Monomer-Dimer Models

1 Basic Models

Firstly, we put some notations here. For a graph G = (V, E) with |V| = n, assume that V = {0y, ...,0,}. Forv € V,
let Ng(v) denote the sets of neighbors of v, and Ag(v) := |Ng(v)| denote the degree of v in G. The maximum
degree of G is defined by A := maxyecy Ag(v). For v € V, we use the notation G \ {v} to denote G[V \ {v}] and
Gr = G\ {vy,...,05_1} with convention Gy = G.

A matching is a subset of edges such that every pair of two edges share no endpoints. Given a graph G = (V, E)
and a fugacity 1 > 0, let Q be the collection of matchings on G. The Gibbs distribution of the monomer-dimer
model on G at fugacity A is the probability distribution y = yi 3 defined as
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where Z5(1) = Ygeq Al%! is the normalizing factor named partition function. To be consistent with the language
of the two-spin systems, we also use 0 = o5 € {—, +}* to denote a subset S of edges E, where for every e € E

Gs(e)={+ ecsS '

- e¢S

Our major interests lie in the following three aspects:

1. How to efficiently estimate the partition function Z5 (1) (approximate counting problem).
2. How to efficiently sample a matching from y ) (randomly sampling problem).

3. The zero-free region of Zg(A) with respect to A € C (zero-freeness of the partition function).

2 Deterministically Counting Matchings

In this section we show how to estimate Z5(A) efficiently.

Theorem 2.1 (Theorem 2.1 in [ 1). For every ¢ € (0,1), there exists a deterministic e-algorithm which
provides an FPTAS for computing Zg (1) of a monomer-dimer model on G = (V,E) with |V| = n and constant

maximum degree A at constant fugacity A > 0, running time with O ((n/e)”logA+1) where k = —+.
log(l_ \/1+/1A+1)

To compute Zg (A1), we apply the method of the correlation decay. The following identity is of great significant.

Proposition 2.2 (Proposition 2.2 in [ ]). Under the settings and notations described above, the following
identity holds

1
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To estimate ZG(4), we turn our sight to the marginal probability Pry;.,;, [0 ¢ M]. The following recursion
is simple but meaningful.

Proposition 2.3 (Proposition 3.1 in [ 1). For every vertexv € V, it holds that

1
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Proof. For every v € V, by definition, the following identity holds:

Z(A) = Zg\ {0y (A) + A Z Z6\ (w0} (4).
ueNg (v)

Then,
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For any subgraph H C G of the graph G, every vertex v € V and non-negative integer t € N, we introduce
the quantity @y (v, t) as:

0
(I)H(U, t) = { 1
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It is easy to observe that for every subgraph H C G, every vertexv € Vand t € N,

! < Oy(v,t) <1
< v, t) < 1.
1+AA "
Theorem 2.4 (Correlation Decay, Theorem 3.2 in [ ]). Forevery vertexv € V and every positive even integer

t € N, it holds that
2 t/2
|PrM~yGA [0 ¢ M] —log (o, t)| < (1 - —) log(1+ AA).
| 1+AA+1

Proof. Forv € G, let Ng(v) = {uy,...,un} and for i € [m], let Ng\ (o) (wi) = {wl(i), . w,(,il)} Furthermore, we
use the following notations:

x =log Pry~y, [0 & M], x; = log Prat~yg (o0 (Ui € M],x](.i) = logPrMN”G{u,ui},/l [w](.i) ¢ M]
y =log @6 (v, 1),y = log @\ (o) (us, £ — 1), y,(-i) = log q)G\{v,ui}(W](-i)s t—2)

foreveryi=1,...,mand j=1,...,m;.



