c$. Similarly for $c = Y(v)$, $S_Y(v, c) =$ $S_X(u, Y(v)) = \emptyset$ for all $u \in U_c$.

The following observation will simplify some cases in our analysis. Note that *v* can have some neighbors $u'_1, \ldots, u'_m \in N_G(v)$ colored c belonging to the same Kempe component $S_Y(u'_1, X(v)) = \cdots = S_Y(u'_m, X(v))$. In order to consider the flip with the right probability, we redefine $S_Y(u'_i, X(v)) = \emptyset$ for $1 < i \leq m$. Do the same modifications for $S_X(u'_i, Y(v))$.

For each $c \in [q]$ such that $\delta_c > 0$, define $A_c := |S_X(v, c)|$, $B_c := |S_Y(v, c)|$, $a_i^c := |S_Y(u_i, X(v))|$ and $b_i^c := |S_X(u_i, Y(v))|$. We define the vectors $a^c := (a_i^c : i \in [\delta_c])$ and $b^c := (b_i^c : i \in [\delta_c])$. We say that (X, Y) has configuration $(A_c, B_c; \boldsymbol{a}^c, \boldsymbol{b}^c)$. We also define $a_{\max}^c := \max_i a_i^c$ and i_{\max}^c as a maximizing argument. Similarly

define $b_{\text{max}}^c := \max_j b_j^c$ and j_{max}^c as a maximizing argument. When it is clear from the context, we drop the script *c*. Note that the following inequality holds:

$$
A \le 1 + \sum_i a_i, \quad B \le 1 + \sum_j b_j
$$

with equality if $c \notin \{X(v), Y(v)\}.$

The idea of coupling consists of the following rules. Flips of clusters in *D^c* for *X* will be coupled with clusters in \mathcal{D}_c for *Y*. We couple $S_X(v, c)$ and $S_Y(v, c)$ with the biggest size of others, and try to couple the remaining weights as much as possible.

- Flip $S_X(v, c)$ and $S_Y(u_{i_{\max}}, X(v))$ together with probability p_A .
- Flip $S_Y(v, c)$ and $S_X(u_{j_{\text{max}}}, Y(v))$ together with probability p_B .
- For all $i \in [\delta_c]$, let $q_i = p_{a_i} p_A \cdot \mathbb{1} [i_{\max} = i]$ and $q'_j = p_{b_j} p_B \cdot \mathbb{1} [j_{\max} = j]$.
	- (1) Flip $S_Y(u_i, X(v))$ and $S_X(u_i, Y(v))$ together with probability $\min(q_i, q'_i)$.
	- (2) Flip $S_Y(u_i, X(v))$ with probability $q_i \min(q_i, q'_i)$.
	- (3) Flip $S_X(u_i, Y(v))$ with probability $q'_i \min(q_i, q'_i)$.

Given a configuration $(A, B; \boldsymbol{a}, \boldsymbol{b})$, define $H(A, B; \boldsymbol{a}, \boldsymbol{b}) := (A - a_{\max} - 1)p_A + (B - b_{\max} - 1)p_B + \sum_i (a_i \cdot q_i + b_i)$ $b_i \cdot q'_i - \min\{q_i, q'_i\}.$

Proposition 2.1. *The following bound holds*

$$
\mathbf{E}\left[\Delta H \mid X, Y\right] \leq \frac{1}{nq} \left(-|\{c: \delta_c = 0\}| + \sum_{c \;:\; \delta_c > 0} H(A_c, B_c; \boldsymbol{a}^c, \boldsymbol{b}^c)\right).
$$

2.2. **Linear programming and choice of flip weights.** In order to obtain the rapid mixing of Markov chains, we need to choose proper weights $\{p_{\alpha}\}_{{\alpha}\in\mathbb{N}}$.

The variation depends sorely on the configurations.

Definition 2.2. A configuration $(A, B; \mathbf{a}, \mathbf{b})$ is *realizable* if there exists a graph G , a neighboring coloring pair (X, Y) defined in *G* and a color $c \in [q]$ such that $(A, B; \boldsymbol{a}, \boldsymbol{b}) = (A_c, B_c; \boldsymbol{a}^c, \boldsymbol{b}^c).$

We mark here that a configuration $(A, B; \boldsymbol{a}, \boldsymbol{b})$ is realizable if and only if

$$
A \le 1 + \sum_i a_i, \quad B \le 1 + \sum_j b_j.
$$

We call δ_c the size of the configuration.

