
Monomer-Dimer Models

1 Basic Models

Firstly, we put some notations here. For a graph𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛, assume that𝑉 = {𝑣1, . . . , 𝑣𝑛}. For 𝑣 ∈ 𝑉 ,
let 𝑁𝐺 (𝑣) denote the sets of neighbors of 𝑣 , and Δ𝐺 (𝑣) := |𝑁𝐺 (𝑣) | denote the degree of 𝑣 in 𝐺 . The maximum
degree of 𝐺 is defined by Δ := max𝑣∈𝑉 Δ𝐺 (𝑣). For 𝑣 ∈ 𝑉 , we use the notation 𝐺 \ {𝑣} to denote 𝐺 [𝑉 \ {𝑣}] and
𝐺𝑘 = 𝐺 \ {𝑣1, . . . , 𝑣𝑘−1} with convention 𝐺0 = 𝐺 .

Amatching is a subset of edges such that every pair of two edges share no endpoints. Given a graph𝐺 = (𝑉 , 𝐸)
and a fugacity 𝜆 > 0, let Ω be the collection of matchings on 𝐺 . The Gibbs distribution of the monomer-dimer
model on 𝐺 at fugacity 𝜆 is the probability distribution 𝜇 = 𝜇𝐺,𝜆 defined as

𝜇𝐺,𝜆 (𝑆) =
𝜆 |𝑆 |

𝑍𝐺 (𝜆)
, ∀𝑆 ∈ Ω

where 𝑍𝐺 (𝜆) =
∑

𝑆∈Ω 𝜆 |𝑆 | is the normalizing factor named partition function. To be consistent with the language
of the two-spin systems, we also use 𝜎 = 𝜎𝑆 ∈ {−, +}𝐸 to denote a subset 𝑆 of edges 𝐸, where for every 𝑒 ∈ 𝐸

𝜎𝑆 (𝑒) =
{
+ 𝑒 ∈ 𝑆
− 𝑒 ∉ 𝑆

.

Our major interests lie in the following three aspects:

1. How to efficiently estimate the partition function 𝑍𝐺 (𝜆) (approximate counting problem).

2. How to efficiently sample a matching from 𝜇𝐺,𝜆 (randomly sampling problem).

3. The zero-free region of 𝑍𝐺 (𝜆) with respect to 𝜆 ∈ C (zero-freeness of the partition function).

2 Deterministically Counting Matchings

In this section we show how to estimate 𝑍𝐺 (𝜆) efficiently.

Theorem 2.1 (Theorem 2.1 in [BGK+07]). For every 𝜀 ∈ (0, 1), there exists a deterministic 𝜀-algorithm which
provides an FPTAS for computing 𝑍𝐺 (𝜆) of a monomer-dimer model on 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛 and constant
maximum degree Δ at constant fugacity 𝜆 > 0, running time with 𝑂

(
(𝑛/𝜀)𝜅 logΔ+1) where 𝜅 = − 2

log
(
1− 2√

1+𝜆Δ+1

) .
To compute𝑍𝐺 (𝜆), we apply themethod of the correlation decay. The following identity is of great significant.

Proposition 2.2 (Proposition 2.2 in [BGK+07]). Under the settings and notations described above, the following
identity holds

𝑍𝐺 (𝜆) =
1∏

1≤𝑘≤ |𝑉 | Pr𝑀∼𝜇𝐺𝑘,𝜆
[𝑣𝑘 ∉ 𝑀] .
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To estimate 𝑍𝐺 (𝜆), we turn our sight to the marginal probability Pr𝑀∼𝜇𝐺,𝜆
[𝑣 ∉ 𝑀]. The following recursion

is simple but meaningful.

Proposition 2.3 (Proposition 3.1 in [BGK+07]). For every vertex 𝑣 ∈ 𝑉 , it holds that

Pr𝑀∼𝜇𝐺,𝜆
[𝑣 ∉ 𝑀] = 1

1 + 𝜆∑𝑢∈𝑁𝐺 (𝑣) Pr𝑀∼𝜇𝐺\{𝑣},𝜆 [𝑢 ∉ 𝑀] .

Proof. For every 𝑣 ∈ 𝑉 , by definition, the following identity holds:

𝑍𝐺 (𝜆) = 𝑍𝐺\{𝑣} (𝜆) + 𝜆
∑︁

𝑢∈𝑁𝐺 (𝑣)
𝑍𝐺\{𝑢,𝑣} (𝜆).