LetM =" mjandZ = (z(l) .. zf,}l),...,zgm), .. .,zfn";)). Define the function f : [0, 1]M — [0,1] as

F) =log 1+Az—m
i=1 1+AZ

Then we know x = —f(¥) and y = —f ().
Now we consider the function g(«) = f(ax+(1—a)y) for « € [0, 1]. By the mean-value theorem and Hélder’s
inequality

=yl = [VFE)TE =] < IVFEIl - 1% = §lleo-

By calculation,
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For convenience, let A; =1+ A ZTZ’I ¢”i . Then we show that
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The maximal value of ||Vf(z)||; takes at the point for every 1/A; = '1”'" L Then
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Then we obtain

|log Pryioyg, [0 € M] —log @6 (o, t)|

< (1 — 2 )max'logPrM~yG\{ i [ (@) ¢M] Iogq)G\{oul}(W i) t—2)|.
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Then the inequality holds by the simple calculation when ¢ = 0 or 1 by Proposition 2.3. ]

To estimate Zg(A), it suffices to estimate ®; (v, t) when ¢ is not large. Simply by definition we can compute
®; (v, t) in time O(A?), and with proper choice of t, the error can be bounded. The core is the following algorithm:



Algorithm 1: estimating Z (1)
input :agraph G = (V, E) with |V| = n and maximum degree A, a fugacity A > 0 and an tolerance error
e€(0,1)
output: an e-approximation Z for the partition function Zg (A1)
1 72« 1 H « G;

2 Set§ —log(l - vﬁﬂ) and t — 2[(logn +loglog(1 + AA) — log ) /51;

3 while H # @ do

4 choose an arbitrary vertex v € H;
5

6

compute ®g (v, t);

SetZemandH%H\{v};

7 return Z.

Equipped with Algorithm 1, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We apply Algorithm 1. Note that, under the choice of § and t, by Theorem 2.4, it holds that

e_g/n < CDH(U: t) < ee/n

- PI‘MN”H’/1 [U ¢ M] -
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and the running time is O(nA’) = O ((n/z?)"10g A“) where k = — . Then we know

toe(1~ i)
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by Proposition 2.2. ]

3 Sampling Matchings

To sample from yg », we consider the following chain introduced in [JS96]. Suppose that we are now at M € Q.
The update rule is described as following:

1. with probability 1/2 let M’ = M; otherwise
2. pick an edge e = {u, v} € E uniformly at random and let
M\ {e} e € M;

MU {e} u,v € M;
MU {e}\ {e’} exactly one of u and v is in M and e’ is the matching edge;

’

M otherwise;

’ s o . HeA (M)
3. go to M’ with probability min {1, (M) }

We denote this Markov chain by P. Note that when M # M’, the ratio % takes values in {/1_1, 1,/1},

corresponding to three kinds of transitions:
« (Type 1) An edge is removed from M.

+ (Type 2) An edge is added to M.



+ (Type 3) A new edge is exchanged with an edge in M.

Proposition 3.1 (Proposition 12.4 in [JS96]). For every graph G = (V, E) with |V| = n and fugacity A > 0, let P
be the Jerrum and Sinclair’s chain with respect to the Gibbs distribution g ) of the monomer-dimer model on G at
fugacity A > 0. Then the mixing time of Jerrum and Sinclair’s chain satisfies

tmix(€) < 4|E|nA (n (log n+ logz) —log 5)

where A = max {1, A}.

We prove Proposition 3.1 by canonical paths. For simplicity of the analysis we consider the following defini-
tion of congestion:

1
p(I)=  max p Z Hoa(M)pg A (M) 1y
MM:P(M,M")20 fig(M)P(M, M) yeTiy oMM

where |y| is the length of y.

Proposition 3.2 (Proposition 12.1in [JS96]). Let P be a finite, reversible and ergodic lazy Markov chain with respect
to the stationary distribution 1 over Q. Let I" be a set of canonical paths from Q to Q. Then

1
p(x)

fie () < B(T) (log +log %)

for any initial state x € Q.

Then to show the rapid mixing of the Jerrum and Sinclair’s chain, it suffices to construct canonical paths T’
with low congestion.

