
PATH COUPLING FOR RAPID MIXING OF MARKOV CHAINS

ZHIDAN LI

1. Path Coupling

For a Markov chain M, in the classical coupling method, given a metric d on a state space Ω, if a coupling
decreases the distance between every pair of configurations in Ω, then the mixing time of M can be bounded.
The following concepts formalize this argument.

Definition 1.1 (Contraction). Given a metric d on a state space Ω and a Markov chain M on Ω with stationary
distribution µ, we say that a coupling (X,Y ) → (X ′, Y ′) satisfies γ-contraction for some factor γ if for every
initial configurations (X,Y ) ∈ Ω× Ω,

E
[
d(X ′, Y ′)

∣∣ X,Y
]
≤ γd(X,Y ).

Theorem 1.2 (Coupling theorem). For some factor γ ∈ [0, 1], if there exists a coupling satisfying γ-contraction,
then

τmix(M) ≤ O

(
1

1− γ
log dmax

)
where dmax is the diameter of the metric d.

However, defining distances and couplings between all configurations in Ω is hard. The path coupling theorem
allows us to determine distances and coupling between some pairs of configurations, and the whole metric and
coupling can be naturally extended.

Definition 1.3 (Pre-metric). A pre-metric on Ω is a pair (Γ, ω) where Γ is a connected, undirected graph on
Ω and ω is a positive real-valued function assigning values to edges (X,Y ) in Γ satisfying that for every edge
(X,Y ), ω(X,Y ) is the minimum among all paths between X and Y . We refer to these adjacent vertices as
neighboring pairs.

Note that from this pre-metric, we can naturally construct a metric d on Ω using the shortest paths.

Theorem 1.4 (Path coupling theorem). Let (Γ, ω) be the pre-metric in Ω and d be the induced metric. If a
coupling defined on the edges in Γ satisfies γ-contraction for some γ ∈ [0, 1], then there exists a coupling on Ω
satisfying γ-contraction. Therefore,

τmix(M) ≤ O

(
1

1− γ
log dmax

)
where dmax is the diameter of the metric d.

2. Application: Vigoda’s Algorithm for Proper Colorings

We show the application of Theorem 1.4 to sampling proper colorings by Vigoda [Vig00]. Given a graph
G = (V,E) and an integer q ≥ 2, let Ω be all (not necessarily proper) q-colorings on G.

Before we introduce the Markov chain applied, there are some related concepts. Given a coloring X ∈ Ω, we
say a path v = v0, v1, . . . , vt = w is an alternating path between v and w using c and X(v) if (vi, vi+1) ∈ E,
σ(vi) ∈ {X(v), c} and X(vi) ̸= X(vi+1). Then the Kempe component SX(v, c) is the following cluster of vertices

SX(v, c) := {w ∈ V | there exists an alternating path between v and w using colors σ and c} .
For convenience, we redefine SX(v,X(v)) = ∅. For every vertex w ∈ SX(v, c), it holds that SX(v, c) = SX(w, c)
if X(v) = X(w) and SX(v, c) = SX(w,X(v)) otherwise. This means that every Kempe component S can be
relabelled in |S| ways. Let SX be the set of all Kempe components induced by X.
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Now we introduce the flip dynamics MFD to sample proper colorings. Given a sequence of weights {pi}i≥0

satisfying p1 = 1, at a proper coloring X, we run transition in the following way:
• Choose v ∈ V and c ∈ [q] uniformly at random.
• Let α = |SX(v, c)|. With probability p = pα

α , we flip cluster SX(v, c) by interchanging colors c and X(v)
in the cluster.

Note that for a cluster S, there are |S| different pairs of (v, c) to choose S. So the probability of flipping S
is exactly p|S|. Then we have the following equivalent way to describe MFD.

• Choose a Kempe component S ∈ SX with probability 1/nq.
• Let α = |S| and with probability pα flip S.

