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Abstract

This is a technique handbook of the newly developed framework — localization schemes — related to the topic of
local-to-global. Briefly saying, we focus on the tools that are useful in the field of approximate counting and sampling.

1 Localization Schemes and Markov Chains

Now we introduce another framework to show the local-to-global theorem. This framework, named the localization
schemes, is highly related to the recent breakthrough of the famous Kannan-Lovász-Simonovits Conjecture, and deeply
studied in Chen and Eldan [CE22] to analyze the mixing time of the Markov chains.

We fix a state spaceΩ equippedwith a𝜎-algebra Σ. Usuallywe assume that Σ = 2Ω whenΩ is finite and Σ = Borel(Ω)
when Ω is a continuous space, and then we omit Σ. LetM(Ω) be the space of all probability measures on Ω.

Definition 1.1 (Localization Process). A localization process (𝜇𝑡 )𝑡≥0 on the state spaceΩ is a stochastic process satisfying

(P1) Almost surely 𝜇𝑡 is a probability measure on Ω for all 𝑡 ≥ 0.

(P2) For every measurable 𝐴 ⊆ Ω, the process (𝜇𝑡 (𝐴))𝑡≥0 is a martingale.

(P3) For every measurable 𝐴 ⊆ Ω, the process (𝜇𝑡 (𝐴))𝑡≥0 almost surely converges to either 0 or 1 as 𝑡 → ∞.

For convenience, we use Θ𝑡 to denote the distribution of 𝜇𝑡 for every 𝑡 ≥ 0.

Definition 1.2 (Localization Scheme). A localization scheme L on Ω is a mapping assigning to each probability measure
𝜇 ∈ M(Ω) a localization process (𝜇𝑡 )𝑡≥0 with 𝜇0 = 𝜇. In this case, we say (𝜇𝑡 )𝑡 is the localization process associated
with 𝜇 via the localization scheme L.

For convenience, for every 𝑡 ≥ 0, let Γ𝜇,𝑡 be the collection of all possible probability measures at time 𝑡 , and Θ𝜇,𝑡 be
the probability measure on Γ𝜇,𝑡 where for every 𝜈 ∈ Γ𝜇,𝑡 , Θ𝜇,𝑡 (𝜈) equals the probability such that 𝜇𝑡 = 𝜈 with 𝜇0 = 𝜇

under L. Usually 𝜇 is clear, and we will drop the subscript 𝜇.

1.1 Doob localization schemes

Now we set a kind of fancy-looking localization scheme as an example. Given a state space Ω ⊆ R𝑛 with a 𝜎-algebra Σ,
we say that a filtration F𝑡 of Ω is precise if

lim
𝑡→∞

F𝑡 = Σ.

Then letM𝐹 (Ω) be the space of probability measures over the set of precise filtrations on Ω.
Fix a probability measureΘ ∈ M𝐹 (Ω). For a probability measure 𝜇 on Ω, we construct a localization process (𝜇𝑡 )𝑡≥0

as

𝜇𝑡 (𝐴) = E(F𝑡 )∼Θ
[
Pr𝑋∼𝜇 [𝑋 ∈ 𝐴 | F𝑡 ]

]
, ∀𝐴 ⊆ Ω.

Such a localization scheme is named a Doob localization scheme. It has been shown that this kind of localization scheme
is strongly related to the diffusion process from an information-theoretic view. See [Mon23] for detailed arguments.
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1.2 Markov dynamics associated with the localization process

In this part we associate a localization process (𝜇𝑡 )𝑡≥0 = L(𝜇) with a Markov dynamics reversible with respect to the
distribution 𝜇 ∈ M(Ω).

Definition 1.3 (Markov Chains Associated with Localization Processes). Let (𝜇𝑡 )𝑡≥0 be a localization process on Ω
associated with 𝜇 via a localization scheme L and 𝜏 > 0 be a stopping time. The Markov dynamics 𝑃 = 𝑃 (L,𝜏 ) associated
with (𝜇𝑡 )𝑡≥0 and 𝜏 is defined as

𝑃 (𝑥,𝐴) = EΘ𝑡

[
𝜇𝜏 (𝑥)𝜇𝜏 (𝐴)

𝜇 (𝑥)

]
, ∀𝑥 ∈ Ω, 𝐴 ∈ Σ.

Remark 1.4. An optional way to view Definition 1.3 is, let𝑋,𝑌 be two random variables taking values in Ω×Ω satisfying

Pr [𝑋 ∈ 𝐴,𝑌 ∈ 𝐵] = E [𝜇𝜏 (𝐴)𝜇𝜏 (𝐵)] , ∀𝐴, 𝐵 ∈ Σ.

Then we define the kernel as

𝑃 (𝑥,𝐴) = Pr [𝑌 ∈ 𝐴 | 𝑋 = 𝑥] .

Fact 1.5. Let 𝑃 = 𝑃 (L,𝜏 ) be the transition kernel defined as Definition 1.3. Then 𝑃 is reversible with respect to 𝜇.

Proof. For every 𝑥 ∈ Ω, it almost surely holds that

𝑃 (𝑥,Ω) = EΘ𝑡

[
𝜇𝜏 (𝑥)𝜇𝜏 (Ω)

𝜇 (𝑥)

]
= EΘ𝑡

[
𝜇𝜏 (𝑥)
𝜇 (𝑥)

]
= 1.

