PATH COUPLING FOR RAPID MIXING OF MARKOV CHAINS

ZHIDAN LI

1. PATH COUPLING

For a Markov chain \mathcal{M} , in the classical coupling method, given a metric d on a state space Ω , if a coupling decreases the distance between every pair of configurations in Ω , then the mixing time of \mathcal{M} can be bounded. The following concepts formalize this argument.

Definition 1.1 (Contraction). Given a metric d on a state space Ω and a Markov chain \mathcal{M} on Ω with stationary distribution μ , we say that a coupling $(X, Y) \to (X', Y')$ satisfies γ -contraction for some factor γ if for every initial configurations $(X, Y) \in \Omega \times \Omega$,

$$\mathbf{E}\left[d(X',Y') \mid X,Y\right] \le \gamma d(X,Y).$$

Theorem 1.2 (Coupling theorem). For some factor $\gamma \in [0, 1]$, if there exists a coupling satisfying γ -contraction, then

$$\tau_{\min}(\mathcal{M}) \le O\left(\frac{1}{1-\gamma}\log d_{\max}\right)$$

where d_{\max} is the diameter of the metric d.

However, defining distances and couplings between all configurations in Ω is hard. The path coupling theorem allows us to determine distances and coupling between some pairs of configurations, and the whole metric and coupling can be naturally extended.

Definition 1.3 (Pre-metric). A *pre-metric* on Ω is a pair (Γ, ω) where Γ is a connected, undirected graph on Ω and ω is a positive real-valued function assigning values to edges (X, Y) in Γ satisfying that for every edge (X, Y), $\omega(X, Y)$ is the minimum among all paths between X and Y. We refer to these adjacent vertices as *neighboring pairs*.

Note that from this pre-metric, we can naturally construct a metric d on Ω using the shortest paths.

Theorem 1.4 (Path coupling theorem). Let (Γ, ω) be the pre-metric in Ω and d be the induced metric. If a coupling defined on the edges in Γ satisfies γ -contraction for some $\gamma \in [0, 1]$, then there exists a coupling on Ω satisfying γ -contraction. Therefore,

$$\tau_{\min}(\mathcal{M}) \le O\left(\frac{1}{1-\gamma}\log d_{\max}\right)$$

where d_{\max} is the diameter of the metric d.

2. Application: Vigoda's Algorithm for Proper Colorings

We show the application of Theorem 1.4 to sampling proper colorings by Vigoda [Vig00]. Given a graph G = (V, E) and an integer $q \ge 2$, let Ω be all (not necessarily proper) q-colorings on G.

Before we introduce the Markov chain applied, there are some related concepts. Given a coloring $X \in \Omega$, we say a path $v = v_0, v_1, \ldots, v_t = w$ is an *alternating path* between v and w using c and X(v) if $(v_i, v_{i+1}) \in E$, $\sigma(v_i) \in \{X(v), c\}$ and $X(v_i) \neq X(v_{i+1})$. Then the Kempe component $S_X(v, c)$ is the following cluster of vertices

 $S_X(v,c) := \{ w \in V \mid \text{there exists an alternating path between } v \text{ and } w \text{ using colors } \sigma \text{ and } c \}.$

For convenience, we redefine $S_X(v, X(v)) = \emptyset$. For every vertex $w \in S_X(v, c)$, it holds that $S_X(v, c) = S_X(w, c)$ if X(v) = X(w) and $S_X(v, c) = S_X(w, X(v))$ otherwise. This means that every Kempe component S can be relabelled in |S| ways. Let S_X be the set of all Kempe components induced by X.

Now we introduce the *flip dynamics* \mathcal{M}_{FD} to sample proper colorings. Given a sequence of weights $\{p_i\}_{i\geq 0}$ satisfying $p_1 = 1$, at a proper coloring X, we run transition in the following way:

- Choose $v \in V$ and $c \in [q]$ uniformly at random.
- Let $\alpha = |S_X(v,c)|$. With probability $p = \frac{p_\alpha}{\alpha}$, we flip cluster $S_X(v,c)$ by interchanging colors c and X(v) in the cluster.

Note that for a cluster S, there are |S| different pairs of (v, c) to choose S. So the probability of flipping S is exactly $p_{|S|}$. Then we have the following equivalent way to describe \mathcal{M}_{FD} .

- Choose a Kempe component $S \in \mathcal{S}_X$ with probability 1/nq.
- Let $\alpha = |S|$ and with probability p_{α} flip S.

It is not hard to verify that \mathcal{M}_{FD} is irreducible and aperiodic. It is not hard to verify that \mathcal{M} is stationary with respect to the uniform distribution of proper q-colorings on G.