It is not hard to verify that MFD is irreducible and aperiodic. It is not hard to verify that M is stationary
with respect to the uniform distribution of proper q-colorings on G.

2.1. Coupling of the flip dynamics. To apply Theorem 1.4, we construct a coupling for every (X,Y ) ∈ Ω×Ω
such that X and Y differ at exactly one vertex v ∈ V . We consider when clusters SX(w, c), SY (w, c) might
be different in the sense that SX(w, c) ̸= SY (w, c) or SX(w, c) = SY (w, c) but there is a vertex y in this with
X(y) ̸= Y (y).

Let D = D(X,Y ) be the collection of clusters that are different in X,Y . Note that these clusters must involve
v. Then we know that

D := {SX(v, c) : c ∈ [q]} ∪ {SY (v, c) : c ∈ [q]} ∪ {SX(w, Y (v)), SY (w,X(v)) : w ∈ NG(v)} .

For every Kempe component S /∈ D, we use the identity coupling for its move and this does not change the
distance. So we only consider D.

We decompose D in sets ∪c∈[q]Dc where Dc is the set of Kempe components consisting of SX(v, c), SY (v, c)
and SX(w, Y (v)), SY (w,X(v)) for all w ∈ NG(v) satisfying X(w) = Y (w) = c.

We use the Hamming distance denoted by H(·, ·) as the metric d. For any X ∈ Ω and S ∈ D, let X⊕S be
the coloring obtained from X after flipping S. Then we know that

E [∆H | X,Y ] = E [∆H | X,Y, S /∈ D]Pr [S /∈ D | X,Y ] +
∑
c∈[q]

E [∆H | X,Y, S ∈ Dc]Pr [S ∈ Dc | X,Y ]

=
1

nq

∑
c∈[q]

∑
S∈Dc

E [H(X⊕S , Y⊕S)−H(X,Y ) | X,Y ] .

Let Uc be the set of neighbors of v that are colored c. Let δc = |Uc|. We denote Uc =
{
uc1, . . . , u

c
δc

}
or simply

{u1, . . . , uδc} when c is clear. Then

Dc = {SX(v, c), SY (v, c)} ∪

( ⋃
w∈Uc

{SX(v, Y (v)), SY (v,X(v))}

)
.

We mark that sets in Dc are disjoint except possibly DX(v) and DY (v). If c /∈ {X(v), Y (v)}, we obtain that

SX(v, c) =

(
δc⋃
i=1

SY (u
c
i , X(v))

)
∪ {v} , SY (v, c) =

(
δc⋃
i=1

SX(uci , Y (v))

)
∪ {v} .

For c = X(v), we have SX(v, c) = SY (u,X(v)) = ∅ for all u ∈ Uc. Similarly for c = Y (v), SY (v, c) =
SX(u, Y (v)) = ∅ for all u ∈ Uc.

The following observation will simplify some cases in our analysis. Note that v can have some neighbors
u′1, . . . , u

′
m ∈ NG(v) colored c belonging to the same Kempe component SY (u

′
1, X(v)) = · · · = SY (u

′
m, X(v)).

In order to consider the flip with the right probability, we redefine SY (u
′
i, X(v)) = ∅ for 1 < i ≤ m. Do the

same modifications for SX(u′i, Y (v)).
For each c ∈ [q] such that δc > 0, define Ac := |SX(v, c)|, Bc := |SY (v, c)|, aci := |SY (ui, X(v))| and

bci := |SX(ui, Y (v))|. We define the vectors ac := (aci : i ∈ [δc]) and bc := (bci : i ∈ [δc]). We say that (X,Y )
has configuration (Ac, Bc;a

c, bc). We also define acmax := maxi a
c
i and icmax as a maximizing argument. Similarly
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define bcmax := maxj b
c
j and jcmax as a maximizing argument. When it is clear from the context, we drop the

script c. Note that the following inequality holds:
A ≤ 1 +

∑
i

ai, B ≤ 1 +
∑
j

bj

with equality if c /∈ {X(v), Y (v)}.
The idea of coupling consists of the following rules. Flips of clusters in Dc for X will be coupled with clusters

in Dc for Y . We couple SX(v, c) and SY (v, c) with the biggest size of others, and try to couple the remaining
weights as much as possible.