Note that if there exists $\lambda > 0$ such that $H(A, B; \mathbf{a}, \mathbf{b}) \leq -1 + \lambda m$ for all realizable configurations $(A, B; \mathbf{a}, \mathbf{b})$ where *m* is the size of the configuration, then we know that the coupling is contractive for $q > \lambda \Delta$.

Then our goal is to solve the following linear programming.

$$
\min_{\lambda, \{p_{\alpha}\}_{{\alpha} \in \mathbb{N}}} \lambda
$$
\nsubject to

\n
$$
H(A, B; \mathbf{a}, \mathbf{b}) \le -1 + \lambda m \qquad \forall m \in \mathbb{N} \text{ and all realizable } (A, B; \mathbf{a}, \mathbf{b}) \text{ of size } m,
$$
\n
$$
p_0 = 0 \le p_i \le p_{i-1} \le p_1 = 1 \qquad \forall i \ge 2.
$$

However, this linear program is hard to solve since there are infinitely many variables and constraints. To solve this problem, Vigoda restricts that for every $\alpha \geq 7$, $p_{\alpha} = 0$.

The following bounds make the linear program easy to solve.

Lemma 2.3. $H(A, B; \boldsymbol{a}, \boldsymbol{b}) \le (A - 2a_{\max})p_A + (B - 2b_{\max})p_B + \sum_i (p_{a_i}a_i + p_{b_i}b_i - \min\{p_{a_i}, p_{b_i}\}).$

Lemma 2.4. *Consider for all i the additional constraints* $ip_i \leq 1$ *,* $(i-1)p_i \leq \frac{1}{3}$ 3 *and* (*i −* 2)*pⁱ ≤* 2*/*9*. Let* $(A, B; \mathbf{a}, \mathbf{b})$ be a realizable configuration of size ≥ 3 . Then if $\{p_{\alpha}\}\$ satisfy the additional constraints, then for $\lambda \geq \frac{49}{27},$

$$
H(A, B; \mathbf{a}, \mathbf{b}) \leq -1 + \lambda m.
$$

Then we can solve the linear program $\lambda^* = 11/6$ and a feasible solution is

$$
p_1 = 1, p_2 = \frac{13}{42}, p_3 = \frac{1}{6}, p_4 = \frac{2}{21}, p_5 = \frac{1}{21}, p_6 = \frac{1}{84}.
$$

4 ZHIDAN LI

3. Potts Models and Swendsen-Wang Process

Fix a positive integer $q \geq 2$ and a parameter $\beta \in \mathbb{R}$. We consider *q*-state Potts model on an arbitrary graph $G = (V, E)$ with $V = \{v_1, \ldots, v_n\}$. For any assignment $\sigma : V \to [q]$, we call σ a *configuration* and σ gives a partition $V = V_1 \cup \cdots \cup V_q$ to V where $V_i := \{v \in V \mid \sigma(v) = i\}$ for every $i \in [q]$. Under a given configuration σ , we say an edge $e = (u, v) \in E$ is a *bond* if $\sigma(u) = \sigma(v)$. The components induced by bonds are called *clusters*.

For a configuration $\sigma \in [q]^V$, define $D(\sigma) := \{e = (u, v) \in E : \sigma(u) \neq \sigma(v)\}\$ and certainly $B(\sigma) = E \setminus D(\sigma)$ as the bonds under σ . Then we define the *q*-state Potts models $\mu = \mu_{G,\beta}$ on G at β as

(2)
$$
\mu(\sigma) = \frac{e^{-\beta|D(\sigma)|}}{Z}, \quad \forall \sigma \in [q]^V
$$

where the normalising factor $Z = \sum_{\sigma \in [q]^V} e^{-\beta |D(\sigma)|}$ is called *the partition function* of the Potts model. When $\beta > 0$, we say it is *ferromagnetic* and otherwise we call it an *anti-ferromagnetic* one.

3.1. **Markov chains and Swendsen-Wang process.** A long-time topic in practice is how to sample a configuration σ from μ . Variants of Markov chains are in application. However, a typical Metropolis process in [[JS96](#page-7-1)] is shown to work in some settings under the anti-ferromagnetic assumption, but unknown in the ferromagnetic cases. To avoid this accident, we apply the following dynamics named *Swendsen-Wang process*.