Lemma 3.3 ([JS96]). For every graph G = (V, E) with |V| = n and fugacity A > 0, let P be the Jerrum and Sinclair’s
chain with respect to the Gibbs distribution pi ) of the monomer-dimer model on G at fugacity A > 0. Then there
exists a family of canonical paths T from Q to Q such that

p(I) < 4|E|nA

where A = max {1, A}.

3.1 Construction and analysis of canonical paths

Now we construct I' to prove Lemma 3.3. For a pair of matchings X, Y € Q, we consider the symmetric difference
X @ Y. It is not hard to observe that it consists of a disjoint collection of paths or cycles in G, each of which
has edges that belong alternately to X and Y. Let $(G) be the collection of all simple paths and cycles in G.
Now suppose that there exists an arbitrary order of £ (G) and we designate each of them a ‘start vertex’, which
is arbitrary if it is a cycle and must be an endpoint otherwise. Then it induces a unique order P;, ..., P, on the
paths and cycles over X & Y. Then the canonical path from X to Y involves ‘unwinding’ each of the P; in turn as
follows:

1. P;isasimple path. Let P; consist of the sequence (v, vy, . . ., vp) Where vy is the start vertex. If (v, v1) € Y, we
perform a sequence of (Type 3) transitions replacing (v2j4+1,02j4+2) With (v3j,02j41) for j = 0,1,... and finish
with a (Type 2) transition if necessary. If (vo,v1) € X, we firstly perform a (Type 1) transition removing
(v9, v1) and proceed as before for the reduced path (vy, ..., v,).

2. P; is a cycle. Let P; consist of the sequence (vg, vy, ...,02041) Where £ > 1, vy is the start vertex and
(v2j,02j+41) € X for 0 < j < ¢. Then we firstly perform a (Type 1) transition to remove (vy,v;), and
leave an open path O with endpoints vy, v1. Since one of vy, v; must be the start vertex of O, suppose that
vk is not the start vertex. Then we proceed as 1 but treat vy as the start vertex, in order to distinguish paths

from cycles.



Now we bound p(T'). Lete = (M, M”) be a transition edge in the Markov chain and pass(e) = {(X,Y) : yxy > e}.
Now we consider the injective mapping

Ne : pass(e) — Q.

Intuitively we want 1.(X,Y) = X @Y ® (MUM’). However, 1;(X, Y) might not be a matching. To ensure that it is
a matching, we might remove the edge of X which is adjacent to the start vertex of the path currently unwound:
we call this edge f¢,. Then we define

XeY®(MUM))\ f{y, eis(Type 3)and the current path is a cycle;

U@(Xs Y) = , .
XeYeo(MUM), otherwise.

It is not hard to see 7, is a injective function. Now under the mapping 7., we show the low congestion of canonical
paths.

Proof of Lemma 3.3. We construct I' and injective mapping 7, for transition e = (M, M”) as above. Then firstly
we show

1A (O HeA(Y) < 21E|X 6.0 (M)P(M, M) g (1e(X, Y)). (1)

This bound is enough to show the congestion, since the following equality holds

1 Z —2
~ > HeaXpea(Mlyxy| < 2B pea(ne(X, 1)) lyxy|
1o (M)P(M, M) 4 A,
=2
<4EInd ) pea(ne(X.Y))
Yxy>e
< 4|E|nk’.

Now we prove (1). Observe that

min {pg (M), pe 2 (M') }

M)P(M, M) =
Ho.A(M)P(M. M) S

We separate the remaining parts into four cases:

1. eis a (Type 1) transition. Suppose that M’ = M \ {f}. Then n.(X,Y) = X & Y & M. Then we have

He X e (Y) = pe (M) pc(n.(X,Y))
2|E|pg 2 (M)P(M, M’)

" min {uc (M), pe (M)}

— 21Elji.7 (M)P(M, M") maxx {1,

peA(M)pg(7.(X,Y))

He, (M)
HeA (M)
< 2|ElAdug A (M)P(M, M) g 2 (ne(X, Y)).

}ﬂG,/I(’?e(X: Y))

2. eis a (Type 2) transition. The analysis is similar to the last one.