• Flip SX(v, c) and SY (uimax , X(v)) together with probability pA.
• Flip SY (v, c) and SX(ujmax , Y (v)) together with probability pB.
• For all i ∈ [δc], let qi = pai − pA · 1 [imax = i] and q′j = pbj − pB · 1 [jmax = j].

(1) Flip SY (ui, X(v)) and SX(ui, Y (v)) together with probability min(qi, q
′
i).

(2) Flip SY (ui, X(v)) with probability qi −min(qi, q
′
i).

(3) Flip SX(ui, Y (v)) with probability q′i −min(qi, q
′
i).

Given a configuration (A,B;a, b), define H(A,B;a, b) := (A− amax − 1)pA + (B− bmax − 1)pB +
∑

i(ai · qi +
bi · q′i −min {qi, q′i}).
Proposition 2.1. The following bound holds

E [∆H | X,Y ] ≤ 1

nq

−|{c : δc = 0}|+
∑

c : δc>0

H(Ac, Bc;a
c, bc)

.

2.2. Linear programming and choice of flip weights. In order to obtain the rapid mixing of Markov
chains, we need to choose proper weights {pα}α∈N.

The variation depends sorely on the configurations.
Definition 2.2. A configuration (A,B;a, b) is realizable if there exists a graph G, a neighboring coloring pair
(X,Y ) defined in G and a color c ∈ [q] such that (A,B;a, b) = (Ac, Bc;a

c, bc).
We mark here that a configuration (A,B;a, b) is realizable if and only if

A ≤ 1 +
∑
i

ai, B ≤ 1 +
∑
j

bj .

We call δc the size of the configuration.
Note that if there exists λ > 0 such that H(A,B;a, b) ≤ −1+λm for all realizable configurations (A,B;a, b)

where m is the size of the configuration, then we know that the coupling is contractive for q > λ∆.
Then our goal is to solve the following linear programming.

(1)

min
λ,{pα}α∈N

λ

subject to H(A,B;a, b) ≤ −1 + λm ∀m ∈ N and all realizable (A,B;a, b) of size m,

p0 = 0 ≤ pi ≤ pi−1 ≤ p1 = 1 ∀i ≥ 2.

However, this linear program is hard to solve since there are infinitely many variables and constraints. To
solve this problem, Vigoda restricts that for every α ≥ 7, pα = 0.

The following bounds make the linear program easy to solve.
Lemma 2.3. H(A,B;a, b) ≤ (A− 2amax)pA + (B − 2bmax)pB +

∑
i(paiai + pbibi −min {pai , pbi}).

Lemma 2.4. Consider for all i the additional constraints ipi ≤ 1, (i − 1)pi ≤ 1
3 and (i − 2)pi ≤ 2/9. Let

(A,B;a, b) be a realizable configuration of size ≥ 3. Then if {pα} satisfy the additional constraints, then for
λ ≥ 49

27 ,
H(A,B;a, b) ≤ −1 + λm.

Then we can solve the linear program λ∗ = 11/6 and a feasible solution is

p1 = 1, p2 =
13

42
, p3 =

1

6
, p4 =

2

21
, p5 =

1

21
, p6 =

1

84
.
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3. Potts Models and Swendsen-Wang Process

Fix a positive integer q ≥ 2 and a parameter β ∈ R. We consider q-state Potts model on an arbitrary graph
G = (V,E) with V = {v1, . . . , vn}. For any assignment σ : V → [q], we call σ a configuration and σ gives a
partition V = V1 ∪ · · · ∪Vq to V where Vi := {v ∈ V | σ(v) = i} for every i ∈ [q]. Under a given configuration σ,
we say an edge e = (u, v) ∈ E is a bond if σ(u) = σ(v). The components induced by bonds are called clusters.