2.1. Coupling of the flip dynamics. To apply Theorem 1.4, we construct a coupling for every $(X, Y) \in \Omega \times \Omega$ such that X and Y differ at exactly one vertex $v \in V$. We consider when clusters $S_X(w, c), S_Y(w, c)$ might be different in the sense that $S_X(w, c) \neq S_Y(w, c)$ or $S_X(w, c) = S_Y(w, c)$ but there is a vertex y in this with $X(y) \neq Y(y)$.

Let $\mathcal{D} = \mathcal{D}(X, Y)$ be the collection of clusters that are different in X, Y. Note that these clusters must involve v. Then we know that

$$\mathcal{D} := \{S_X(v,c) : c \in [q]\} \cup \{S_Y(v,c) : c \in [q]\} \cup \{S_X(w,Y(v)), S_Y(w,X(v)) : w \in N_G(v)\} \}$$

For every Kempe component $S \notin \mathcal{D}$, we use the identity coupling for its move and this does not change the distance. So we only consider \mathcal{D} .

We decompose \mathcal{D} in sets $\bigcup_{c \in [q]} \mathcal{D}_c$ where \mathcal{D}_c is the set of Kempe components consisting of $S_X(v,c), S_Y(v,c)$ and $S_X(w, Y(v)), S_Y(w, X(v))$ for all $w \in N_G(v)$ satisfying X(w) = Y(w) = c.

We use the Hamming distance denoted by $H(\cdot, \cdot)$ as the metric d. For any $X \in \Omega$ and $S \in \mathcal{D}$, let $X_{\oplus S}$ be the coloring obtained from X after flipping S. Then we know that

$$\mathbf{E} \left[\Delta H \mid X, Y \right] = \mathbf{E} \left[\Delta H \mid X, Y, S \notin \mathcal{D} \right] \mathbf{Pr} \left[S \notin \mathcal{D} \mid X, Y \right] + \sum_{c \in [q]} \mathbf{E} \left[\Delta H \mid X, Y, S \in \mathcal{D}_c \right] \mathbf{Pr} \left[S \in \mathcal{D}_c \mid X, Y \right]$$
$$= \frac{1}{nq} \sum_{c \in [q]} \sum_{S \in \mathcal{D}_c} \mathbf{E} \left[H(X_{\oplus S}, Y_{\oplus S}) - H(X, Y) \mid X, Y \right].$$

Let U_c be the set of neighbors of v that are colored c. Let $\delta_c = |U_c|$. We denote $U_c = \{u_1^c, \ldots, u_{\delta_c}^c\}$ or simply $\{u_1, \ldots, u_{\delta_c}\}$ when c is clear. Then

$$\mathcal{D}_c = \{S_X(v,c), S_Y(v,c)\} \cup \left(\bigcup_{w \in U_c} \{S_X(v,Y(v)), S_Y(v,X(v))\}\right).$$

We mark that sets in \mathcal{D}_c are disjoint except possibly $\mathcal{D}_{X(v)}$ and $\mathcal{D}_{Y(v)}$. If $c \notin \{X(v), Y(v)\}$, we obtain that

$$S_X(v,c) = \left(\bigcup_{i=1}^{\delta_c} S_Y(u_i^c, X(v))\right) \cup \{v\}, \quad S_Y(v,c) = \left(\bigcup_{i=1}^{\delta_c} S_X(u_i^c, Y(v))\right) \cup \{v\}.$$

For c = X(v), we have $S_X(v,c) = S_Y(u,X(v)) = \emptyset$ for all $u \in U_c$. Similarly for c = Y(v), $S_Y(v,c) = S_X(u,Y(v)) = \emptyset$ for all $u \in U_c$.

The following observation will simplify some cases in our analysis. Note that v can have some neighbors $u'_1, \ldots, u'_m \in N_G(v)$ colored c belonging to the same Kempe component $S_Y(u'_1, X(v)) = \cdots = S_Y(u'_m, X(v))$. In order to consider the flip with the right probability, we redefine $S_Y(u'_i, X(v)) = \emptyset$ for $1 < i \leq m$. Do the same modifications for $S_X(u'_i, Y(v))$.

For each $c \in [q]$ such that $\delta_c > 0$, define $A_c := |S_X(v,c)|$, $B_c := |S_Y(v,c)|$, $a_i^c := |S_Y(u_i, X(v))|$ and $b_i^c := |S_X(u_i, Y(v))|$. We define the vectors $\mathbf{a}^c := (a_i^c : i \in [\delta_c])$ and $\mathbf{b}^c := (b_i^c : i \in [\delta_c])$. We say that (X, Y) has configuration $(A_c, B_c; \mathbf{a}^c, \mathbf{b}^c)$. We also define $a_{\max}^c := \max_i a_i^c$ and i_{\max}^c as a maximizing argument. Similarly

define $b_{\max}^c := \max_j b_j^c$ and j_{\max}^c as a maximizing argument. When it is clear from the context, we drop the script c. Note that the following inequality holds:

$$A \le 1 + \sum_{i} a_i, \quad B \le 1 + \sum_{j} b_j$$

with equality if $c \notin \{X(v), Y(v)\}$.