Then,

Pr𝑀∼𝜇𝐺,𝜆
[𝑣 ∉ 𝑀] =

𝑍𝐺\{𝑣} (𝜆)
𝑍𝐺 (𝜆)

=
𝑍𝐺\{𝑣} (𝜆)

𝑍𝐺\{𝑣} (𝜆) + 𝜆
∑

𝑢∈𝑁𝐺 (𝑣) 𝑍𝐺\{𝑢,𝑣} (𝜆)

=
1

1 + 𝜆∑𝑢∈𝑁𝐺 (𝑣)
𝑍𝐺\{𝑢,𝑣} (𝜆)
𝑍𝐺\{𝑣} (𝜆)

=
1

1 + 𝜆∑𝑢∈𝑁𝐺 (𝑣) Pr𝑀∼𝜇𝐺\{𝑣},𝜆 [𝑢 ∉ 𝑀] .

□

For any subgraph 𝐻 ⊆ 𝐺 of the graph 𝐺 , every vertex 𝑣 ∈ 𝑉 and non-negative integer 𝑡 ∈ N, we introduce
the quantity Φ𝐻 (𝑣, 𝑡) as:

Φ𝐻 (𝑣, 𝑡) =
{
0 𝑡 = 0

1
1+𝜆∑𝑢∈𝑁𝐻 (𝑣) Φ𝐻\{𝑣} (𝑢,𝑡−1) 𝑡 ≥ 1 .

It is easy to observe that for every subgraph 𝐻 ⊆ 𝐺 , every vertex 𝑣 ∈ 𝑉 and 𝑡 ∈ N,

1
1 + 𝜆Δ ≤ Φ𝐻 (𝑣, 𝑡) ≤ 1.

Theorem 2.4 (Correlation Decay, Theorem 3.2 in [BGK+07]). For every vertex 𝑣 ∈ 𝑉 and every positive even integer
𝑡 ∈ N, it holds that ��Pr𝑀∼𝜇𝐺,𝜆

[𝑣 ∉ 𝑀] − logΦ𝐺 (𝑣, 𝑡)
�� ≤ (

1 − 2
√
1 + 𝜆Δ + 1

)𝑡/2
log(1 + 𝜆Δ) .

Proof. For 𝑣 ∈ 𝐺 , let 𝑁𝐺 (𝑣) = {𝑢1, . . . , 𝑢𝑚} and for 𝑖 ∈ [𝑚], let 𝑁𝐺\{𝑣} (𝑢𝑖) =
{
𝑤
(𝑖 )
1 , . . . ,𝑤

(𝑖 )
𝑚𝑖

}
. Furthermore, we

use the following notations:

𝑥 = log Pr𝑀∼𝜇𝐺,𝜆
[𝑣 ∉ 𝑀], 𝑥𝑖 = log Pr𝑀∼𝜇𝐺\{𝑣},𝜆 [𝑢𝑖 ∉ 𝑀], 𝑥 (𝑖 )

𝑗
= log Pr𝑀∼𝜇𝐺 {𝑣,𝑢𝑖 },𝜆

[
𝑤
(𝑖 )
𝑗

∉ 𝑀

]
𝑦 = logΦ𝐺 (𝑣, 𝑡), 𝑦𝑖 = logΦ𝐺\{𝑣} (𝑢𝑖 , 𝑡 − 1), 𝑦 (𝑖 )𝑗 = logΦ𝐺\{𝑣,𝑢𝑖 } (𝑤

(𝑖 )
𝑗
, 𝑡 − 2)

for every 𝑖 = 1, . . . ,𝑚 and 𝑗 = 1, . . . ,𝑚𝑖 .
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Let𝑀 =
∑𝑚

𝑖=1𝑚𝑖 , and ®𝑧 = (𝑧 (1)1 , . . . , 𝑧
(1)
𝑚1 , . . . , 𝑧

(𝑚)
1 , . . . , 𝑧

(𝑚)
𝑚𝑚
). Define the function 𝑓 : [0, 1]𝑀 → [0, 1] as

𝑓 (®𝑧) = log ©«1 + 𝜆
𝑚∑︁
𝑖=1

1

1 + 𝜆∑𝑚𝑖

𝑗=1 𝑒
𝑧
(𝑖 )
𝑗

ª®¬ .
Then we know 𝑥 = −𝑓 ( ®𝑥) and 𝑦 = −𝑓 ( ®𝑦).

Nowwe consider the function𝑔(𝛼) = 𝑓 (𝛼 ®𝑥 +(1−𝛼) ®𝑦) for 𝛼 ∈ [0, 1]. By the mean-value theorem and Hölder’s
inequality

|𝑥 − 𝑦 | =
��∇𝑓 (®𝑧𝛼 )⊤( ®𝑥 − ®𝑦)�� ≤ ∥∇𝑓 (®𝑧𝛼 )∥1 · ∥ ®𝑥 − ®𝑦∥∞.

By calculation,

∥∇𝑓 (𝑧)∥1 =
1

1 + 𝜆∑𝑚
𝑖=1

1

1+𝜆∑𝑚𝑖
𝑗=1 𝑒

𝑧
(𝑖 )
𝑗

𝑚∑︁
𝑖=1

𝜆
©« 1

1 + 𝜆∑𝑚𝑖

𝑗=1 𝑒
𝑧
(𝑖 )
𝑗

ª®¬
2

𝜆

𝑚𝑖∑︁
𝑗=1

𝑒
𝑧
(𝑖 )
𝑗 .