For a configuration σ ∈ [q]V , define D(σ) := {e = (u, v) ∈ E : σ(u) ̸= σ(v)} and certainly B(σ) = E \D(σ)
as the bonds under σ. Then we define the q-state Potts models µ = µG,β on G at β as

(2) µ(σ) =
e−β|D(σ)|

Z
, ∀σ ∈ [q]V

where the normalising factor Z =
∑

σ∈[q]V e−β|D(σ)| is called the partition function of the Potts model. When
β > 0, we say it is ferromagnetic and otherwise we call it an anti-ferromagnetic one.

3.1. Markov chains and Swendsen-Wang process. A long-time topic in practice is how to sample a
configuration σ from µ. Variants of Markov chains are in application. However, a typical Metropolis process
in [JS96] is shown to work in some settings under the anti-ferromagnetic assumption, but unknown in the
ferromagnetic cases. To avoid this accident, we apply the following dynamics named Swendsen-Wang process.

Assume that the current configuration is σ. We generate the next configuration by the following two steps.
(1) Let B = B(σ) be the bonds under σ. We sample a subset A ⊆ B as: for each edge e ∈ B, we pick it

with probability p = 1− e−β.
(2) For each connected component in the graph (V,A), we assign all vertices in the component with a state

in [q] uniformly and independently at random.
The application of the Swendsen-Wang process depends on the equivalence under certain conditions of the

q-state Potts model and the random cluster model. Given a graph G = (V,E), for an edge subset A ⊆ E define
G(A) := (G,A) as the subgraph induced by the edge set A. In the random cluster model, we regard A as bonds
and define its weight as

w(A) = p|A|(1− p)|E\A|qc(A)

where c(A) is the number of connected components of G(A) and p is a probability.
Now we define the following joint distribution π between the Potts model and the random cluster model on

the space [q]V × 2E . Let p = 1− e−β. For every σ ∈ [q]V and A ⊆ E, define the Edwards-Sokal measure as

π(σ,A) :=
1

Z

∏
(u,v)∈E

(p · 1 [e ∈ A ∧ σ(u) = σ(v)] + (1− p) · 1 [e /∈ A])

where Z is the normalising factor. If we use the notation σ ∼ A to denote the event that every edge in A has
its two endpoints with the same spin in σ, we write π equivalently as

π(σ,A) =
1

Z
p|A|(1− p)|E|−|A|1 [σ ∼ A] .

Summing over σ or A we can see the marginal distributions are the Potts model or the random cluster model
respectively. We remark here that all the normalising factors are equal.

With the joint distribution π, we provide another view of the Swendsen-Wang dynamics: given a configuration
σ, firstly pick A according to π(σ, ·); and generate a new configuration σ′ according to π(·, A).

4. Rapid Mixing on Potts Models

The following is the main theorem of this section.

Theorem 4.1. Let G be a graph with constant maximum degree ∆. Then there exists p0 = p0(∆) such that if
p = 1− e−β ≤ p0, then the Swendsen-Wang process mixes rapidly for every q.

We prove Theorem 4.1 by the path coupling argument. For two configurations Xt, Yt, let
St := {v ∈ V | Xt(v) = Yt(v)}
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and Dt = V \St. Following the idea of path coupling, we might assume that |Dt| = 1 and Dt = {vt}. Let G(Xt)
(respectively G(Yt)) denote the subgraph of G induced by the bonds of Xt (respectively Yt). We couple Xt and
Yt in the following way.

Recall the Swendsen-Wang process. It consists of two stages: the bond breaking and the component coloring.

Bond Breaking. We consider the edge e ∈ E.
• If e ⊆ St is a bond, then it is a bond in both G(Xt) and G(Yt). We keep e in both graphs with probability
p = 1− e−β and delete it in both graphs with probability 1− p.