Then we know 𝑃 (𝑥, ·) is a probability measure on Ω almost surely. Also for every 𝐴, 𝐵 ∈ Σ, it holds that∫
𝑥∈𝐴

𝑃 (𝑥, 𝐵) d𝜇 (𝑥) =
∫
𝑥∈𝐴

E
[
d𝜇𝜏 (𝑥)
d𝜇 (𝑥) 𝜇𝜏 (𝐵)

]
d𝜇 (𝑥)

= E
[∫

𝑥∈Ω
𝜇𝜏 (𝐵) d𝜇𝜏 (𝑥)

]
= E [𝜇𝜏 (𝐴)𝜇𝜏 (𝐵)]

=

∫
𝑦∈𝐵

𝑃 (𝑦,𝐴) d𝜇 (𝑦) .

Therefore we know 𝑃 is reversible with respect to 𝜇. □

To view the Markov chain more clearly, consider the following two-step transition: at the current state 𝑥 ∈ Ω,

• firstly we draw a probability measure 𝜈 ∈ Γ𝜏 following probability Θ𝜏 (𝜈) · 𝜈 (𝑥 )
𝜇 (𝑥 ) ;

• then we draw the next state 𝑦 ∼ 𝜈 .

Define the transition operators D (𝑡 )
𝜇 : Ω × Γ𝑡 → R andU (𝑡 )

𝜇 : Γ𝑡 × Ω → R as

D (𝑡 )
𝜇 (𝑥, 𝜈) = Θ𝜏 (𝜈) ·

𝜈 (𝑥)
𝜇 (𝑥) , U (𝑡 )

𝜇 (𝜈, 𝑥) = 𝜈 (𝑥), ∀𝑥 ∈ Ω, 𝜈 ∈ Γ𝑡 .

It is easy to see 𝑃 (L,𝜏 ) = D (𝑡 )
𝜇 U (𝑡 )

𝜇 .
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1.3 Functional inequalities

Recall the Dirichlet form of a random walk 𝑃 with stationary distribution 𝜇: for two functions 𝑓 , 𝑔 : Ω → R,

E𝑃 (𝑓 , 𝑔) :=
∫
𝑥∈Ω

𝑓 (𝑥) (𝐼 − 𝑃)𝑔(𝑥) d𝜇 (𝑥)

and the spectral gap and modified log-Sobolev inequality constant of 𝑃 :

Gap(𝑃) := inf
𝑓 :Ω→R

E𝑃 (𝑓 , 𝑓 )
Var𝜇 [𝑓 ]

, 𝜌LS(𝑃) := inf
𝑓 :Ω→R>0

E𝑃 (𝑓 , log 𝑓 )
Ent𝜇 [𝑓 ]

.

The following identity and inequality illustrate the connection between the functional inequalities and the variance
or entropy of the localization process.

Proposition 1.6. Let 𝑃 = 𝑃 (L,𝜏 ) be a transition kernel associated with a localization process (𝜇𝑡 )𝑡≥0 = L(𝜇) and 𝜏 > 0.
Then it holds that

E𝑃 (𝑓 , 𝑓 ) = EΘ𝜏

[
Var𝜇𝜏 [𝑓 ]

]
, E𝑃 (𝑓 , log 𝑓 ) ≥ EΘ𝜏

[
Ent𝜇𝜏 [𝑓 ]

]
.

for every function 𝑓 supported on Ω when the Dirichlet forms are well-defined.

Proof. We prove them one by one. By calculation,

E𝑃 (𝑓 , 𝑓 ) =
∫
𝑥∈Ω

𝑓 (𝑥) (𝐼 − 𝑃) 𝑓 (𝑥) d𝜇 (𝑥)

=

∫
𝑥∈Ω

(
𝑓 (𝑥)2 − 𝑓 (𝑥) (𝑃 𝑓 ) (𝑥)

)
d𝜇 (𝑥)

=

∫
𝑥∈Ω

𝑓 (𝑥)2 d𝜇 (𝑥) −
∫
𝑥∈Ω

𝑓 (𝑥)
(∫

𝑦∈Ω
𝑓 (𝑦) d𝑃 (𝑥,𝑦)

)
d𝜇 (𝑥)

= E𝜇
[
𝑓 2
]
−
∫
𝑥∈Ω

∫
𝑦∈Ω

𝑓 (𝑥) 𝑓 (𝑦)EΘ𝜏

[
d𝜇𝜏 (𝑥)
d𝜇 (𝑥) d𝜇𝜏 (𝑦)

]
d𝜇 (𝑥)

= E𝜇
[
𝑓 2
]
− EΘ𝜏

[∫
𝑥∈Ω

𝑓 (𝑥)
(∫

𝑦∈Ω
𝑓 (𝑦) d𝜇𝜏 (𝑦)

)
d𝜇 (𝑥)

]
= EΘ𝜏

[
E𝜇𝜏

[
𝑓 2
]
− E𝜇𝜏 [𝑓 ]2

]
= EΘ𝜏

[
Var𝜇𝜏 [𝑓 ]

]
where the identity E𝜇

[
𝑓 2
]
= EΘ𝜏

[
E𝜇𝜏

[
𝑓 2
] ]

holds from the martingality of the process.
For the MLSI constant, by calculation, we know