The idea of coupling consists of the following rules. Flips of clusters in \mathcal{D}_c for X will be coupled with clusters in \mathcal{D}_c for Y. We couple $S_X(v,c)$ and $S_Y(v,c)$ with the biggest size of others, and try to couple the remaining weights as much as possible.

- Flip $S_X(v,c)$ and $S_Y(u_{i_{\max}}, X(v))$ together with probability p_A .
- Flip $S_Y(v,c)$ and $S_X(u_{j_{\text{max}}}, Y(v))$ together with probability p_B .
- For all $i \in [\delta_c]$, let $q_i = p_{a_i} p_A \cdot \mathbb{1}[i_{\max} = i]$ and $q'_j = p_{b_j} p_B \cdot \mathbb{1}[j_{\max} = j]$.
 - (1) Flip $S_Y(u_i, X(v))$ and $S_X(u_i, Y(v))$ together with probability $\min(q_i, q'_i)$.
 - (2) Flip $S_Y(u_i, X(v))$ with probability $q_i \min(q_i, q'_i)$.
 - (3) Flip $S_X(u_i, Y(v))$ with probability $q'_i \min(q_i, q'_i)$.

Given a configuration (A, B; a, b), define $H(A, B; a, b) := (A - a_{\max} - 1)p_A + (B - b_{\max} - 1)p_B + \sum_i (a_i \cdot q_i + b_i \cdot q'_i - \min\{q_i, q'_i\}).$

Proposition 2.1. The following bound holds

$$\mathbf{E}\left[\Delta H \mid X, Y\right] \leq \frac{1}{nq} \left(-|\{c: \delta_c = 0\}| + \sum_{c: \delta_c > 0} H(A_c, B_c; \boldsymbol{a}^c, \boldsymbol{b}^c) \right).$$

2.2. Linear programming and choice of flip weights. In order to obtain the rapid mixing of Markov chains, we need to choose proper weights $\{p_{\alpha}\}_{\alpha \in \mathbb{N}}$.

The variation depends sorely on the configurations.

Definition 2.2. A configuration $(A, B; \boldsymbol{a}, \boldsymbol{b})$ is *realizable* if there exists a graph G, a neighboring coloring pair (X, Y) defined in G and a color $c \in [q]$ such that $(A, B; \boldsymbol{a}, \boldsymbol{b}) = (A_c, B_c; \boldsymbol{a}^c, \boldsymbol{b}^c)$.

We mark here that a configuration (A, B; a, b) is realizable if and only if

$$A \le 1 + \sum_{i} a_i, \quad B \le 1 + \sum_{j} b_j.$$

We call δ_c the size of the configuration.

Note that if there exists $\lambda > 0$ such that $H(A, B; \boldsymbol{a}, \boldsymbol{b}) \leq -1 + \lambda m$ for all realizable configurations $(A, B; \boldsymbol{a}, \boldsymbol{b})$ where m is the size of the configuration, then we know that the coupling is contractive for $q > \lambda \Delta$.

Then our goal is to solve the following linear programming.

(1)
$$\begin{array}{l} \min_{\lambda,\{p_{\alpha}\}_{\alpha\in\mathbb{N}}} & \lambda \\ \text{subject to} & H(A,B;\boldsymbol{a},\boldsymbol{b}) \leq -1 + \lambda m \\ p_{0} = 0 \leq p_{i} \leq p_{i-1} \leq p_{1} = 1 \end{array} \quad \forall m \in \mathbb{N} \text{ and all realizable } (A,B;\boldsymbol{a},\boldsymbol{b}) \text{ of size } m, \\ \forall i \geq 2. \end{array}$$

However, this linear program is hard to solve since there are infinitely many variables and constraints. To solve this problem, Vigoda restricts that for every $\alpha \ge 7$, $p_{\alpha} = 0$.

The following bounds make the linear program easy to solve.