Assume that the current configuration is σ . We generate the next configuration by the following two steps.

- (1) Let $B = B(\sigma)$ be the bonds under σ . We sample a subset $A \subseteq B$ as: for each edge $e \in B$, we pick it with probability $p = 1 - e^{-\beta}$.
- (2) For each connected component in the graph (V, A) , we assign all vertices in the component with a state in [*q*] uniformly and independently at random.

The application of the Swendsen-Wang process depends on the equivalence under certain conditions of the *q*-state Potts model and the *random cluster model*. Given a graph $G = (V, E)$, for an edge subset $A \subseteq E$ define $G(A) := (G, A)$ as the subgraph induced by the edge set A. In the random cluster model, we regard A as bonds and define its weight as

$$
w(A) = p^{|A|}(1-p)^{|E \setminus A|} q^{c(A)}
$$

where $c(A)$ is the number of connected components of $G(A)$ and p is a probability.

Now we define the following joint distribution π between the Potts model and the random cluster model on the space $[q]^V \times 2^E$. Let $p = 1 - e^{-\beta}$. For every $\sigma \in [q]^V$ and $A \subseteq E$, define the *Edwards-Sokal measure* as

$$
\pi(\sigma, A) := \frac{1}{Z} \prod_{(u,v) \in E} (p \cdot \mathbb{1} \left[e \in A \land \sigma(u) = \sigma(v) \right] + (1 - p) \cdot \mathbb{1} \left[e \notin A \right])
$$

where *Z* is the normalising factor. If we use the notation $\sigma \sim A$ to denote the event that every edge in *A* has its two endpoints with the same spin in σ , we write π equivalently as

$$
\pi(\sigma, A) = \frac{1}{Z} p^{|A|} (1 - p)^{|E| - |A|} \mathbb{1} [\sigma \sim A].
$$

Summing over σ or A we can see the marginal distributions are the Potts model or the random cluster model respectively. We remark here that all the normalising factors are equal.

With the joint distribution *π*, we provide another view of the Swendsen-Wang dynamics: given a configuration *σ*, firstly pick *A* according to $\pi(\sigma, \cdot)$; and generate a new configuration σ' according to $\pi(\cdot, A)$.

4. RAPID MIXING ON POTTS MODELS

The following is the main theorem of this section.

Theorem 4.1. Let G be a graph with constant maximum degree Δ . Then there exists $p_0 = p_0(\Delta)$ such that if $p = 1 - e^{-\beta} \leq p_0$, then the Swendsen-Wang process mixes rapidly for every q .

We prove Theorem [4.1](#page-3-0) by the path coupling argument. For two configurations X_t, Y_t , let

$$
S_t := \{ v \in V \mid X_t(v) = Y_t(v) \}
$$

and $D_t = V \setminus S_t$. Following the idea of path coupling, we might assume that $|D_t| = 1$ and $D_t = \{v_t\}$. Let $G(X_t)$ (respectively $G(Y_t)$) denote the subgraph of *G* induced by the bonds of X_t (respectively Y_t). We couple X_t and *Yt* in the following way.

Recall the Swendsen-Wang process. It consists of two stages: the *bond breaking* and the *component coloring*.

Bond Breaking. We consider the edge $e \in E$.

- If $e \subseteq S_t$ is a bond, then it is a bond in both $G(X_t)$ and $G(Y_t)$. We keep *e* in both graphs with probability $p = 1 - e^{-\beta}$ and delete it in both graphs with probability $1 - p$.
- For any edge $e = (v_t, w)$, it can only be a bond in exactly one graph. Then we keep it in that graph with probability *p*.

Let \hat{X}_t and \hat{Y}_t be configurations after this stage and $G(\hat{X}_t), G(\hat{Y}_t)$ be the subgraphs induced by bonds in \hat{X}_t and \hat{Y}_t respectively.

Component Coloring. Let *H* be the subgraph of $G(X_t)$ (and $G(Y_t)$) induced by S_t . If *C* is a component of *H* which is not adjacent to v_t , then we give *C* the same random color in X_{t+1} and Y_{t+1} .

Suppose that v_t is adjacent to components C_1, C_2, \ldots, C_r of H in $G(X_t)$ and adjacent to D_1, \ldots, D_s in $G(Y_t)$. Note that $\bigcup_{i=1}^r C_i$ and $\bigcup_{j=1}^t D_j$ are disjoint, otherwise v_t would have the same color in both X_t and Y_t .