E𝑃 (𝑓 , log 𝑓 ) =
∫
𝑥∈Ω

𝑓 (𝑥) ((𝐼 − 𝑃) log 𝑓 ) (𝑥) d𝜇 (𝑥)

=

∫
𝑥∈Ω

(𝑓 (𝑥) log 𝑓 (𝑥) − 𝑓 (𝑥) (𝑃 log 𝑓 ) (𝑥)) d𝜇 (𝑥)

=

∫
𝑥∈Ω

𝑓 (𝑥) log 𝑓 (𝑥) d𝜇 (𝑥) −
∫
𝑥∈Ω

𝑓 (𝑥)
(∫

𝑦∈Ω
log 𝑓 (𝑦) d𝑃 (𝑥,𝑦)

)
d𝜇 (𝑥)

= E𝜇 [𝑓 log 𝑓 ] −
∫
𝑥∈Ω

∫
𝑦∈Ω

𝑓 (𝑥) log 𝑓 (𝑦)EΘ𝜏

[
d𝜇𝜏 (𝑥)
d𝜇 (𝑥) d𝜇𝜏 (𝑦)

]
d𝜇 (𝑥)

= E𝜇 [𝑓 log 𝑓 ] − EΘ𝜏

[∫
𝑥∈Ω

𝑓 (𝑥)
(∫

𝑦∈Ω
log 𝑓 (𝑦) d𝜇𝜏 (𝑦)

)
d𝜇 (𝑥)

]
= EΘ𝜏

[
E𝜇𝜏 [𝑓 log 𝑓 ] − E𝜇𝜏 [𝑓 ] E𝜇𝜏 [log 𝑓 ]

]
≥ EΘ𝜏

[
E𝜇𝜏 [𝑓 log 𝑓 ] − E𝜇𝜏 [𝑓 ] logE𝜇𝜏 [𝑓 ]

]
= EΘ𝜏

[
Ent𝜇𝜏 [𝑓 ]

]
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where the inequality holds from the Jensen’s inequality logE𝜋 [𝑓 ] ≥ E𝜋 [log 𝑓 ] for every distribution 𝜋 on Ω and every
test function 𝑓 : Ω → R>0. □

2 Linear-Tilt Localization Processes

Now we introduce a family of localization processes that lies at the core of the analysis of the mixing time. For a
distribution 𝜋 on Ω, we use b(𝜋) to denote the mass center of 𝜋 , i.e.,

𝑏 (𝜋) =
∫
𝑥∈Ω

𝑥 d𝜋 (𝑥) .

Definition 2.1 (Linear-Tilt Localization Processes). For a localization process (𝜇𝑡 )𝑡≥0, we say it is a linear-tilt localization
process if:

• (Discrete version) For all 𝑡 ∈ N and 𝑥 ∈ Ω,

𝜇𝑡+1(𝑥) = 𝜇𝑡 (𝑥) (1 + ⟨𝑥 − b(𝜇𝑡 ), 𝑍𝑡 ⟩) (1)

where 𝑍𝑡 is a random variable with E [𝑍𝑡 | 𝜇𝑡 ] = 0. Or,

• (Continuous version) For all 𝑡 ≥ 0 and 𝑥 ∈ Ω,

d𝜇𝑡 (𝑥) = 𝜇𝑡 (𝑥) ⟨𝑥 − b(𝜇𝑡 ), 𝑍𝑡 ⟩ (2)

where 𝑍𝑡 is a random variable with E [𝑍𝑡 | 𝜇𝑡 ] = 0.

For convenience, we say (𝑍𝑡 )𝑡≥0 is the driving factor of (𝜇𝑡 )𝑡≥0.

We will focus on two localization schemes: (1) the coordinate-by-coordinate localization schemes; and (2) the
stochastic localization schemes driven by standard Brownian motion.

2.1 The coordinate-by-coordinate localization schemes

Given a distribution 𝜇 over Ω ⊆ R𝑛 , we construct a discrete-time localization process (𝜇)𝑡≥0 as follows:

• Firstly we pick a permutation 𝑘1, . . . , 𝑘𝑛 of [𝑛] uniformly at random.

• Let 𝑋 ∼ 𝜇. For 𝑡 ≥ 0, we set 𝜇𝑡 to be the law of 𝑋 conditional on 𝑋𝑘1, . . . , 𝑋𝑘𝑖 where 𝑖 = min {𝑛, ⌊𝑡⌋}.

Now we show the observation that the dynamics associated with the coordinate-by-coordinate localization process
is the well-known Glauber dynamics.

Fact 2.2. Given a coordinate-by-coordinate localization scheme L over Ω ⊆ R𝑛 and an integer 𝜏 = 𝑛 − 1, the Markov
chain 𝑃 = 𝑃 (L,𝜏 ) associated with (𝜇𝑡 )𝑡≥0 = L(𝜇) and 𝜏 is the single-site Glauber dynamics denoted by PGD with stationary
distribution 𝜇.