Lemma 2.3. $H(A, B; a, b) \leq (A - 2a_{\max})p_A + (B - 2b_{\max})p_B + \sum_i (p_{a_i}a_i + p_{b_i}b_i - \min\{p_{a_i}, p_{b_i}\}).$

Lemma 2.4. Consider for all *i* the additional constraints $ip_i \leq 1$, $(i-1)p_i \leq \frac{1}{3}$ and $(i-2)p_i \leq 2/9$. Let $(A, B; \boldsymbol{a}, \boldsymbol{b})$ be a realizable configuration of size ≥ 3 . Then if $\{p_{\alpha}\}$ satisfy the additional constraints, then for $\lambda \geq \frac{49}{27}$,

$$H(A, B; \boldsymbol{a}, \boldsymbol{b}) \leq -1 + \lambda m.$$

Then we can solve the linear program $\lambda^* = 11/6$ and a feasible solution is

$$p_1 = 1, p_2 = \frac{13}{42}, p_3 = \frac{1}{6}, p_4 = \frac{2}{21}, p_5 = \frac{1}{21}, p_6 = \frac{1}{84}.$$

3. Potts Models and Swendsen-Wang Process

Fix a positive integer $q \ge 2$ and a parameter $\beta \in \mathbb{R}$. We consider q-state Potts model on an arbitrary graph G = (V, E) with $V = \{v_1, \ldots, v_n\}$. For any assignment $\sigma : V \to [q]$, we call σ a configuration and σ gives a partition $V = V_1 \cup \cdots \cup V_q$ to V where $V_i := \{v \in V \mid \sigma(v) = i\}$ for every $i \in [q]$. Under a given configuration σ , we say an edge $e = (u, v) \in E$ is a bond if $\sigma(u) = \sigma(v)$. The components induced by bonds are called *clusters*.

For a configuration $\sigma \in [q]^V$, define $D(\sigma) := \{e = (u, v) \in E : \sigma(u) \neq \sigma(v)\}$ and certainly $B(\sigma) = E \setminus D(\sigma)$ as the bonds under σ . Then we define the *q*-state Potts models $\mu = \mu_{G,\beta}$ on G at β as

(2)
$$\mu(\sigma) = \frac{e^{-\beta|D(\sigma)|}}{Z}, \quad \forall \sigma \in [q]^{\mathsf{V}}$$

where the normalising factor $Z = \sum_{\sigma \in [q]^V} e^{-\beta |D(\sigma)|}$ is called *the partition function* of the Potts model. When $\beta > 0$, we say it is *ferromagnetic* and otherwise we call it an *anti-ferromagnetic* one.

3.1. Markov chains and Swendsen-Wang process. A long-time topic in practice is how to sample a configuration σ from μ . Variants of Markov chains are in application. However, a typical Metropolis process in [JS96] is shown to work in some settings under the anti-ferromagnetic assumption, but unknown in the ferromagnetic cases. To avoid this accident, we apply the following dynamics named *Swendsen-Wang process*.

Assume that the current configuration is σ . We generate the next configuration by the following two steps.

- (1) Let $B = B(\sigma)$ be the bonds under σ . We sample a subset $A \subseteq B$ as: for each edge $e \in B$, we pick it with probability $p = 1 e^{-\beta}$.
- (2) For each connected component in the graph (V, A), we assign all vertices in the component with a state in [q] uniformly and independently at random.

The application of the Swendsen-Wang process depends on the equivalence under certain conditions of the q-state Potts model and the *random cluster model*. Given a graph G = (V, E), for an edge subset $A \subseteq E$ define G(A) := (G, A) as the subgraph induced by the edge set A. In the random cluster model, we regard A as bonds and define its weight as

$$w(A) = p^{|A|} (1-p)^{|E \setminus A|} q^{c(A)}$$

where c(A) is the number of connected components of G(A) and p is a probability.

Now we define the following joint distribution π between the Potts model and the random cluster model on the space $[q]^V \times 2^E$. Let $p = 1 - e^{-\beta}$. For every $\sigma \in [q]^V$ and $A \subseteq E$, define the *Edwards-Sokal measure* as

$$\pi(\sigma, A) := \frac{1}{Z} \prod_{(u,v) \in E} (p \cdot \mathbb{1} \left[e \in A \land \sigma(u) = \sigma(v) \right] + (1-p) \cdot \mathbb{1} \left[e \notin A \right])$$

where Z is the normalising factor. If we use the notation $\sigma \sim A$ to denote the event that every edge in A has its two endpoints with the same spin in σ , we write π equivalently as

$$\pi(\sigma, A) = \frac{1}{Z} p^{|A|} (1-p)^{|E|-|A|} \mathbb{1} [\sigma \sim A].$$

Summing over σ or A we can see the marginal distributions are the Potts model or the random cluster model respectively. We remark here that all the normalising factors are equal.