- (1) $r = s = 0$. Give v_t the same random color in X_{t+1} and Y_{t+1} .
- (2) • $r = 1, s = 0$. Give C_1 the same random color c in X_{t+1} and Y_{t+1} . Give v_t color c in X_{t+1} and a random color in Y_{t+1} .
	- $r = 0, s = 1$. Give D_1 the same random color *c* in X_{t+1} and Y_{t+1} . Give v_t color *c* in Y_{t+1} and a random color in *Xt*+1.
- (3) $r = 1$ and $s = 1$. Give C_1 a random color c in X_{t+1} and D_1 a random color d in Y_{t+1} . The vertex v_t inherits its color in from C_1 in X_{t+1} and from D_1 in Y_{t+1} .
- (4) $r \geq 2$ or $s \geq 2$. Let *B* be the largest component of $C_1, \ldots, C_r, D_1, \ldots, D_s$. Give *B* the same random color *c* in both X_{t+1} and Y_{t+1} . Any component of $G(\hat{X}_t)$ or $G(\hat{Y}_t)$ not inheriting this color *c* is colored randomly.

Let p_i denote the probability of Case (i) $(1 \le i \le 4)$ and let δ_4 be the indicator of Case [\(4\)](#page-4-0). Note that given the rule of the Bond Breaking, an edge *e* of $G(X_t) \cup G(Y_t)$ appears independently in $\Gamma = G(\widehat{X}_t) \cup G(\widehat{Y}_t)$ with probability *p*. Hence $p_1 \geq (1 - p)^{\Delta}$.

In Cases ([2](#page-4-1))-[\(4\)](#page-4-0), the vertex v_t has the same color in X_{t+1} and Y_{t+1} with probability $1/q$. In Case (4), the vertices of $(C_1 \cup \cdots \cup C_r \cup D_1 \cup \cdots \cup D_s) \setminus B$ might have different colors in X_{t+1} and Y_{t+1} . Thus, we have

(3)
$$
\mathbf{E} \left[\text{Ham}(X_{t+1}, Y_{t+1}) \mid X_t, Y_t \right] \leq (1 - 1/q)(p_2 + p_3 + p_4) + \mathbf{E} \left[w_t \right]
$$

where $w_t \leq \delta_4 (\sum_{i=1}^r |C_i| + \sum_{j=1}^s |D_j| - |B|)$. To bound $\mathbf{E}[w_t]$, let $Z+1$ be the size of the largest tree containing v_t in Γ . Then $w_t + |B| = Z$ and $|B| \ge Z/\Delta$. Let θ_i be the indicator that Γ has a tree of size i in which v_t has degree at least 2. Then $Z = 2\theta_3 + \theta_4 + \cdots + \theta_k + \cdots$. Then we know that

$$
\mathbf{E}\left[Z\right] = \mathbf{E}\left[\theta_3\right] + \sum_{k \geq 3} \mathbf{E}\left[\theta_k\right].
$$

Let α'_{k} be the number of such *k* vertex trees in Γ containing v_{t} and let α_{k} be the number of ordered rooted trees of size *k* with maximum degree at most Δ and the degree of root at least 2. Then we know that $\alpha'_k \leq \alpha_k$. By definition, we know that $\mathbf{E}[\theta_k] = \alpha'_k p^{k-1} \le \alpha_k p^{k-1}$ and $\mathbf{E}[\theta_3] \le \binom{\Delta}{2} p^2$. Let $W(p) = \sum_{k \ge 3} \alpha_k p^{k-1}$. Then,

(4)
$$
\mathbf{E}\left[w_t\right] \leq \frac{\Delta - 1}{\Delta} \left(\binom{\Delta}{2} p^2 + W(p)\right).
$$

Putting (4) (4) (4) into (3) (3) (3) , we obtain

$$
\mathbf{E}\left[\text{Ham}(X_{t+1}, Y_{t+1}) \mid X_t, Y_t\right] \le (1 - 1/q)\left(1 - (1 - p)^{\Delta}\right) + \frac{\Delta - 1}{\Delta} \left(\binom{\Delta}{2} p^2 + W(p)\right).
$$

Now it remains to solve $W(p)$. To solve this, consider the following generating function for an ordered tree of out-degree at most $\Delta - 1$:

$$
T(z) = 1 + zT(z)^{\Delta - 1}.
$$

And we know that

$$
W(z) = T(z)^{\Delta} - (1 + \Delta(T(z) - 1)).
$$

Numerically solving all functions, we can obtain p_0 by letting the right side be less than 1. Thus we conclude Theorem [4.1](#page-3-0).