Proof. We verify the fact by definition. For every 𝑥 ∈ Ω and 𝑖 ∈ [𝑛], define 𝐿𝑥,𝑖 :=
{
𝑧 ∈ Ω

�� ∀𝑗 ∈ [𝑛] \ {𝑖} , 𝑧 𝑗 = 𝑥 𝑗
}
. It’s

not hard to see that it suffices to show the case ∥𝑥 − 𝑦∥0 = 1.
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Assume that 𝑥,𝑦 only differ at the coordinate 𝑖 ∈ [𝑛], i.e., 𝑥𝑖 ≠ 𝑦𝑖 and 𝑥 𝑗 = 𝑦 𝑗 for every 𝑗 ∈ [𝑛] \ {𝑖}. Then by
definition,

𝑃 (𝑥,𝑦) = EΘ𝑛−1

[
𝜇𝑛−1(𝑥)𝜇𝑛−1(𝑦)

𝜇 (𝑥)

]
=

∑︁
𝑗∈[𝑛]

1
𝑛
E
[
𝜇𝑛−1(𝑥)𝜇𝑛−1(𝑦)

𝜇 (𝑥)

���� 𝑘𝑛 = 𝑗

]
=

1
𝑛
E
[
𝜇𝑛−1(𝑥)𝜇𝑛−1(𝑦)

𝜇 (𝑥)

���� 𝑘𝑛 = 𝑖

]
=

1
𝑛
Pr

[
supp(𝜇𝑛−1) = 𝐿𝑥,𝑖

]
E
[
𝜇𝑛−1(𝑥)𝜇𝑛−1(𝑦)

𝜇 (𝑥)

���� 𝑘𝑛 = 𝑖, supp(𝜇𝑛−1) = 𝐿𝑥,𝑖

]
=

1
𝑛

𝜇 (𝐿𝑥,𝑖)𝜇 (𝑥)𝜇 (𝑦)
𝜇 (𝑥)𝜇 (𝐿𝑥,𝑖)2

=
1
𝑛

𝜇 (𝑦)
𝜇 (𝐿𝑥,𝑖)

.

When ∥𝑥 − 𝑦∥0 ≥ 2, it is easy to see 𝑃 (𝑥,𝑦) = PGD(𝑥,𝑦) = 0. Thus we conclude the statement. □

Remark 2.3. When 𝜏 = 𝑛−ℓ , the correspondingMarkov kernel associated with the coordinate-by-coordinate localization
process and 𝜏 is the ℓ-uniform block dynamics Pℓ−GD.

2.1.1 The coordinate-by-coordinate localization process as a linear-tilt process

In this part, we will show the coordinate-by-coordinate localization process (𝜇𝑡 )𝑡≥0 is a linear-tilt localization process.
Fix a probability measure 𝜇 on Ω = {−1, +1}𝑛 . We pick a permutation 𝑘1, . . . , 𝑘𝑛 of [𝑛] uniformly at random. Let
𝑈1, . . . ,𝑈𝑛 be independent random variables uniformly distributed in [−1, +1].

Let 𝜇0 = 𝜇. For 𝑖 = 0, 1, . . . , 𝑛, we define

𝜇𝑖+1(𝑥) = 𝜇𝑖 (𝑥) (1 + ⟨𝑥 − b(𝜇𝑖), 𝑍𝑖⟩) , ∀𝑥 ∈ Ω

where 𝑍𝑖 is a 𝜎 (𝜇0, . . . , 𝜇𝑖)-measurable random variable defined as

𝑍𝑖 := e𝑘𝑖+1 ×
{ 1
1+b(𝜇𝑖 )𝑘𝑖+1

b(𝜇𝑖)𝑘𝑖+1 ≥ 𝑈𝑖+1,
−1

1−b(𝜇𝑖 )𝑘𝑖+1
b(𝜇𝑖)𝑘𝑖+1 ≤ 𝑈𝑖+1,

where (e1, . . . , e𝑛) is the standard basis of R𝑛 .
It is not hard to see E [𝑍𝑖 | 𝜇𝑖] = 0, and

𝜇𝑖+1(Ω) =
∫
𝑥∈Ω

d𝜇𝑖+1(𝑥)

=

∫
𝑥∈Ω

(1 + ⟨𝑥 − b(𝜇𝑖), 𝑍𝑖⟩) d𝜇𝑖 (𝑥)

= 𝜇𝑖 (Ω) +
〈∫

𝑥∈Ω
(𝑥 − b(𝜇𝑖)) d𝜇𝑖 (𝑥), 𝑍𝑖

〉
= 𝜇𝑖 (Ω)

meaning that 𝜇𝑖 (Ω) = 1 for each 𝑖 ∈ [𝑛]. To show 𝜇𝑖+1 is a pinning of 𝜇𝑖 , firstly note that the marginal distribution of
the coordinate 𝑘𝑖+1 is

Pr𝑋∼𝜇𝑡
[
𝑋𝑘𝑖+1 = 1

]
=
1 + b(𝜇𝑖)𝑘𝑖+1

2 , Pr𝑋∼𝜇𝑡
[
𝑋𝑘𝑖+1 = 1

]
=
1 − b(𝜇𝑖)𝑘𝑖+1

2 .