For convenience, let 𝐴𝑖 = 1 + 𝜆∑𝑚𝑖

𝑗=1 𝑒
𝑧
(𝑖 )
𝑗 . Then we show that

∥∇𝑓 (𝑧)∥1 =

∑𝑚
𝑖=1

𝜆 (𝐴𝑖−1)
𝐴2
𝑖

1 + 𝜆∑𝑚
𝑖=1

1
𝐴𝑖

= 1 −
1 + 𝜆∑𝑚

𝑖=1
1
𝐴2
𝑖

1 + 𝜆∑𝑚
𝑖=1

1
𝐴𝑖

.

The maximal value of ∥∇𝑓 (𝑧)∥1 takes at the point for every 1/𝐴𝑖 =
√
1+𝜆𝑚−1
𝜆𝑚

. Then

∥∇𝑓 (𝑧)∥1 ≤ 1 − 2
√
𝜆𝑚 + 1

≤ 1 − 2
√
𝜆Δ + 1

.

Then we obtain ��log Pr𝑀∼𝜇𝐺,𝜆
[𝑣 ∉ 𝑀] − logΦ𝐺 (𝑣, 𝑡)

��
≤

(
1 − 2
√
𝜆Δ + 1

)
max
𝑖, 𝑗

���log Pr𝑀∼𝜇𝐺\{𝑣,𝑢𝑖 },𝜆 [
𝑤
(𝑖 )
𝑗

∉ 𝑀

]
− logΦ𝐺\{𝑣,𝑢𝑖 } (𝑤

(𝑖 )
𝑗
, 𝑡 − 2)

���.
Then the inequality holds by the simple calculation when 𝑡 = 0 or 1 by Proposition 2.3. □

To estimate 𝑍𝐺 (𝜆), it suffices to estimate Φ𝐺 (𝑣, 𝑡) when 𝑡 is not large. Simply by definition we can compute
Φ𝐺 (𝑣, 𝑡) in time𝑂 (Δ𝑡 ), and with proper choice of 𝑡 , the error can be bounded. The core is the following algorithm:
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Algorithm 1: estimating 𝑍𝐺 (𝜆)
input : a graph𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛 and maximum degree Δ, a fugacity 𝜆 > 0 and an tolerance error

𝜀 ∈ (0, 1)
output: an 𝜀-approximation 𝑍 for the partition function 𝑍𝐺 (𝜆)

1 𝑍 ← 1, 𝐻 ← 𝐺 ;
2 Set 𝛿 ← − log

(
1 − 2√

1+𝜆Δ+1

)
and 𝑡 ← 2⌈(log𝑛 + log log(1 + 𝜆Δ) − log 𝜀) /𝛿⌉;

3 while 𝐻 ≠ ∅ do
4 choose an arbitrary vertex 𝑣 ∈ 𝐻 ;
5 compute Φ𝐻 (𝑣, 𝑡);
6 Set 𝑍 ← 1

Φ𝐻 (𝑣,𝑡 ) and 𝐻 ← 𝐻 \ {𝑣};
7 return Z.

Equipped with Algorithm 1, we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We apply Algorithm 1. Note that, under the choice of 𝛿 and 𝑡 , by Theorem 2.4, it holds that

𝑒−𝜀/𝑛 ≤ Φ𝐻 (𝑣, 𝑡)
Pr𝑀∼𝜇𝐻,𝜆

[𝑣 ∉ 𝑀] ≤ 𝑒𝜀/𝑛

and the running time is 𝑂 (𝑛Δ𝑡 ) = 𝑂
(
(𝑛/𝜀)𝜅 logΔ+1) where 𝜅 = − 2

log
(
1− 2√

1+𝜆Δ+1

) . Then we know

𝑒−𝜀 ≤ 𝑍

𝑍
≤ 𝑒𝜀

by Proposition 2.2. □

3 Sampling Matchings

To sample from 𝜇𝐺,𝜆 , we consider the following chain introduced in [JS96]. Suppose that we are now at 𝑀 ∈ Ω.
The update rule is described as following:

1. with probability 1/2 let𝑀 ′ = 𝑀 ; otherwise

2. pick an edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 uniformly at random and let

𝑀 ′ =


𝑀 \ {𝑒} 𝑒 ∈ 𝑀 ;
𝑀 ∪ {𝑒} 𝑢, 𝑣 ∈ 𝑀 ;
𝑀 ∪ {𝑒} \ {𝑒′} exactly one of 𝑢 and 𝑣 is in𝑀 and 𝑒′ is the matching edge;
𝑀 otherwise;

3. go to𝑀 ′ with probability min
{
1, 𝜇𝐺,𝜆 (𝑀 ′ )

𝜇𝐺,𝜆 (𝑀 )

}
.