3. eis a (Type 3) transition and the current path is a cycle. Suppose that M’ = M U {f} \ {f’}. Then
ne(X.Y) =XeYe (MU{f}) - fyy.

Then we know M U n.(X, Y) differs from X U Y only in f and f{,. Thus we have

162 (X HeA(Y) < 20EIX g0 (MYP(M, M) g1 (7(X, Y)).



4. eis a (Type 3) transition and the current path is not a cycle. The analysis is identical to 3 with no necessity
of the consideration of f¢,. Then it holds that

pi. 2 (X) A (Y) < 2|EApc 2 (M)P(M, M) i 5 (e (X, Y)).

-, =2
Then we can conclude the inequality except the term with respect to A is A . To reduce this order, firstly
observe that only the analysis of the third case produces this term. In this case we will show 3, 5. 6.1 (7e(X, Y))

is upper bounded by 7

To see this, note that 1.(X, Y) has at least two unmatched vertices, the start vertex of the current cycle and
the common vertex adjacent to f and f’. Moreover, in 7. (X, Y) @ M the two vertices are linked by an alternating
path. Then we argument this path and produce a new matching. Note that different n.(X, Y) produce different
matchings. Then we can show the upper bound. ]

4 Zeros of Partition Functions

In this section we investigate the zeros of Z5 (1) when A € C. We rewrite it as
Zo(d) = Z mA*
k=0

where mj denotes the number of matchings on G with size k for all k € N.

Theorem 4.1 (Theorem 1.2 in [ ], a restatement of Theorem 2.1). For any graph G = (V, E) with maximum
degree A and any A € C which is not a non-negative real number, there exists a deterministic algorithm for (1 + ¢)-
approximation to Zg (1) with running time polynomial in n and ™! and exponential in A and A.

By Riemann’s Mapping Theorem it suffices to show the partition function Z5(A) is zero-free outside of a
disk centered at the origin with radius 1/Q(A), and following the methodology of Patel and Regts [ ] we
can prove Theorem 4.1. It is equivalent to consider the following monomer-dimer polynomial which is fully
investigated in Heilmann and Lieb [ ]:

P(G,x) = Z(—l)kmkx”_Zk, Vx € C.
k=0

Lemma 4.2. For every graph G = (V, E) with maximum degree A > 0, the largest root of the polynomial P(G, x) is
at most 2VA — 1.
Before we prove Lemma 4.2, the following identities are of great significance.
Fact 4.3. For any pair of disjoint graphs G, H, it holds that
P(GUH,x) =P(G,x) - P(H, x).

For any graph G = (V, E) and every vertexv € V, it holds that

P(G,x) = xP(G \ {v},x) — Z P(G\ {v,u},x).

ueNg (v)



4.1 Zeros of the monomer-dimer polynomials on trees

When the graph is a tree T = (V, E), it is much simpler to show the properties of the monomer-dimer polynomial
P(T, x).

Lemma 4.4. For anytreeT = (V,E), let A be the adjacent matrix of T. Then the following identity holds
P(T,x) = det(xI — A).

Proof. To show the identity, we consider the coefficients of x"~2¥ in the two polynomial for every k € N. Firstly

we show that they are the same in x°. The coefficient of x° in P(T, x) is just the number of perfect matchings of
T. On the other hand, the coefficient of x° in the characteristic polynomial of A is just the determinant of A, i.e.,

Z sgn(a) l_[ Ai,g(i) .

We claim that every o satisfies [[; A; 5(;) # 0 if and only if o corresponds to a perfect matching. In fact, it holds
that o is a collection of cycles if for all i, A; ;) = 1. However, since T is a tree, the cycles in o must have
length 2. Then that is to say, o(o(i)) = i. Then this produces a unique perfect matching. On the other hand
when ¢ corresponds to a perfect matching it is trivial that the term is non-zero. In this case, it is easy to see
sgn(o) = (=1)"2,

Now for other k € N, note that the coefficient of x"~%* in det(xI — A) is the sum of determinant of all principal
2k x 2k minors of A. Then we know each such a determinant is equal to the number of perfect matchings in the
corresponding induced subgraph of T with 2k vertices. ]

Lemma 4.5. For any tree T = (V, E) with maximum degree A, the largest root of the monomer-dimer polynomial

P(T, x) is at most 2VA — 1.