By the definition of 𝑍𝑖 , when 𝑥 is not identical to the pinned value, the inner product will be −1 and the probability will
vanish.
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2.2 Stochastic localization schemes driven by standard Brownian motion

Now we introduce a kind of linear-tilt localization scheme named the stochastic localization scheme firstly constructed
by Eldan [Eld13]. Fix a probability measure 𝜇 on Ω ⊆ R𝑛 . Let (𝐵𝑡 )𝑡≥0 be the standard Brownian motion in R𝑛 adapted to
the filtration (F𝑡 )𝑡≥0. Let (𝐶𝑡 )𝑡≥0 be a stochastic process adapted to (F𝑡 )𝑡≥0 taking values in 𝑛 × 𝑛 positive semidefinite
matrices. We define a measure-valued stochastic process (𝜇𝑡 )𝑡≥0 by d𝜇𝑡

d𝜇 (𝑥) = 𝐹𝑡 (𝑥) as,

𝐹0(𝑥) = 1, d𝐹𝑡 (𝑥) = 𝐹𝑡 (𝑥) ⟨𝑥 − b(𝜇𝑡 ),𝐶𝑡 d𝐵𝑡 ⟩ , ∀𝑥 ∈ Ω. (3)

Proposition 2.4. If
∫ ∞
𝑡=0𝐶

2
𝑡 d𝑡 = ∞, then (𝜇𝑡 )𝑡≥0 is a localization process. Moreover,

d𝜇𝑡
d𝜇𝑡

(𝑥) = 𝐹𝑡 (𝑥) =
1
𝑍𝑡

exp
(
−12 ⟨Σ𝑡𝑥, 𝑥⟩ + ⟨y𝑡 , 𝑥⟩

)
where 𝑍𝑡 is a normalizing factor to ensure that

∫
𝑥∈Ω 𝐹𝑡 (𝑥) d𝜇 (𝑥) = 1 and (Σ𝑡 )𝑡≥0, (y𝑡 )𝑡≥0 are stochastic processes adapted

to F𝑡 in the form of

dy𝑡 = 𝐶𝑡 d𝐵𝑡 +𝐶2
𝑡 b(𝜇𝑡 ) d𝑡, dΣ𝑡 = 𝐶2

𝑡 d𝑡 .

Proof. We prove the proposition by solving (3). Consider the stochastic process (log 𝐹𝑡 (𝑥))𝑡≥0. By Itô’s formula,

dlog 𝐹𝑡 (𝑥) =
d𝐹𝑡 (𝑥)
𝐹𝑡 (𝑥)

− d[𝐹 (𝑥)]𝑡
2𝐹𝑡 (𝑥)2

= ⟨𝑥 − b(𝜇𝑡 ),𝐶𝑡 d𝐵𝑡 ⟩ −
1
2 ∥𝐶𝑡 (𝑥 − b(𝜇𝑡 ))∥22 d𝑡 .

This leads to the form

𝐹𝑡 (𝑥) =
1
𝑍𝑡

exp
(
−12 ⟨Σ𝑡𝑥, 𝑥⟩ + ⟨y𝑡 , 𝑥⟩

)
where 𝑍𝑡 , Σ𝑡 , y𝑡 are described as the proposition. Also we know 𝜇𝑡 (𝑥) ≥ 0 for every 𝑥 ∈ Ω. By definition,

d𝜇𝑡 (Ω) = d
∫
𝑥∈Ω

d𝜇𝑡 (𝑥)

=

∫
𝑥∈Ω

𝐹𝑡 (𝑥) ⟨𝑥 − b(𝜇𝑡 ),𝐶𝑡 d𝐵𝑡 ⟩ d𝜇 (𝑥)

=

〈∫
𝑥∈Ω

(𝑥 − b(𝜇𝑡 )) d𝜇𝑡 (𝑥),𝐶𝑡 d𝐵𝑡
〉

= 0.

Then we know 𝜇𝑡 (Ω) = 1 for every 𝑡 ≥ 0 almost surely. Thus we know 𝜇𝑡 is almost surely a probability measure on Ω.
The martingality comes directly from the definition, and to see the convergence of the process, note that when Σ𝑡 → ∞,
by the form of 𝐹𝑡 it will be a Dirac measure. □

When 𝐶𝑡 ≡ 𝑄−1/2, we know the law of y𝑡 by El Alaoui and Montanari [EAM22].

Theorem 2.5 ([EAM22]). Fix a probability measure 𝜇 on Ω and a positive semidefinite matrix𝑄 ∈ R𝑛×𝑛 . Let (𝜇𝑡 )𝑡≥0 be a
stochastic localization process starting from 𝜇 driven by𝐶𝑡 ≡ 𝑄−1/2. Define the stochastic process (Σ𝑡 )𝑡≥0, (y𝑡 )𝑡≥0 as above.
Then

Σ𝑡 = 𝑡𝑄−1, y𝑡/𝑡 ∼ 𝜇 ∗ N (0, Σ𝑡 ), ∀𝑡 ≥ 0.
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2.3 Variance contraction via linear-tilt localization processes

Now we show how to bound the spectral gap of the Glauber dynamics PGD. The following property named the variance
conservation is the key in our analysis.
Definition 2.6 (Variance Conservation - Discrete). Given a time-discrete localization process (𝜇𝑡 )𝑡 ∈N on Ω satisfying
(𝜅1, 𝜅2, . . .)-variance conservation up to time 𝑡 ∈ N, if for every test function 𝑓 : Ω → R,

E
[
Var𝜇𝑖 [𝑓 ]

�� 𝜇𝑖−1] ≥ (1 − 𝜅𝑖)Var𝜇𝑖−1 [𝑓 ] , ∀1 ≤ 𝑖 ≤ 𝑡 .