We denote this Markov chain by 𝑃 . Note that when 𝑀 ≠ 𝑀 ′, the ratio 𝜇𝐺,𝜆 (𝑀 ′ )
𝜇𝐺,𝜆 (𝑀 ) takes values in

{
𝜆−1, 1, 𝜆

}
,

corresponding to three kinds of transitions:

• (Type 1) An edge is removed from𝑀 .

• (Type 2) An edge is added to𝑀 .
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• (Type 3) A new edge is exchanged with an edge in𝑀 .

Proposition 3.1 (Proposition 12.4 in [JS96]). For every graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛 and fugacity 𝜆 > 0, let 𝑃
be the Jerrum and Sinclair’s chain with respect to the Gibbs distribution 𝜇𝐺,𝜆 of the monomer-dimer model on 𝐺 at
fugacity 𝜆 > 0. Then the mixing time of Jerrum and Sinclair’s chain satisfies

𝑡mix(𝜀) ≤ 4|𝐸 |𝑛𝜆
(
𝑛

(
log𝑛 + log 𝜆

)
− log 𝜀

)
where 𝜆 = max {1, 𝜆}.

We prove Proposition 3.1 by canonical paths. For simplicity of the analysis we consider the following defini-
tion of congestion:

𝜌 (Γ) := max
𝑀,𝑀 ′:𝑃 (𝑀,𝑀 ′ )≠0

1
𝜇𝐺,𝜆 (𝑀)𝑃 (𝑀,𝑀 ′)

∑︁
𝛾 ∈Γ:𝛾 ∋ (𝑀,𝑀 ′ )

𝜇𝐺,𝜆 (𝑀)𝜇𝐺,𝜆 (𝑀 ′) |𝛾 |

where |𝛾 | is the length of 𝛾 .

Proposition 3.2 (Proposition 12.1 in [JS96]). Let 𝑃 be a finite, reversible and ergodic lazy Markov chain with respect
to the stationary distribution 𝜇 over Ω. Let Γ be a set of canonical paths from Ω to Ω. Then

𝑡mix(𝜀) ≤ 𝜌 (Γ)
(
log 1

𝜇 (𝑥) + log
1
𝜀

)
for any initial state 𝑥 ∈ Ω.

Then to show the rapid mixing of the Jerrum and Sinclair’s chain, it suffices to construct canonical paths Γ
with low congestion.

Lemma 3.3 ([JS96]). For every graph𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛 and fugacity 𝜆 > 0, let 𝑃 be the Jerrum and Sinclair’s
chain with respect to the Gibbs distribution 𝜇𝐺,𝜆 of the monomer-dimer model on 𝐺 at fugacity 𝜆 > 0. Then there
exists a family of canonical paths Γ from Ω to Ω such that

𝜌 (Γ) ≤ 4|𝐸 |𝑛𝜆

where 𝜆 = max {1, 𝜆}.

3.1 Construction and analysis of canonical paths

Now we construct Γ to prove Lemma 3.3. For a pair of matchings 𝑋,𝑌 ∈ Ω, we consider the symmetric difference
𝑋 ⊕ 𝑌 . It is not hard to observe that it consists of a disjoint collection of paths or cycles in 𝐺 , each of which
has edges that belong alternately to 𝑋 and 𝑌 . Let P(𝐺) be the collection of all simple paths and cycles in 𝐺 .
Now suppose that there exists an arbitrary order of P(𝐺) and we designate each of them a ‘start vertex’, which
is arbitrary if it is a cycle and must be an endpoint otherwise. Then it induces a unique order 𝑃1, . . . , 𝑃𝑚 on the
paths and cycles over 𝑋 ⊕ 𝑌 . Then the canonical path from 𝑋 to 𝑌 involves ‘unwinding’ each of the 𝑃𝑖 in turn as
follows:

1. 𝑃𝑖 is a simple path. Let 𝑃𝑖 consist of the sequence (𝑣0, 𝑣1, . . . , 𝑣ℓ ) where 𝑣0 is the start vertex. If (𝑣0, 𝑣1) ∈ 𝑌 , we
perform a sequence of (Type 3) transitions replacing (𝑣2𝑗+1, 𝑣2𝑗+2) with (𝑣2𝑗 , 𝑣2𝑗+1) for 𝑗 = 0, 1, . . . and finish
with a (Type 2) transition if necessary. If (𝑣0, 𝑣1) ∈ 𝑋 , we firstly perform a (Type 1) transition removing
(𝑣0, 𝑣1) and proceed as before for the reduced path (𝑣1, . . . , 𝑣ℓ ).