Proof. By Lemma 4.4 it suffices to bound the largest eigenvalue of the adjacent matrix A of T. We apply the trace
method. Note that for every real symmetric matrix M € R**"

Tr(M) = > 4
i=1
where 1 > Ay > ... > A,,. Then it holds that
Jim Tr(AF) YV, = dnax (A).
Then it suffices to show for every u € V, it holds that when k — oo,

Ag, < 2M(A - )M 2)

and plugging into the trace we know

Amax(4) = lim Tr(AR)VF < lim n/koVA —1=2VA - 1.

To prove (2), observe that A¥  is the number of closed walks of length k starting at u. Now we think of the
tree T = (V,E) rooted at vertex u. Then we know that there are k/2 ‘down walks’ (each of which has at most
A — 1 choices) and k/2 “up walks’ (each of which has one choice). Then we know

Ak, < 1F2(A - 1)’</2( k

kon _ 1K/
k/z)SZ(A 1)k/?

where the last inequality holds from ( k’;2) < 2k, ]



4.2 Zeros of the monomer-dimer polynomials on general graphs

To prove Lemma 4.2 on general graphs, we compare the graph to a tree and show the connection between the
monomer-dimer polynomials of them. For a graph G = (V,E) and every vertex v € V, define the path tree
T = T(G,v) as the tree rooted at v and for each simple path in G starting at v, T has a node corresponding to it
and two paths are adjacent if their length differ by 1 and one is a prefix of another.

Lemma 4.6 ([ 1). Let G = (V,E) be a graph andv € V be an arbitrary vertex in G. Let T = T(G,v) be the path
tree of G from v. Then it holds that

P(Gx) P(T,x)
P(G\{vo}.x) P(T\{o},x)’

Furthermore, the polynomial P(G, x) divides P(T, x).

Note that Lemma 4.6 shows that the roots of P(G, x) are the subset of the roots of P(T, x). Then by Lemma 4.4,
we conclude Lemma 4.2.

Proof of Lemma 4.6. When G is a tree, the identity holds since G = T(G, v). Then inductively we suppose that the
identity holds for any proper subgraph of G. Let H = G \ {v}. By Fact 4.3, it holds that

P(G,x) xP(H,x) = YyeNng (o) P(H \ {u},x)
P(H,x) P(H, x)
P(H\ {u},x)

P(H, x)

) ueNg (v)
o Z P(T(H,u) \ {u},x)
B P(T(H,u),x)

ueNg (v)

Observe that, the tree T(H,u) = T(G \ {v},u) is isomorphic to the component of T(G,v) \ {v} which contains
the point corresponding to the path v — u. Therefore,

P(T(H,w) \ {u},x) _ P(T(G,0) \ {u,0},x)
P(T(H,u),x) P(T(G,0) \ {v},x) ~

Then we know

‘e Z PTHw) \ {u},x) __ Z P(T(G,0) \ {u,0},x)

uehigoy TT(Hw),%) o PT(G0)\ {0}, x)
_ xP(T(G,0) \ {v}, %) = Zyeng (o) P(T(G,0) \ {1, 0}, x)
- P(T(G,0) \ {o},x)
_ P(T,x)
- P(T\ {o}, %)
To see the second conclusion, firstly by the first identity we know
P(T\ {v},x)

P(T,x) = P(G,X)m

Then we need to show P(T \ {v}, x) is divisible by P(G \ {0}, x). To show this firstly note that P(T \ {0}, x) is
divisible by P(T(G \ {0}, u), x), since the latter is isomorphic to one of the connected component of the previous
one. Then by induction we know P(T(G\{v}, u), x) is divisible by P(G\{v}, x). Thus we conclude the results. O
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