5. Mixing of the Glauber Dynamics for Ferromagnetic Potts Models

The Swendsen-Wang dynamics is applicable in most cases but difficult to analyze. We turn to the natural single-site heat-bath dynamics \mathcal{M}_{GD} (or, Glauber dynamics).

Proposition 5.1. Fix a positive integer $q \geq 3$, a parameter $\beta > 0$. Let $G = (V, E)$ be an *n*-vertex graph with *maximum degree* Δ *. If* $q \ge \Delta e^{\beta \Delta} + 1$ *, then the mixing time of* \mathcal{M}_{GD} *for the q*-spin Potts model at β *on G with tolerence error* $\varepsilon > 0$ *is at most* $(\Delta + 1)n \log(n/\varepsilon)$.

Proof. We prove it by the path coupling theorem. Fix a pair of configurations (X_t, Y_t) satisfying that they differ at only one vertex v_t . We define the following coupling between (X_{t+1}, Y_{t+1}) : we pick a uniformly random vertex u at G, and update on u according to $\nu_X := \mu_X^{X-u}$ and $\nu_Y := \mu_Y^{Y-u}$. The joint distribution of ν_X and ν_Y will maximize the probability $\Pr[X_{t+1}(u) = Y_{t+1}(u)]$. Let $p = p(u, X, Y) = \Pr[X_{t+1}(u) = Y_{t+1}(u)]$ be this probability. By the basic property of optimal coupling, we have that

$$
1 - p = \frac{1}{2} \sum_{k \in [q]} |\nu_X(k) - \nu_Y(k)| = \mathcal{D}_{\text{TV}}(\nu_X \parallel \nu_Y).
$$

If $v = u$ or *u* is not a neighbour of *v*, it holds that $p = 1$ and thus $X_{t+1} = Y_{t+1}$. Then assume that *u* is a neighbour of *v*. Without loss of generality, assume that $X_t(v) = 1$ and $Y_t(v) = 2$. Define

$$
a_k = n(X_t, u, k) = |\{w \in N(u) : X_t(w) = k\}|, b_k = n(Y_t, u, k) = |\{w \in N(u) : Y_t(w) = k\}|.
$$

Then we have $b_1 = a_1 - 1$, $b_2 = a_2 + 1$ and $b_k = a_k$ for $k = 3, ..., q$. Let

$$
Z_X = \sum_{k \in [q]} e^{\beta a_k}, Z_Y = \sum_{k \in [q]} e^{\beta b_k} = Z_X + (1 - e^{-\beta})(e^{\beta(a_2 + 1)} - e^{\beta a_1})
$$

and without loss of generality assume that $Z_X \geq Z_Y$. Then we can see that $\mu_X(k) \leq \mu_Y(k)$ for $k = 2, \ldots, q$ and hence $\mu_X(1) \geq \mu_Y(1)$. Thus

$$
\mathcal{D}_{\text{TV}}\left(\nu_X \parallel \nu_Y\right) = \nu_X(1) - \nu_Y(1) = \frac{e^{\beta a_1}}{Z_X} - \frac{e^{\beta b_1}}{Z_Y}
$$

.

Given the vector $\mathbf{a} = (a_1, \ldots, a_q) \in [\Delta]^q$, define $f(\mathbf{a}, \beta, q) = \frac{e^{\beta a_1}}{Z_v}$ $\frac{e^{\beta a_1}}{Z_X} - \frac{e^{\beta b_1}}{Z_Y}$ $\frac{Z_P^{\text{1001}}}{Z_Y}$. Let $g(\beta, q)$ be the maximum of *f* over all $a \in [\Delta]^q$ subject to $a_1 + \cdots + a_q = \Delta$. Then it is not hard to see

$$
\mathbf{E}\left[\text{Ham}(X_{t+1}, Y_{t+1}) \mid X_t, Y_t\right] = 1 - \frac{1}{n} + \sum_{u \in N(v)} \frac{1}{n} (1 - p(u, X_t, Y_t)) \leq 1 - \frac{1}{n} + \frac{\Delta}{n} g(\beta, q).
$$