2. 𝑃𝑖 is a cycle. Let 𝑃𝑖 consist of the sequence (𝑣0, 𝑣1, . . . , 𝑣2ℓ+1) where ℓ ≥ 1, 𝑣0 is the start vertex and
(𝑣2𝑗 , 𝑣2𝑗+1) ∈ 𝑋 for 0 ≤ 𝑗 ≤ ℓ . Then we firstly perform a (Type 1) transition to remove (𝑣0, 𝑣1), and
leave an open path 𝑂 with endpoints 𝑣0, 𝑣1. Since one of 𝑣0, 𝑣1 must be the start vertex of 𝑂 , suppose that
𝑣𝑘 is not the start vertex. Then we proceed as 1 but treat 𝑣𝑘 as the start vertex, in order to distinguish paths
from cycles.
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Nowwe bound 𝜌 (Γ). Let 𝑒 = (𝑀,𝑀 ′) be a transition edge in theMarkov chain and pass(𝑒) = {(𝑋,𝑌 ) : 𝛾𝑋𝑌 ∋ 𝑒}.
Now we consider the injective mapping

𝜂𝑒 : pass(𝑒) → Ω.

Intuitively we want 𝜂𝑒 (𝑋,𝑌 ) = 𝑋 ⊕𝑌 ⊕ (𝑀 ∪𝑀 ′). However, 𝜂𝑡 (𝑋,𝑌 ) might not be a matching. To ensure that it is
a matching, we might remove the edge of 𝑋 which is adjacent to the start vertex of the path currently unwound:
we call this edge 𝑓 𝑒

𝑋𝑌
. Then we define

𝜂𝑒 (𝑋,𝑌 ) =
{
(𝑋 ⊕ 𝑌 ⊕ (𝑀 ∪𝑀 ′)) \ 𝑓 𝑒

𝑋𝑌
, 𝑒 is (Type 3) and the current path is a cycle;

𝑋 ⊕ 𝑌 ⊕ (𝑀 ∪𝑀 ′), otherwise.

It is not hard to see 𝜂𝑒 is a injective function. Now under the mapping 𝜂𝑒 , we show the low congestion of canonical
paths.

Proof of Lemma 3.3. We construct Γ and injective mapping 𝜂𝑒 for transition 𝑒 = (𝑀,𝑀 ′) as above. Then firstly
we show

𝜇𝐺,𝜆 (𝑋 )𝜇𝐺,𝜆 (𝑌 ) ≤ 2|𝐸 |𝜆2𝜇𝐺,𝜆 (𝑀)𝑃 (𝑀,𝑀 ′)𝜇𝐺,𝜆 (𝜂𝑒 (𝑋,𝑌 )) . (1)

This bound is enough to show the congestion, since the following equality holds

1
𝜇𝐺,𝜆 (𝑀)𝑃 (𝑀,𝑀 ′)

∑︁
𝛾𝑋𝑌 ∋𝑒

𝜇𝐺,𝜆 (𝑋 )𝜇𝐺,𝜆 (𝑌 ) |𝛾𝑋𝑌 | ≤ 2|𝐸 |𝜆2
∑︁

𝛾𝑋𝑌 ∋𝑒
𝜇𝐺,𝜆 (𝜂𝑒 (𝑋,𝑌 )) |𝛾𝑋𝑌 |

≤ 4|𝐸 |𝑛𝜆2
∑︁

𝛾𝑋𝑌 ∋𝑒
𝜇𝐺,𝜆 (𝜂𝑒 (𝑋,𝑌 ))

≤ 4|𝐸 |𝑛𝜆2.

Now we prove (1). Observe that

𝜇𝐺,𝜆 (𝑀)𝑃 (𝑀,𝑀 ′) =
min

{
𝜇𝐺,𝜆 (𝑀), 𝜇𝐺,𝜆 (𝑀 ′)

}
2|𝐸 | .

We separate the remaining parts into four cases:

1. 𝑒 is a (Type 1) transition. Suppose that𝑀 ′ = 𝑀 \ {𝑓 }. Then 𝜂𝑒 (𝑋,𝑌 ) = 𝑋 ⊕ 𝑌 ⊕ 𝑀 . Then we have

𝜇𝐺,𝜆 (𝑋 )𝜇𝐺,𝜆 (𝑌 ) = 𝜇𝐺,𝜆 (𝑀)𝜇𝐺,𝜆 (𝜂𝑒 (𝑋,𝑌 ))

=
2|𝐸 |𝜇𝐺,𝜆 (𝑀)𝑃 (𝑀,𝑀 ′)

min
{
𝜇𝐺,𝜆 (𝑀), 𝜇𝐺,𝜆 (𝑀 ′)

} 𝜇𝐺,𝜆 (𝑀)𝜇𝐺,𝜆 (𝜂𝑒 (𝑋,𝑌 ))

= 2|𝐸 |𝜇𝐺,𝜆 (𝑀)𝑃 (𝑀,𝑀 ′)max
{
1,

𝜇𝐺,𝜆 (𝑀)
𝜇𝐺,𝜆 (𝑀 ′)

}
𝜇𝐺,𝜆 (𝜂𝑒 (𝑋,𝑌 ))

≤ 2|𝐸 |𝜆𝜇𝐺,𝜆 (𝑀)𝑃 (𝑀,𝑀 ′)𝜇𝐺,𝜆 (𝜂𝑒 (𝑋,𝑌 )) .