With the joint distribution π , we provide another view of the Swendsen-Wang dynamics: given a configuration σ , firstly pick A according to $\pi(\sigma, \cdot)$; and generate a new configuration σ' according to $\pi(\cdot, A)$.

4. RAPID MIXING ON POTTS MODELS

The following is the main theorem of this section.

Theorem 4.1. Let G be a graph with constant maximum degree Δ . Then there exists $p_0 = p_0(\Delta)$ such that if $p = 1 - e^{-\beta} \leq p_0$, then the Swendsen-Wang process mixes rapidly for every q.

We prove Theorem 4.1 by the path coupling argument. For two configurations X_t, Y_t , let

$$S_t := \{ v \in V \mid X_t(v) = Y_t(v) \}$$

and $D_t = V \setminus S_t$. Following the idea of path coupling, we might assume that $|D_t| = 1$ and $D_t = \{v_t\}$. Let $G(X_t)$ (respectively $G(Y_t)$) denote the subgraph of G induced by the bonds of X_t (respectively Y_t). We couple X_t and Y_t in the following way.

Recall the Swendsen-Wang process. It consists of two stages: the bond breaking and the component coloring.

Bond Breaking. We consider the edge $e \in E$.

- If $e \subseteq S_t$ is a bond, then it is a bond in both $G(X_t)$ and $G(Y_t)$. We keep e in both graphs with probability $p = 1 e^{-\beta}$ and delete it in both graphs with probability 1 p.
- For any edge $e = (v_t, w)$, it can only be a bond in exactly one graph. Then we keep it in that graph with probability p.

Let \hat{X}_t and \hat{Y}_t be configurations after this stage and $G(\hat{X}_t), G(\hat{Y}_t)$ be the subgraphs induced by bonds in \hat{X}_t and \hat{Y}_t respectively.

Component Coloring. Let H be the subgraph of $G(\widehat{X}_t)$ (and $G(\widehat{Y}_t)$) induced by S_t . If C is a component of H which is not adjacent to v_t , then we give C the same random color in X_{t+1} and Y_{t+1} .

Suppose that v_t is adjacent to components C_1, C_2, \ldots, C_r of H in $G(\hat{X}_t)$ and adjacent to D_1, \ldots, D_s in $G(\hat{Y}_t)$. Note that $\bigcup_{i=1}^r C_i$ and $\bigcup_{i=1}^t D_i$ are disjoint, otherwise v_t would have the same color in both X_t and Y_t .

- (1) r = s = 0. Give v_t the same random color in X_{t+1} and Y_{t+1} .
- (2) r = 1, s = 0. Give C_1 the same random color c in X_{t+1} and Y_{t+1} . Give v_t color c in X_{t+1} and a random color in Y_{t+1} .
 - r = 0, s = 1. Give D_1 the same random color c in X_{t+1} and Y_{t+1} . Give v_t color c in Y_{t+1} and a random color in X_{t+1} .
- (3) r = 1 and s = 1. Give C_1 a random color c in X_{t+1} and D_1 a random color d in Y_{t+1} . The vertex v_t inherits its color in from C_1 in X_{t+1} and from D_1 in Y_{t+1} .
- (4) $r \ge 2$ or $s \ge 2$. Let *B* be the largest component of $C_1, \ldots, C_r, D_1, \ldots, D_s$. Give *B* the same random color *c* in both X_{t+1} and Y_{t+1} . Any component of $G(\widehat{X}_t)$ or $G(\widehat{Y}_t)$ not inheriting this color *c* is colored randomly.

Let p_i denote the probability of Case (i) $(1 \le i \le 4)$ and let δ_4 be the indicator of Case (4). Note that given the rule of the Bond Breaking, an edge e of $G(X_t) \cup G(Y_t)$ appears independently in $\Gamma = G(\widehat{X}_t) \cup G(\widehat{Y}_t)$ with probability p. Hence $p_1 \ge (1-p)^{\Delta}$.

In Cases (2)-(4), the vertex v_t has the same color in X_{t+1} and Y_{t+1} with probability 1/q. In Case (4), the vertices of $(C_1 \cup \cdots \cup C_r \cup D_1 \cup \cdots \cup D_s) \setminus B$ might have different colors in X_{t+1} and Y_{t+1} . Thus, we have