• For any edge e = (vt, w), it can only be a bond in exactly one graph. Then we keep it in that graph
with probability p.

Let X̂t and Ŷt be configurations after this stage and G(X̂t), G(Ŷt) be the subgraphs induced by bonds in X̂t

and Ŷt respectively.

Component Coloring. Let H be the subgraph of G(X̂t) (and G(Ŷt)) induced by St. If C is a component of
H which is not adjacent to vt, then we give C the same random color in Xt+1 and Yt+1.

Suppose that vt is adjacent to components C1, C2, . . . , Cr of H in G(X̂t) and adjacent to D1, . . . , Ds in G(Ŷt).
Note that

⋃r
i=1Ci and

⋃t
j=1Dj are disjoint, otherwise vt would have the same color in both Xt and Yt.

(1) r = s = 0. Give vt the same random color in Xt+1 and Yt+1.
(2) • r = 1, s = 0. Give C1 the same random color c in Xt+1 and Yt+1. Give vt color c in Xt+1 and a

random color in Yt+1.
• r = 0, s = 1. Give D1 the same random color c in Xt+1 and Yt+1. Give vt color c in Yt+1 and a

random color in Xt+1.
(3) r = 1 and s = 1. Give C1 a random color c in Xt+1 and D1 a random color d in Yt+1. The vertex vt

inherits its color in from C1 in Xt+1 and from D1 in Yt+1.
(4) r ≥ 2 or s ≥ 2. Let B be the largest component of C1, . . . , Cr, D1, . . . , Ds. Give B the same random

color c in both Xt+1 and Yt+1. Any component of G(X̂t) or G(Ŷt) not inheriting this color c is colored
randomly.

Let pi denote the probability of Case (i) (1 ≤ i ≤ 4) and let δ4 be the indicator of Case (4). Note that given
the rule of the Bond Breaking, an edge e of G(Xt) ∪ G(Yt) appears independently in Γ = G(X̂t) ∪ G(Ŷt) with
probability p. Hence p1 ≥ (1− p)∆.

In Cases (2)-(4), the vertex vt has the same color in Xt+1 and Yt+1 with probability 1/q. In Case (4), the
vertices of (C1 ∪ · · · ∪ Cr ∪D1 ∪ · · · ∪Ds) \B might have different colors in Xt+1 and Yt+1. Thus, we have

E [Ham(Xt+1, Yt+1) | Xt, Yt] ≤ (1− 1/q)(p2 + p3 + p4) +E [wt](3)

where wt ≤ δ4

(∑r
i=1|Ci|+

∑s
j=1|Dj | − |B|

)
. To bound E [wt], let Z+1 be the size of the largest tree containing

vt in Γ. Then wt + |B| = Z and |B| ≥ Z/∆. Let θi be the indicator that Γ has a tree of size i in which vt has
degree at least 2. Then Z = 2θ3 + θ4 + · · ·+ θk + · · · . Then we know that

E [Z] = E [θ3] +
∑
k≥3

E [θk] .

Let α′
k be the number of such k vertex trees in Γ containing vt and let αk be the number of ordered rooted

trees of size k with maximum degree at most ∆ and the degree of root at least 2. Then we know that α′
k ≤ αk.

By definition, we know that E [θk] = α′
kp

k−1 ≤ αkp
k−1 and E [θ3] ≤

(
∆
2

)
p2. Let W (p) =

∑
k≥3 αkp

k−1. Then,

E [wt] ≤
∆− 1

∆

((
∆

2

)
p2 +W (p)

)
.(4)

Putting (4) into (3), we obtain

E [Ham(Xt+1, Yt+1) | Xt, Yt] ≤ (1− 1/q)
(
1− (1− p)∆

)
+

∆− 1

∆

((
∆

2

)
p2 +W (p)

)
.
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Now it remains to solve W (p). To solve this, consider the following generating function for an ordered tree
of out-degree at most ∆− 1:

T (z) = 1 + zT (z)∆−1.