2. 𝑒 is a (Type 2) transition. The analysis is similar to the last one.

3. 𝑒 is a (Type 3) transition and the current path is a cycle. Suppose that𝑀 ′ = 𝑀 ∪ {𝑓 } \ {𝑓 ′}. Then

𝜂𝑒 (𝑋,𝑌 ) = 𝑋 ⊕ 𝑌 ⊕ (𝑀 ∪ {𝑓 }) − 𝑓 𝑒𝑋𝑌 .

Then we know𝑀 ∪ 𝜂𝑒 (𝑋,𝑌 ) differs from 𝑋 ∪ 𝑌 only in 𝑓 and 𝑓 𝑒
𝑋𝑌

. Thus we have

𝜇𝐺,𝜆 (𝑋 )𝜇𝐺,𝜆 (𝑌 ) ≤ 2|𝐸 |𝜆2𝜇𝐺,𝜆 (𝑀)𝑃 (𝑀,𝑀 ′)𝜇𝐺,𝜆 (𝜂𝑒 (𝑋,𝑌 )) .
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4. 𝑒 is a (Type 3) transition and the current path is not a cycle. The analysis is identical to 3 with no necessity
of the consideration of 𝑓 𝑒

𝑋𝑌
. Then it holds that

𝜇𝐺,𝜆 (𝑋 )𝜇𝐺,𝜆 (𝑌 ) ≤ 2|𝐸 |𝜆𝜇𝐺,𝜆 (𝑀)𝑃 (𝑀,𝑀 ′)𝜇𝐺,𝜆 (𝜂𝑒 (𝑋,𝑌 )) .

Then we can conclude the inequality except the term with respect to 𝜆 is 𝜆
2
. To reduce this order, firstly

observe that only the analysis of the third case produces this term. In this case wewill show
∑

𝛾𝑋𝑌 ∋𝑒 𝜇𝐺,𝜆 (𝜂𝑒 (𝑋,𝑌 ))
is upper bounded by 𝜆

−1
.

To see this, note that 𝜂𝑒 (𝑋,𝑌 ) has at least two unmatched vertices, the start vertex of the current cycle and
the common vertex adjacent to 𝑓 and 𝑓 ′. Moreover, in 𝜂𝑒 (𝑋,𝑌 ) ⊕𝑀 the two vertices are linked by an alternating
path. Then we argument this path and produce a new matching. Note that different 𝜂𝑒 (𝑋,𝑌 ) produce different
matchings. Then we can show the upper bound. □

4 Zeros of Partition Functions

In this section we investigate the zeros of 𝑍𝐺 (𝜆) when 𝜆 ∈ C. We rewrite it as

𝑍𝐺 (𝜆) =
∞∑︁
𝑘=0

𝑚𝑘𝜆
𝑘

where𝑚𝑘 denotes the number of matchings on 𝐺 with size 𝑘 for all 𝑘 ∈ N.

Theorem 4.1 (Theorem 1.2 in [PR17], a restatement of Theorem 2.1). For any graph 𝐺 = (𝑉 , 𝐸) with maximum
degree Δ and any 𝜆 ∈ C which is not a non-negative real number, there exists a deterministic algorithm for (1 + 𝜀)-
approximation to 𝑍𝐺 (𝜆) with running time polynomial in 𝑛 and 𝜀−1 and exponential in 𝜆 and Δ.

By Riemann’s Mapping Theorem it suffices to show the partition function 𝑍𝐺 (𝜆) is zero-free outside of a
disk centered at the origin with radius 1/Ω(Δ), and following the methodology of Patel and Regts [PR17] we
can prove Theorem 4.1. It is equivalent to consider the following monomer-dimer polynomial which is fully
investigated in Heilmann and Lieb [HL72]:

𝑃 (𝐺, 𝑥) =
∞∑︁
𝑘=0
(−1)𝑘𝑚𝑘𝑥

𝑛−2𝑘 , ∀𝑥 ∈ C.

Lemma 4.2. For every graph𝐺 = (𝑉 , 𝐸) with maximum degree Δ > 0, the largest root of the polynomial 𝑃 (𝐺, 𝑥) is
at most 2

√
Δ − 1.

Before we prove Lemma 4.2, the following identities are of great significance.

Fact 4.3. For any pair of disjoint graphs 𝐺 , 𝐻 , it holds that

𝑃 (𝐺 ∪ 𝐻, 𝑥) = 𝑃 (𝐺, 𝑥) · 𝑃 (𝐻, 𝑥).