(3)
$$\mathbf{E} \left[\operatorname{Ham}(X_{t+1}, Y_{t+1}) \mid X_t, Y_t \right] \le (1 - 1/q)(p_2 + p_3 + p_4) + \mathbf{E} \left[w_t \right]$$

where $w_t \leq \delta_4 \left(\sum_{i=1}^r |C_i| + \sum_{j=1}^s |D_j| - |B| \right)$. To bound $\mathbf{E}[w_t]$, let Z + 1 be the size of the largest tree containing v_t in Γ . Then $w_t + |B| = Z$ and $|B| \geq Z/\Delta$. Let θ_i be the indicator that Γ has a tree of size i in which v_t has degree at least 2. Then $Z = 2\theta_3 + \theta_4 + \cdots + \theta_k + \cdots$. Then we know that

$$\mathbf{E}[Z] = \mathbf{E}[heta_3] + \sum_{k \ge 3} \mathbf{E}[heta_k].$$

Let α'_k be the number of such k vertex trees in Γ containing v_t and let α_k be the number of ordered rooted trees of size k with maximum degree at most Δ and the degree of root at least 2. Then we know that $\alpha'_k \leq \alpha_k$. By definition, we know that $\mathbf{E}[\theta_k] = \alpha'_k p^{k-1} \leq \alpha_k p^{k-1}$ and $\mathbf{E}[\theta_3] \leq {\Delta \choose 2} p^2$. Let $W(p) = \sum_{k \geq 3} \alpha_k p^{k-1}$. Then,

(4)
$$\mathbf{E}[w_t] \le \frac{\Delta - 1}{\Delta} \left(\binom{\Delta}{2} p^2 + W(p) \right)$$

Putting (4) into (3), we obtain

$$\mathbf{E}\left[\mathrm{Ham}(X_{t+1}, Y_{t+1}) \mid X_t, Y_t\right] \le (1 - 1/q) \left(1 - (1 - p)^{\Delta}\right) + \frac{\Delta - 1}{\Delta} \left(\binom{\Delta}{2}p^2 + W(p)\right).$$

Now it remains to solve W(p). To solve this, consider the following generating function for an ordered tree of out-degree at most $\Delta - 1$:

$$T(z) = 1 + zT(z)^{\Delta - 1}.$$

And we know that

$$W(z) = T(z)^{\Delta} - (1 + \Delta(T(z) - 1)).$$

Numerically solving all functions, we can obtain p_0 by letting the right side be less than 1. Thus we conclude Theorem 4.1.

5. Mixing of the Glauber Dynamics for Ferromagnetic Potts Models

The Swendsen-Wang dynamics is applicable in most cases but difficult to analyze. We turn to the natural single-site heat-bath dynamics \mathcal{M}_{GD} (or, Glauber dynamics).

Proposition 5.1. Fix a positive integer $q \ge 3$, a parameter $\beta > 0$. Let G = (V, E) be an n-vertex graph with maximum degree Δ . If $q \ge \Delta e^{\beta\Delta} + 1$, then the mixing time of \mathcal{M}_{GD} for the q-spin Potts model at β on G with tolerence error $\varepsilon > 0$ is at most $(\Delta + 1)n \log (n/\varepsilon)$.

Proof. We prove it by the path coupling theorem. Fix a pair of configurations (X_t, Y_t) satisfying that they differ at only one vertex v_t . We define the following coupling between (X_{t+1}, Y_{t+1}) : we pick a uniformly random vertex u at G, and update on u according to $\nu_X := \mu_u^{X-u}$ and $\nu_Y := \mu_u^{Y-u}$. The joint distribution of ν_X and ν_Y will maximize the probability $\mathbf{Pr}[X_{t+1}(u) = Y_{t+1}(u)]$. Let $p = p(u, X, Y) = \mathbf{Pr}[X_{t+1}(u) = Y_{t+1}(u)]$ be this probability. By the basic property of optimal coupling, we have that

$$1 - p = \frac{1}{2} \sum_{k \in [q]} |\nu_X(k) - \nu_Y(k)| = \mathcal{D}_{\text{TV}}(\nu_X \parallel \nu_Y).$$

If v = u or u is not a neighbour of v, it holds that p = 1 and thus $X_{t+1} = Y_{t+1}$. Then assume that u is a neighbour of v. Without loss of generality, assume that $X_t(v) = 1$ and $Y_t(v) = 2$. Define

$$a_k = n(X_t, u, k) = |\{w \in N(u) : X_t(w) = k\}|, b_k = n(Y_t, u, k) = |\{w \in N(u) : Y_t(w) = k\}|$$

Then we have $b_1 = a_1 - 1$, $b_2 = a_2 + 1$ and $b_k = a_k$ for k = 3, ..., q. Let

$$Z_X = \sum_{k \in [q]} e^{\beta a_k}, Z_Y = \sum_{k \in [q]} e^{\beta b_k} = Z_X + (1 - e^{-\beta})(e^{\beta(a_2 + 1)} - e^{\beta a_1})$$

and without loss of generality assume that $Z_X \ge Z_Y$. Then we can see that $\mu_X(k) \le \mu_Y(k)$ for $k = 2, \ldots, q$ and hence $\mu_X(1) \ge \mu_Y(1)$. Thus

$$\mathcal{D}_{\text{TV}}(\nu_X \parallel \nu_Y) = \nu_X(1) - \nu_Y(1) = \frac{e^{\beta a_1}}{Z_X} - \frac{e^{\beta b_1}}{Z_Y}$$