Proposition 2.7. Let (𝜇𝑡 )𝑡 ∈N be a time-discrete localization process on Ω satisfying (𝜅1, 𝜅2, . . .)-variance conservation up
to time 𝑡 ∈ N. Let 𝑃 be the random walk associated with (𝜇𝑡 )𝑡 ∈N and time 𝑡 . Then its spectral gap Gap(𝑃) satisfies

Gap(𝑃) ≥
𝑡∏
𝑖=1

(1 − 𝜅𝑖) .

Proof. By Proposition 1.6, it suffices to show for every test function 𝑓 : Ω → R𝑛 ,

EΘ𝑡

[
Var𝜇𝑡 [𝑓 ]

]
Var𝜇 [𝑓 ]

≥
𝑡∏
𝑖=1

(1 − 𝜅𝑖) .

Note that 𝜇0 = 𝜇. Then by direct calculation,
EΘ𝑡

[
Var𝜇𝑡 [𝑓 ]

]
Var𝜇 [𝑓 ]

= EΘ𝑡

[
Var𝜇𝑡 [𝑓 ]
Var𝜇0 [𝑓 ]

]
= E

[
E
[
. . . E

[
Var𝜇𝑡 [𝑓 ]
Var𝜇𝑡−1 [𝑓 ]

���� 𝜇𝑡−1] . . .] Var𝜇1 [𝑓 ]Var𝜇0 [𝑓 ]

���� 𝜇0]
≥

𝑡∏
𝑖=1

(1 − 𝜅𝑖)

where the last inequality holds from Definition 2.6. □

Now it’s time for us to show the variance contraction for a linear-tilt localization process (𝜇𝑡 )𝑡 ∈N. The first step is
to show the form of the evolution of its variance.
Lemma 2.8. Let (𝜇𝑡 )𝑡 ∈N be a time-discrete linear-tilt localization process and (𝑍𝑡 )𝑡 ∈N be its driving factor. Then for every
test function 𝑓 : Ω → R and 𝑡 ∈ N,

E
[
Var𝜇𝑡+1 [𝑓 ]

�� 𝜇𝑡 ] = Var𝜇𝑡 [𝑓 ] − ⟨𝑉𝑡 ,𝐶𝑡𝑉𝑡 ⟩
where

𝑉𝑡 :=
∫
𝑥∈Ω

(𝑥 − b(𝜇𝑡 )) 𝑓 (𝑥) d𝜇𝑡 (𝑥), 𝐶𝑡 := Cov (𝑍𝑡 | 𝜇𝑡 ) .

Proof. Fix a test function 𝑓 : Ω → R. By direct calculation,

E
[
Var𝜇𝑡+1 [𝑓 ]

�� 𝜇𝑡 ] = E

[∫
Ω
𝑓 (𝑥)2 d𝜇𝑡+1(𝑥) −

(∫
Ω
𝑓 (𝑥) d𝜇𝑡+1(𝑥)

)2 ����� 𝜇𝑡
]

=

∫
Ω
𝑓 (𝑥)2 d𝜇𝑡 (𝑥) − E

[(∫
Ω
𝑓 (𝑥) (1 + ⟨𝑥 − b(𝜇𝑡 ), 𝑍𝑡 ⟩) d𝜇𝑡 (𝑥)

)2 ����� 𝜇𝑡
]

=

∫
Ω
𝑓 (𝑥)2 d𝜇𝑡 (𝑥) −

(∫
Ω
𝑓 (𝑥) d𝜇𝑡 (𝑥)

)2
− E

[(∫
Ω
𝑓 (𝑥) ⟨𝑥 − b(𝜇𝑡 ), 𝑍𝑡 ⟩ d𝜇𝑡 (𝑥)

)2 ����� 𝜇𝑡
]

= Var𝜇𝑡 [𝑓 ] − E
[
⟨𝑉𝑡 , 𝑍𝑡 ⟩2

�� 𝜇𝑡 ]
= Var𝜇𝑡 [𝑓 ] −𝑉⊤

𝑡 E
[
𝑍⊤
𝑡 𝑍𝑡

�� 𝜇𝑡 ] 𝑉𝑡
= Var𝜇𝑡 [𝑓 ] −𝑉⊤

𝑡 𝐶𝑡𝑉𝑡 .
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□

Proposition 2.9. Let (𝜇𝑡 )𝑡 ∈N be a time-discrete linear-tilt localization process and (𝑍𝑡 )𝑡 ∈N be its driving factor. Then
(𝜇𝑡 )𝑡 ∈N satisfies (𝜅1, 𝜅2, . . .)-variance conservation where

𝜅𝑡+1 = 1 −
𝐶1/2

𝑡 Cov (𝜇𝑡 )𝐶1/2
𝑡


OP
, ∀𝑡 ∈ N.