For any graph 𝐺 = (𝑉 , 𝐸) and every vertex 𝑣 ∈ 𝑉 , it holds that

𝑃 (𝐺, 𝑥) = 𝑥𝑃 (𝐺 \ {𝑣} , 𝑥) −
∑︁

𝑢∈𝑁𝐺 (𝑣)
𝑃 (𝐺 \ {𝑣,𝑢} , 𝑥) .
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4.1 Zeros of the monomer-dimer polynomials on trees

When the graph is a tree𝑇 = (𝑉 , 𝐸), it is much simpler to show the properties of the monomer-dimer polynomial
𝑃 (𝑇, 𝑥).

Lemma 4.4. For any tree 𝑇 = (𝑉 , 𝐸), let 𝐴 be the adjacent matrix of 𝑇 . Then the following identity holds

𝑃 (𝑇, 𝑥) = det(𝑥𝐼 −𝐴).

Proof. To show the identity, we consider the coefficients of 𝑥𝑛−2𝑘 in the two polynomial for every 𝑘 ∈ N. Firstly
we show that they are the same in 𝑥0. The coefficient of 𝑥0 in 𝑃 (𝑇, 𝑥) is just the number of perfect matchings of
𝑇 . On the other hand, the coefficient of 𝑥0 in the characteristic polynomial of 𝐴 is just the determinant of 𝐴, i.e.,∑︁

𝜎

sgn(𝜎)
∏
𝑖

𝐴𝑖,𝜎 (𝑖 ) .

We claim that every 𝜎 satisfies
∏

𝑖 𝐴𝑖,𝜎 (𝑖 ) ≠ 0 if and only if 𝜎 corresponds to a perfect matching. In fact, it holds
that 𝜎 is a collection of cycles if for all 𝑖 , 𝐴𝑖,𝜎 (𝑖 ) = 1. However, since 𝑇 is a tree, the cycles in 𝜎 must have
length 2. Then that is to say, 𝜎 (𝜎 (𝑖)) = 𝑖 . Then this produces a unique perfect matching. On the other hand
when 𝜎 corresponds to a perfect matching it is trivial that the term is non-zero. In this case, it is easy to see
sgn(𝜎) = (−1)𝑛/2.

Now for other 𝑘 ∈ N, note that the coefficient of 𝑥𝑛−2𝑘 in det(𝑥𝐼 −𝐴) is the sum of determinant of all principal
2𝑘 × 2𝑘 minors of 𝐴. Then we know each such a determinant is equal to the number of perfect matchings in the
corresponding induced subgraph of 𝑇 with 2𝑘 vertices. □

Lemma 4.5. For any tree 𝑇 = (𝑉 , 𝐸) with maximum degree Δ, the largest root of the monomer-dimer polynomial
𝑃 (𝑇, 𝑥) is at most 2

√
Δ − 1.

Proof. By Lemma 4.4 it suffices to bound the largest eigenvalue of the adjacent matrix 𝐴 of𝑇 . We apply the trace
method. Note that for every real symmetric matrix𝑀 ∈ R𝑛×𝑛

Tr(𝑀) =
𝑛∑︁
𝑖=1

𝜆𝑖

where 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑛 . Then it holds that

lim
𝑘→∞

Tr(𝐴𝑘 )1/𝑘 = 𝜆max(𝐴) .

Then it suffices to show for every 𝑢 ∈ 𝑉 , it holds that when 𝑘 →∞,

𝐴𝑘
𝑢,𝑢 ≤ 2𝑘 (Δ − 1)𝑘/2 (2)

and plugging into the trace we know

𝜆max(𝐴) = lim
𝑘→∞

Tr(𝐴𝑘 )1/𝑘 ≤ lim
𝑘→∞

𝑛1/𝑘2
√
Δ − 1 = 2

√
Δ − 1.

To prove (2), observe that 𝐴𝑘
𝑢,𝑢 is the number of closed walks of length 𝑘 starting at 𝑢. Now we think of the

tree 𝑇 = (𝑉 , 𝐸) rooted at vertex 𝑢. Then we know that there are 𝑘/2 ‘down walks’ (each of which has at most
Δ − 1 choices) and 𝑘/2 ‘up walks’ (each of which has one choice). Then we know

𝐴𝑘
𝑢,𝑢 ≤ 1𝑘/2(Δ − 1)𝑘/2

(
𝑘

𝑘/2

)
≤ 2𝑘 (Δ − 1)𝑘/2

where the last inequality holds from
(
𝑘
𝑘/2

)
≤ 2𝑘 . □
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4.2 Zeros of the monomer-dimer polynomials on general graphs

To prove Lemma 4.2 on general graphs, we compare the graph to a tree and show the connection between the
monomer-dimer polynomials of them. For a graph 𝐺 = (𝑉 , 𝐸) and every vertex 𝑣 ∈ 𝑉 , define the path tree
𝑇 = 𝑇 (𝐺, 𝑣) as the tree rooted at 𝑣 and for each simple path in 𝐺 starting at 𝑣 , 𝑇 has a node corresponding to it
and two paths are adjacent if their length differ by 1 and one is a prefix of another.