And we know that
W (z) = T (z)∆ − (1 + ∆(T (z)− 1)).

Numerically solving all functions, we can obtain p0 by letting the right side be less than 1. Thus we conclude
Theorem 4.1.

5. Mixing of the Glauber Dynamics for Ferromagnetic Potts Models

The Swendsen-Wang dynamics is applicable in most cases but difficult to analyze. We turn to the natural
single-site heat-bath dynamics MGD (or, Glauber dynamics).

Proposition 5.1. Fix a positive integer q ≥ 3, a parameter β > 0. Let G = (V,E) be an n-vertex graph with
maximum degree ∆. If q ≥ ∆eβ∆ + 1, then the mixing time of MGD for the q-spin Potts model at β on G with
tolerence error ε > 0 is at most (∆ + 1)n log (n/ε).

Proof. We prove it by the path coupling theorem. Fix a pair of configurations (Xt, Yt) satisfying that they
differ at only one vertex vt. We define the following coupling between (Xt+1, Yt+1): we pick a uniformly random
vertex u at G, and update on u according to νX := µX−u

u and νY := µY−u
u . The joint distribution of νX and

νY will maximize the probability Pr [Xt+1(u) = Yt+1(u)]. Let p = p(u,X, Y ) = Pr [Xt+1(u) = Yt+1(u)] be this
probability. By the basic property of optimal coupling, we have that

1− p =
1

2

∑
k∈[q]

|νX(k)− νY (k)| = DTV (νX ∥ νY ) .

If v = u or u is not a neighbour of v, it holds that p = 1 and thus Xt+1 = Yt+1. Then assume that u is a
neighbour of v. Without loss of generality, assume that Xt(v) = 1 and Yt(v) = 2. Define

ak = n(Xt, u, k) = |{w ∈ N(u) : Xt(w) = k}|, bk = n(Yt, u, k) = |{w ∈ N(u) : Yt(w) = k}|.

Then we have b1 = a1 − 1, b2 = a2 + 1 and bk = ak for k = 3, . . . , q. Let

ZX =
∑
k∈[q]

eβak , ZY =
∑
k∈[q]

eβbk = ZX + (1− e−β)(eβ(a2+1) − eβa1)

and without loss of generality assume that ZX ≥ ZY . Then we can see that µX(k) ≤ µY (k) for k = 2, . . . , q
and hence µX(1) ≥ µY (1). Thus

DTV (νX ∥ νY ) = νX(1)− νY (1) =
eβa1

ZX
− eβb1

ZY
.

Given the vector a = (a1, . . . , aq) ∈ [∆]q, define f(a, β, q) = eβa1
ZX

− eβb1
ZY

. Let g(β, q) be the maximum of f over
all a ∈ [∆]q subject to a1 + · · ·+ aq = ∆. Then it is not hard to see

E [Ham(Xt+1, Yt+1) | Xt, Yt] = 1− 1

n
+

∑
u∈N(v)

1

n
(1− p(u,Xt, Yt)) ≤ 1− 1

n
+

∆

n
g(β, q).

To give an upper bound for g(β, q), note that f(a, β, q) ≤ eβa1
ZX

. Then we know that

f(a, β, q) ≤ f((∆, 0, . . . , 0), β, q) =
eβ∆

eβ∆ + q − 1
≤ 1

∆ + 1

by the assumption on q (q ≥ ∆eβ∆ + 1). Therefore

E [Ham(Xt+1, Yt+1) | Xt, Yt] ≤ 1− 1

n
+

∆

n(∆ + 1)
= 1− 1

(∆ + 1)n
.

By the argument of path coupling theorem, we obtain the mixing rate of MGD. □
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6. Entropic Contraction on Ferromagnetic Potts Models

A recent work by Blanca and Zhang [BZ23] reveals that the spectral independence of the ferromagnetic Potts
models implies the optimal mixing of the Swendsen-Wang process.