Proof. Firstly it is not hard to see that it suffices to show the case E𝜇 [𝑓 ] = E𝜇𝑡 [𝑓 ] = 0. By Lemma 2.8, we only need to
bound the term ⟨𝑉𝑡 ,𝐶𝑡𝑉𝑡 ⟩. By definition,

⟨𝑉𝑡 ,𝐶𝑡𝑉𝑡 ⟩ =
𝐶1/2

𝑡 𝑉𝑡

2
2

= sup
𝜃 :∥𝜃 ∥2=1

〈
𝐶
1/2
𝑡 𝑉𝑡 , 𝜃

〉2
= sup

𝜃 :∥𝜃 ∥2=1

(∫
Ω
⟨𝐶𝑡 (𝑥 − b(𝜇𝑡 )), 𝜃⟩ 𝑓 (𝑥) d𝜇𝑡 (𝑥)

)2
≤ sup

𝜃 :∥𝜃 ∥2=1
Var𝜇𝑡 [𝑓 ]

∫
Ω
⟨𝐶𝑡 (𝑥 − b(𝜇𝑡 )), 𝜃⟩2 𝑓 (𝑥) d𝜇𝑡 (𝑥)

=

𝐶1/2
𝑡 Cov (𝜇𝑡 )𝐶1/2

𝑡


OP
Var𝜇𝑡 [𝑓 ]

where the inequality is held by the Cauchy-Schwarz inequality. □

2.3.1 Variance conservation via the coordinate-by-coordinate localization process

Nowwe show the main result of rapid mixing via the spectral independence by Anari, Liu and Oveis Gharan [ALOG20].

Lemma 2.10. Fix a disbribution 𝜇 on Ω ⊆ {−1, +1}𝑛 . Let (𝜇𝑡 )𝑡 ∈N be a coordinate-by-coordinate localization process
starting from 𝜇. Then (𝜇𝑡 )𝑡 ∈N satisfies (𝜅1, 𝜅2, . . .)-variance conservation up to 𝑛 such that

𝜅𝑡+1 = 1 −
∥Cor (𝜇𝑡 )∥OP

𝑛 − 𝑡
, ∀0 ≤ 𝑡 < 𝑛

where Cor (𝜇𝑡 ) = diag (Cov (𝜇𝑡 ))−1/2 Cov (𝜇𝑡 ) diag (Cov (𝜇𝑡 ))−1/2.
Proof. By Proposition 2.9, it suffices to show

𝐶
1/2
𝑡 Cov (𝜇𝑡 )𝐶1/2

𝑡 =
Cor (𝜇𝑡 )
𝑛 − 𝑡

.

By direct calculation, for every unpinned 𝑖 ∈ [𝑛],

𝐶𝑡 (𝑖, 𝑖) = Cov (𝑍𝑡 | 𝜇𝑡 )𝑖,𝑖
=

1
𝑛 − 𝑡

1
1 − b(𝜇𝑡 )2𝑖

=
1

(𝑛 − 𝑡)Cov (𝜇𝑡 )𝑖,𝑖
.

Then the identity holds. □

Since we have already know
Ψ𝜇𝑡


OP = ∥Cor (𝜇𝑡 )∥OP, we can establish the result of [ALOG20].

Lemma 2.11 (A Reformulation of the Main Result in [ALOG20]). Given an (𝜂0, . . . , 𝜂𝑛)-spectrally independent Gibbs
distribution 𝜇 of some hardcore model over the state space Ω ⊆ {−1, +1}𝑛 , the spectral gap of the ℓ-uniform block dynamics
is at least

Gap(Pℓ−GD) ≥
𝑛−ℓ−1∏
𝑡=0

(
1 − 𝜂𝑡

𝑛 − 𝑡

)
.
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3 Entropic Contraction

To show the entropic decay of Markov dynamics associated with a localization scheme, we consider the notions named
entropic stability put in Anari et al. [AJK+21].

For a probability measure 𝜇 on Ω ⊆ R𝑛 and a vector 𝑣 ∈ R𝑛 , we define the exponential tilt T𝑣𝜇 of 𝜇 as

dT𝑣𝜇
d𝜇 (𝑥) := 𝑒 ⟨𝑣,𝑥 ⟩∫

𝑦∈Ω 𝑒
⟨𝑣,𝑦⟩ d𝜇 (𝑦)

, ∀𝑥 ∈ Ω.

Definition 3.1 (Entropic Stability). For a probability measure 𝜇 on Ω ⊆ R𝑛 , a function 𝜓 : R𝑛 × R𝑛 → R≥0 and 𝛼 > 0,
we say that 𝜇 is 𝛼-entropically stable with respect to𝜓 if

𝜓 (b(T𝑣𝜇), b(𝜇)) ≤ 𝛼DKL (T𝑣𝜇 ∥ 𝜇) , ∀𝑣 ∈ R𝑛 .

Remark 3.2. The function𝜓 is usually a kind of distance on R𝑛 .
By the principle of maximum entropy, the following corollary comes immediately.

Corollary 3.3. Suppose that a probability measure 𝜇 on Ω is 𝛼-entropically stable with respect to 𝜓 . Then for every
probability 𝜌 that is absolutely continuous with respect to 𝜇, it holds that

𝜓 (b(𝜌), b(𝜇)) ≤ 𝛼DKL (𝜌 ∥ 𝜇) .

3.1 Entropic contraction via stochastic localization

Assuming the entropic stability of the probability measure 𝜇 on Ω ⊆ R𝑛 , we can conveniently show the entropic
contraction via stochastic localization processes.