Lemma 4.6 ([GG81]). Let𝐺 = (𝑉 , 𝐸) be a graph and 𝑣 ∈ 𝑉 be an arbitrary vertex in𝐺 . Let𝑇 = 𝑇 (𝐺, 𝑣) be the path
tree of 𝐺 from 𝑣 . Then it holds that

𝑃 (𝐺, 𝑥)
𝑃 (𝐺 \ {𝑣} , 𝑥) =

𝑃 (𝑇, 𝑥)
𝑃 (𝑇 \ {𝑣} , 𝑥) .

Furthermore, the polynomial 𝑃 (𝐺, 𝑥) divides 𝑃 (𝑇, 𝑥).

Note that Lemma 4.6 shows that the roots of 𝑃 (𝐺, 𝑥) are the subset of the roots of 𝑃 (𝑇, 𝑥). Then by Lemma 4.4,
we conclude Lemma 4.2.

Proof of Lemma 4.6. When𝐺 is a tree, the identity holds since𝐺 = 𝑇 (𝐺, 𝑣). Then inductively we suppose that the
identity holds for any proper subgraph of 𝐺 . Let 𝐻 = 𝐺 \ {𝑣}. By Fact 4.3, it holds that

𝑃 (𝐺, 𝑥)
𝑃 (𝐻, 𝑥) =

𝑥𝑃 (𝐻, 𝑥) −∑𝑢∈𝑁𝐺 (𝑣) 𝑃 (𝐻 \ {𝑢} , 𝑥)
𝑃 (𝐻, 𝑥)

= 𝑥 −
∑︁

𝑢∈𝑁𝐺 (𝑣)

𝑃 (𝐻 \ {𝑢} , 𝑥)
𝑃 (𝐻, 𝑥)

= 𝑥 −
∑︁

𝑢∈𝑁𝐺 (𝑣)

𝑃 (𝑇 (𝐻,𝑢) \ {𝑢} , 𝑥)
𝑃 (𝑇 (𝐻,𝑢), 𝑥) .

Observe that, the tree 𝑇 (𝐻,𝑢) = 𝑇 (𝐺 \ {𝑣} , 𝑢) is isomorphic to the component of 𝑇 (𝐺, 𝑣) \ {𝑣} which contains
the point corresponding to the path 𝑣 → 𝑢. Therefore,

𝑃 (𝑇 (𝐻,𝑢) \ {𝑢} , 𝑥)
𝑃 (𝑇 (𝐻,𝑢), 𝑥) =

𝑃 (𝑇 (𝐺, 𝑣) \ {𝑢, 𝑣} , 𝑥)
𝑃 (𝑇 (𝐺, 𝑣) \ {𝑣} , 𝑥) .

Then we know

𝑥 −
∑︁

𝑢∈𝑁𝐺 (𝑣)

𝑃 (𝑇 (𝐻,𝑢) \ {𝑢} , 𝑥)
𝑃 (𝑇 (𝐻,𝑢), 𝑥) = 𝑥 −

∑︁
𝑢∈𝑁𝐺 (𝑣)

𝑃 (𝑇 (𝐺, 𝑣) \ {𝑢, 𝑣} , 𝑥)
𝑃 (𝑇 (𝐺, 𝑣) \ {𝑣} , 𝑥)

=
𝑥𝑃 (𝑇 (𝐺, 𝑣) \ {𝑣} , 𝑥) −∑𝑢∈𝑁𝐺 (𝑣) 𝑃 (𝑇 (𝐺, 𝑣) \ {𝑢, 𝑣} , 𝑥)

𝑃 (𝑇 (𝐺, 𝑣) \ {𝑣} , 𝑥)

=
𝑃 (𝑇, 𝑥)

𝑃 (𝑇 \ {𝑣} , 𝑥) .

To see the second conclusion, firstly by the first identity we know

𝑃 (𝑇, 𝑥) = 𝑃 (𝐺, 𝑥) 𝑃 (𝑇 \ {𝑣} , 𝑥)
𝑃 (𝐺 \ {𝑣} , 𝑥) .

Then we need to show 𝑃 (𝑇 \ {𝑣} , 𝑥) is divisible by 𝑃 (𝐺 \ {𝑣} , 𝑥). To show this firstly note that 𝑃 (𝑇 \ {𝑣} , 𝑥) is
divisible by 𝑃 (𝑇 (𝐺 \ {𝑣} , 𝑢), 𝑥), since the latter is isomorphic to one of the connected component of the previous
one. Then by induction we know 𝑃 (𝑇 (𝐺\{𝑣} , 𝑢), 𝑥) is divisible by 𝑃 (𝐺\{𝑣} , 𝑥). Thus we conclude the results. □
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