Theorem 6.1 (Theorem 1.2 in [BZ23]). Fix q ≥ 2, β > 0, η > 0 and ∆ ≥ 3. Suppose that G = (V,E) is a graph
with |V | = n of maximum degree ∆. Let µ be the q-state ferromagnetic Potts model on G with temperature β. If
µ is η-spectrally independent and η = O(1), β∆ = O(1), then there exists an universal constant c = c(η, β∆) > 0
such that the mixing time of Swendsen-Wang dynamics on µ is O((∆ log n)c).

This result depends on the factorization of entropy.

Definition 6.2 (Factorization of entropy). Fix an integer q ≥ 2 and a distribution µ supported on Ω ⊆ [q]n.
For an integer ℓ ≤ n and a positive factor CUBF (not necessarily constant), we say that µ satisfies ℓ-uniform-block
factorization of entropy with CUBF if for every well-defined function f : Ω → R≥0,

ℓ

n
Entµ [f ] ≤ CUBF ·

1(
n
ℓ

) ∑
S∈([n]

ℓ
)

Eτ∼µ[n]\S [Entµτ [f ]] .

Also, fix a positive integer k ≤ n and a k-independent-set partition U1, . . . , Uk. We say that µ satisfies
k-partition factorization of entropy with factor CKPF if for all functions f : Ω → R≥0,

Entµ [f ] ≤ CKPF

k∑
i=1

Eτ∼µ[n]\Ui
[Entµτ [f ]] .

The following lemma is the kernel ingredient in the proof of Theorem 6.1.

Lemma 6.3 (Theorem 3.3 in [BZ23]). For a b-marginally bounded Gibbs distribution µ satisfying η-spectrally
independence on an n-vertex graph G = (V,E) of maximum degree ∆, if b and η are constant independent of ∆
and n, and ∆ ∈

[
3, b4n

10e(4η+b2)

]
. Then there exists an absolute constant c > 0 such that k-partite factorization of

entropy holds for µ with CKPF = (∆ log n)c. Specifically, for a set of k disjoint independent sets V1, . . . , Vk such
that

⋃k
j=1 Vj = V ,

Entµ [f ] ≤ 54 · e13κ

b5+6κ
· (∆ log n)κ · (log log n)1+κ

k∑
j=1

Eτ∼µV \Vj
[Entµτ [f ]]

where κ = 1 + ⌈2ηb ⌉.

To relate k-partite factorization of entropy to the optimal mixing of the Swendsen-Wang dynamics, we
introduce the concept of edge-spin factorization of entropy. Recall the Edwards-Sokal measure π supported on
Ω× 2E . We use π(· | σ) and π(· | A) to denote the conditional measures of π on fixing the spin configuration σ
or the edge configuration A. For a function f : Ω× 2E → R, we use fσ : 2E → R to denote the function f(σ, ·)
and fA : Ω → R to denote f(·, A). Then we say that the edge-spin factorization of entropy holds with factor
CES if for all well-defined function f : Ω× 2E → R≥0,

Entπ [f ] ≤ CES

(
E(σ,A)∼π

[
Entπ(· | σ) [f

σ]
]
+E(σ,A)∼π

[
Entπ(· | A)

[
fA
]])

.

Lemma 6.4 (Theorem 6.1 in [BCC+22]). Suppose that the q-state ferromagnetic Potts model with parameter
β on a graph G of maximum degree ∆ ≥ 3 satisfies k-partite factorization of entropy with factor CKPF. Then
the edge-spin factorization of entropy holds with factor CES = O(β∆keβ∆) · CKPF.

Lemma 6.5 (Lemma 1.8 in [BCP+21]). Suppose that the edge-spin factorization of entropy holds with factor
CES. Then the Swendsen-Wang dynamics satisfies the relative entropy decay with rate Ω(C−1

ES ).

Theorem 6.1 can be proved directly from Lemmas 6.3 to 6.5 with observation that V has a natural χ(G)-
independent-set partition.
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