Given the vector $\boldsymbol{a} = (a_1, \ldots, a_q) \in [\Delta]^q$, define $f(\boldsymbol{a}, \beta, q) = \frac{e^{\beta a_1}}{Z_X} - \frac{e^{\beta b_1}}{Z_Y}$. Let $g(\beta, q)$ be the maximum of f over all $\boldsymbol{a} \in [\Delta]^q$ subject to $a_1 + \cdots + a_q = \Delta$. Then it is not hard to see

$$\mathbf{E}\left[\mathrm{Ham}(X_{t+1}, Y_{t+1}) \mid X_t, Y_t\right] = 1 - \frac{1}{n} + \sum_{u \in N(v)} \frac{1}{n} (1 - p(u, X_t, Y_t)) \le 1 - \frac{1}{n} + \frac{\Delta}{n} g(\beta, q)$$

To give an upper bound for $g(\beta, q)$, note that $f(\boldsymbol{a}, \beta, q) \leq \frac{e^{\beta a_1}}{Z_X}$. Then we know that

$$f(\boldsymbol{a}, \beta, q) \le f((\Delta, 0, \dots, 0), \beta, q) = \frac{e^{\beta \Delta}}{e^{\beta \Delta} + q - 1} \le \frac{1}{\Delta + 1}$$

by the assumption on q $(q \ge \Delta e^{\beta \Delta} + 1)$. Therefore

$$\mathbf{E}\left[\mathrm{Ham}(X_{t+1}, Y_{t+1}) \mid X_t, Y_t\right] \le 1 - \frac{1}{n} + \frac{\Delta}{n(\Delta+1)} = 1 - \frac{1}{(\Delta+1)n}$$

By the argument of path coupling theorem, we obtain the mixing rate of \mathcal{M}_{GD} .

6

6. ENTROPIC CONTRACTION ON FERROMAGNETIC POTTS MODELS

A recent work by Blanca and Zhang [BZ23] reveals that the spectral independence of the ferromagnetic Potts models implies the optimal mixing of the Swendsen-Wang process.

Theorem 6.1 (Theorem 1.2 in [BZ23]). Fix $q \ge 2$, $\beta > 0$, $\eta > 0$ and $\Delta \ge 3$. Suppose that G = (V, E) is a graph with |V| = n of maximum degree Δ . Let μ be the q-state ferromagnetic Potts model on G with temperature β . If μ is η -spectrally independent and $\eta = O(1)$, $\beta \Delta = O(1)$, then there exists an universal constant $c = c(\eta, \beta \Delta) > 0$ such that the mixing time of Swendsen-Wang dynamics on μ is $O((\Delta \log n)^c)$.

This result depends on the factorization of entropy.

Definition 6.2 (Factorization of entropy). Fix an integer $q \ge 2$ and a distribution μ supported on $\Omega \subseteq [q]^n$. For an integer $\ell \le n$ and a positive factor C_{UBF} (not necessarily constant), we say that μ satisfies ℓ -uniform-block factorization of entropy with C_{UBF} if for every well-defined function $f : \Omega \to \mathbb{R}_{>0}$,

$$\frac{\ell}{n}\mathbf{Ent}_{\mu}\left[f\right] \leq C_{\mathtt{UBF}} \cdot \frac{1}{\binom{n}{\ell}} \sum_{S \in \binom{\left[n\right]}{\ell}} \mathbf{E}_{\tau \sim \mu_{\left[n\right] \setminus S}}\left[\mathbf{Ent}_{\mu^{\tau}}\left[f\right]\right].$$

Also, fix a positive integer $k \leq n$ and a k-independent-set partition U_1, \ldots, U_k . We say that μ satisfies k-partition factorization of entropy with factor C_{KPF} if for all functions $f : \Omega \to \mathbb{R}_{\geq 0}$,

$$\mathbf{Ent}_{\mu}\left[f\right] \leq C_{\mathsf{KPF}} \sum_{i=1}^{k} \mathbf{E}_{\tau \sim \mu_{\left[n\right] \setminus U_{i}}}\left[\mathbf{Ent}_{\mu^{\tau}}\left[f\right]\right].$$

The following lemma is the kernel ingredient in the proof of Theorem 6.1.