To give an upper bound for $g(\beta, q)$, note that $f(\boldsymbol{a}, \beta, q) \leq \frac{e^{\beta a_1}}{Z_v}$ $\frac{Z_{ZX}}{Z_X}$. Then we know that

$$
f(\mathbf{a}, \beta, q) \le f((\Delta, 0, \dots, 0), \beta, q) = \frac{e^{\beta \Delta}}{e^{\beta \Delta} + q - 1} \le \frac{1}{\Delta + 1}
$$

by the assumption on q ($q \geq \Delta e^{\beta \Delta} + 1$). Therefore

$$
\mathbf{E}\left[\text{Ham}(X_{t+1}, Y_{t+1}) \mid X_t, Y_t\right] \leq 1 - \frac{1}{n} + \frac{\Delta}{n(\Delta+1)} = 1 - \frac{1}{(\Delta+1)n}.
$$

By the argument of path coupling theorem, we obtain the mixing rate of \mathcal{M}_{GD} . □

6. Entropic Contraction on Ferromagnetic Potts Models

A recent work by Blanca and Zhang [\[BZ23\]](#page-7-2) reveals that the spectral independence of the ferromagnetic Potts models implies the optimal mixing of the Swendsen-Wang process.

Theorem 6.1 (Theorem 1.2 in $\boxed{BZ23}$). *Fix* $q \geq 2$, $\beta > 0$, $\eta > 0$ and $\Delta \geq 3$. *Suppose that* $G = (V, E)$ *is a graph* w *ith* $|V| = n$ *of maximum degree* Δ *. Let* μ *be the q-state ferromagnetic Potts model on* G *with temperature* β *. If* μ *is η*-spectrally independent and $\eta = O(1)$, $\beta \Delta = O(1)$, then there exists an universal constant $c = c(\eta, \beta \Delta) > 0$ *such that the mixing time of Swendsen-Wang dynamics on* μ *is* $O((\Delta \log n)^c)$.

This result depends on the factorization of entropy.

Definition 6.2 (Factorization of entropy). Fix an integer $q \geq 2$ and a distribution μ supported on $\Omega \subseteq [q]^n$. For an integer $\ell \leq n$ and a positive factor C_{UBF} (not necessarily constant), we say that μ satisfies ℓ *-uniform-block factorization of entropy with* C_{UBF} if for every well-defined function $f : \Omega \to \mathbb{R}_{\geq 0}$,

$$
\frac{\ell}{n}{\mathbf{Ent}}_\mu\left[f\right]\leq C_{\text{UBF}}\cdot\frac{1}{{n\choose \ell}}\sum_{S\in\binom{[n]}{\ell}}{\mathbf{E}}_{\tau\sim\mu_{[n]\setminus S}}\left[{\mathbf{Ent}}_{\mu^\tau}\left[f\right]\right].
$$

Also, fix a positive integer $k \leq n$ and a k-independent-set partition U_1, \ldots, U_k . We say that μ satisfies *k*-partition factorization of entropy with factor C_{KPF} if for all functions $f : \Omega \to \mathbb{R}_{\geq 0}$,

$$
\mathbf{Ent}_{\mu}\left[f\right]\leq C_{\mathtt{KPF}}\sum_{i=1}^{k}\mathbf{E}_{\tau\sim\mu_{[n]\setminus U_{i}}}\left[\mathbf{Ent}_{\mu^{\tau}}\left[f\right]\right].
$$

The following lemma is the kernel ingredient in the proof of Theorem [6.1.](#page-6-0)

Lemma 6.3 (Theorem 3.3 in [[BZ23\]](#page-7-2))**.** *For a b-marginally bounded Gibbs distribution µ satisfying η-spectrally* i *ndependence on an n-vertex graph* $G = (V, E)$ *of maximum degree* Δ *, if* b *and* η *are constant independent of* Δ *and n, and* $\Delta \in \left[3, \frac{b^4 n}{10e^{(4n)}}\right]$ $\frac{b^4n}{10e(4\eta+b^2)}$. Then there exists an absolute constant $c > 0$ such that *k*-partite factorization of *entropy holds for* μ *with* $C_{\text{KPF}} = (\Delta \log n)^c$. Specifically, for a set of k disjoint independent sets V_1, \ldots, V_k such *that* $\bigcup_{j=1}^{k} V_j = V$ *,*

$$
\mathbf{Ent}_{\mu}[f] \leq 54 \cdot \frac{e^{13\kappa}}{b^{5+6\kappa}} \cdot (\Delta \log n)^{\kappa} \cdot (\log \log n)^{1+\kappa} \sum_{j=1}^{k} \mathbf{E}_{\tau \sim \mu_{V \setminus V_j}} [\mathbf{Ent}_{\mu^{\tau}}[f]]
$$

where $\kappa = 1 + \lceil \frac{2\eta}{h} \rceil$ $\frac{2\eta}{b}$.

To relate *k*-partite factorization of entropy to the optimal mixing of the Swendsen-Wang dynamics, we introduce the concept of *edge-spin factorization of entropy*. Recall the Edwards-Sokal measure *π* supported on $\Omega \times 2^E$. We use $\pi(\cdot \mid \sigma)$ and $\pi(\cdot \mid A)$ to denote the conditional measures of π on fixing the spin configuration σ or the edge configuration *A*. For a function $f: \Omega \times 2^E \to \mathbb{R}$, we use $f^{\sigma}: 2^E \to \mathbb{R}$ to denote the function $f(\sigma, \cdot)$ and $f^A: \Omega \to \mathbb{R}$ to denote $f(\cdot, A)$. Then we say that the edge-spin factorization of entropy holds with factor C_{ES} if for all well-defined function $f: \Omega \times 2^E \to \mathbb{R}_{\geq 0}$,

$$
\mathbf{Ent}_{\pi}[f] \leq C_{\mathtt{ES}}\big(\mathbf{E}_{(\sigma,A)\sim\pi}\left[\mathbf{Ent}_{\pi(\cdot\mid\sigma)}\left[f^{\sigma}\right]\right]+\mathbf{E}_{(\sigma,A)\sim\pi}\left[\mathbf{Ent}_{\pi(\cdot\mid A)}\left[f^A\right]\right]\big).
$$

Lemma 6.4 (Theorem 6.1 in [\[BCC](#page-7-3)+22])**.** *Suppose that the q-state ferromagnetic Potts model with parameter β on a graph G of maximum degree* $Δ ≥ 3$ *satisfies k-partite factorization of entropy with factor* C_{KPF} *. Then the edge-spin factorization of entropy holds with factor* $C_{ES} = O(\beta \Delta k e^{\beta \Delta}) \cdot C_{KPF}$.

Lemma 6.5 (Lemma 1.8 in $[BCP^+21]$). *Suppose that the edge-spin factorization of entropy holds with factor C*_{ES}*. Then the Swendsen-Wang dynamics satisfies the relative entropy decay with rate* $\Omega(C_{\text{ES}}^{-1})$ *.*

Theorem [6.1](#page-6-0) can be proved directly from Lemmas [6.3](#page-6-1) to [6.5](#page-6-2) with observation that *V* has a natural $\chi(G)$ independent-set partition.

8 ZHIDAN LI

REFERENCES

- [BCC+22] Antonio Blanca, Pietro Caputo, Zongchen Chen, Daniel Parisi, Daniel Štefankovič, and Eric Vigoda. On mixing of Markov chains: Coupling, spectral independence, and entropy factorization. In *Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022)*, pages 3670–3692, 2022. [7](#page-6-3)
- [BCP+21] Antonio Blanca, Pietro Caputo, Daniel Parisi, Alistair Sinclair, and Eric Vigoda. Entropy decay in the Swendsen–Wang dynamics on Z *d* . In *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2021, page 1551–1564, New York, NY, USA, 2021. Association for Computing Machinery. [7](#page-6-3)
	- [BZ23] Antonio Blanca and Xusheng Zhang. Rapid mixing of global Markov chains via spectral independence: The unbounded degree case. In Nicole Megow and Adam Smith, editors, *Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)*, volume 275 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pages 53:1–53:19, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. [7](#page-6-3)
	- [JS96] Mark Jerrum and Alistair Sinclair. *The Markov chain Monte Carlo method: an approach to approximate counting and integration*, page 482–520. PWS Publishing Co., USA, 1996. [4](#page-3-1)
	- [Vig00] Eric Vigoda. Improved bounds for sampling colorings. *Journal of Mathematical Physics*, 41(3):1555– 1569, March 2000. [1](#page-0-1)