Lemma 6.3 (Theorem 3.3 in [BZ23]). For a b-marginally bounded Gibbs distribution μ satisfying η -spectrally independence on an n-vertex graph G = (V, E) of maximum degree Δ , if b and η are constant independent of Δ and n, and $\Delta \in \left[3, \frac{b^4n}{10e(4\eta+b^2)}\right]$. Then there exists an absolute constant c > 0 such that k-partite factorization of entropy holds for μ with $C_{\text{KPF}} = (\Delta \log n)^c$. Specifically, for a set of k disjoint independent sets V_1, \ldots, V_k such that $\bigcup_{i=1}^k V_j = V$,

$$\mathbf{Ent}_{\mu}\left[f\right] \leq 54 \cdot \frac{e^{13\kappa}}{b^{5+6\kappa}} \cdot (\Delta \log n)^{\kappa} \cdot (\log \log n)^{1+\kappa} \sum_{j=1}^{k} \mathbf{E}_{\tau \sim \mu_{V \setminus V_{j}}}\left[\mathbf{Ent}_{\mu^{\tau}}\left[f\right]\right]$$

where $\kappa = 1 + \left\lceil \frac{2\eta}{h} \right\rceil$.

To relate k-partite factorization of entropy to the optimal mixing of the Swendsen-Wang dynamics, we introduce the concept of *edge-spin factorization of entropy*. Recall the Edwards-Sokal measure π supported on $\Omega \times 2^E$. We use $\pi(\cdot \mid \sigma)$ and $\pi(\cdot \mid A)$ to denote the conditional measures of π on fixing the spin configuration σ or the edge configuration A. For a function $f: \Omega \times 2^E \to \mathbb{R}$, we use $f^{\sigma}: 2^E \to \mathbb{R}$ to denote the function $f(\sigma, \cdot)$ and $f^A: \Omega \to \mathbb{R}$ to denote $f(\cdot, A)$. Then we say that the edge-spin factorization of entropy holds with factor C_{ES} if for all well-defined function $f: \Omega \times 2^E \to \mathbb{R}_{\geq 0}$,

$$\mathbf{Ent}_{\pi}\left[f\right] \leq C_{\mathbf{ES}}\left(\mathbf{E}_{(\sigma,A)\sim\pi}\left[\mathbf{Ent}_{\pi(\cdot \mid \sigma)}\left[f^{\sigma}\right]\right] + \mathbf{E}_{(\sigma,A)\sim\pi}\left[\mathbf{Ent}_{\pi(\cdot \mid A)}\left[f^{A}\right]\right]\right).$$

Lemma 6.4 (Theorem 6.1 in [BCC⁺22]). Suppose that the q-state ferromagnetic Potts model with parameter β on a graph G of maximum degree $\Delta \geq 3$ satisfies k-partite factorization of entropy with factor C_{KPF} . Then the edge-spin factorization of entropy holds with factor $C_{\text{ES}} = O(\beta \Delta k e^{\beta \Delta}) \cdot C_{\text{KPF}}$.

Lemma 6.5 (Lemma 1.8 in [BCP⁺21]). Suppose that the edge-spin factorization of entropy holds with factor C_{ES} . Then the Swendsen-Wang dynamics satisfies the relative entropy decay with rate $\Omega(C_{\text{ES}}^{-1})$.

Theorem 6.1 can be proved directly from Lemmas 6.3 to 6.5 with observation that V has a natural $\chi(G)$ independent-set partition.

References

- [BCC⁺22] Antonio Blanca, Pietro Caputo, Zongchen Chen, Daniel Parisi, Daniel Štefankovič, and Eric Vigoda. On mixing of Markov chains: Coupling, spectral independence, and entropy factorization. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pages 3670–3692, 2022. 7
- [BCP⁺21] Antonio Blanca, Pietro Caputo, Daniel Parisi, Alistair Sinclair, and Eric Vigoda. Entropy decay in the Swendsen–Wang dynamics on Z^d. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, page 1551–1564, New York, NY, USA, 2021. Association for Computing Machinery. 7
 - [BZ23] Antonio Blanca and Xusheng Zhang. Rapid mixing of global Markov chains via spectral independence: The unbounded degree case. In Nicole Megow and Adam Smith, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023), volume 275 of Leibniz International Proceedings in Informatics (LIPIcs), pages 53:1–53:19, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 7
 - [JS96] Mark Jerrum and Alistair Sinclair. The Markov chain Monte Carlo method: an approach to approximate counting and integration, page 482–520. PWS Publishing Co., USA, 1996. 4
 - [Vig00] Eric Vigoda. Improved bounds for sampling colorings. Journal of Mathematical Physics, 41(3):1555– 1569, March 2000. 1