Proposition 3.4. Suppose that 𝜇 is a probability measure on Ω ⊆ R𝑛 and (𝜇𝑡 )𝑡≥0 is a stochastic localization process driven
by (𝐶𝑡 )𝑡≥0 starting from 𝜇0 = 𝜇. Fix a real 𝑇 > 0. Assume that, almost surely for every 𝑡 ∈ [0,𝑇 ], 𝜇𝑡 is 𝛼𝑡 -entropically
stable with respect to𝜓 (𝑥,𝑦) = 1

2 ∥𝐶𝑡 (𝑥 − 𝑦)∥2. Then we have the following approximate entropic conservation bound

E
[
Ent𝜇𝑇 [𝑓 ]

]
≥ exp

(
−
∫ 𝑇

0
𝛼𝑡 d𝑡

)
Ent𝜇 [𝑓 ]

for every function 𝑓 : Ω → R>0.

Proof. Fix a test function 𝑓 : Ω → R>0. For every 𝑡 ≥ 0, define a probability measure 𝜌𝑡 absolutely continuous with
respect to 𝜇𝑡 as

d𝜌𝑡
d𝜇𝑡

(𝑥) := 𝑓 (𝑥)∫
𝑦∈Ω 𝑓 (𝑦) d𝜇𝑡 (𝑦)

, ∀𝑥 ∈ Ω.

Consider the martingale (𝑀𝑡 )𝑡≥0:

𝑀𝑡 := 𝜇𝑡 (𝑓 ) =
∫
𝑥∈Ω

𝑓 (𝑥)𝐹𝑡 (𝑥) d𝜇 (𝑥) .

Then by elementary calculation,

d𝑀𝑡 =

∫
𝑥∈Ω

𝑓 (𝑥)𝐹𝑡 (𝑥) ⟨𝑥 − b(𝜇𝑡 ),𝐶𝑡 d𝐵𝑡 ⟩ d𝜇 (𝑥)

= 𝑀𝑡 ⟨𝐶𝑡 (b(𝜌𝑡 ) − b(𝜇𝑡 )), d𝐵𝑡 ⟩ .
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Then by Itô’s formula,

d𝑀𝑡 log𝑀𝑡 =
1
2𝑀𝑡 ∥𝐶𝑡 (b(𝜌𝑡 ) − b(𝜇𝑡 ))∥2 d𝑡 + d(martingale) .

Then we finally know

dEnt𝜇𝑡 [𝑓 ] = −12𝑀𝑡 ∥𝐶𝑡 (b(𝜌𝑡 ) − b(𝜇𝑡 ))∥2 d𝑡 + d(martingale).

Since 𝜇𝑡 is 𝛼𝑡 -entropically stable with respect to𝜓 (𝑥,𝑦) = 1
2 ∥𝐶𝑡 (𝑥 − 𝑦)∥2, it holds that

dEnt𝜇𝑡 [𝑓 ] ≥ −𝛼𝑡Ent𝜇𝑡 [𝑓 ] d𝑡 + d(martingale).

Then we consider the process
(
exp

(∫ 𝑠

0 𝛼𝑠 d𝑠
)
Ent𝜇𝑡 [𝑓 ]

)
𝑡≥0

. By Itô’s formula,

d
(
𝑒
∫ 𝑡

0 𝛼𝑠 d𝑠Ent𝜇𝑡 [𝑓 ]
)
= −12𝑒

∫ 𝑡

0 𝛼𝑠 d𝑠𝑀𝑡 ∥𝐶𝑡 (b(𝜌𝑡 ) − b(𝜇𝑡 ))∥2 d𝑡 + 𝛼𝑡𝑒
∫ 𝑡

0 𝛼𝑠 d𝑠Ent𝜇𝑡 [𝑓 ] d𝑡 + d (martingale)

≥ −𝛼𝑡𝑒
∫ 𝑡

0 𝛼𝑠 d𝑠Ent𝜇𝑡 [𝑓 ] d𝑡 + 𝛼𝑡𝑒
∫ 𝑡

0 𝛼𝑠 d𝑠Ent𝜇𝑡 [𝑓 ] d𝑡 + d (martingale)
= d (martingale) .

which implies 𝑒
∫ 𝑡

0 𝛼𝑠 d𝑠Ent𝜇𝑡 [𝑓 ] is a sub-martingale. Thus we conclude

E
[
Ent𝜇𝑇 [𝑓 ]

]
≥ exp

(
−
∫ 𝑇

0
𝛼𝑡 d𝑡

)
Ent𝜇 [𝑓 ] .

□

4 Annealing via Localization Schemes

To utilize the power of localization schemes, we show how to anneal via two localization schemes.

Definition 4.1 (Concatenation of Localization Schemes). Given two localization schemes L𝑖 ,L𝑓 on a space Ω, a prob-
ability measure 𝜇 on Ω and a real𝑇 > 0, define the localization process (𝜇𝑡 )𝑡≥0 in the concatenation of L𝑖 ,L𝑓 associated
with 𝜇 at time 𝑇 as

𝜇𝑡 :=
{
𝜇
(𝑖 )
𝑡 𝑡 ≤ 𝑇

𝜇
(𝑓 )
𝑡−𝑇 𝑡 ≥ 𝑇

∀𝑡 ≥ 0

where
(
𝜇
(𝑖 )
𝑡

)
𝑡≥0

is the localization process obtained by applyingL𝑖 to 𝜇 and
(
𝜇
(𝑓 )
𝑡

)
𝑡≥0

is the localization process obtained

by applying L𝑓 to 𝜇
(𝑖 )
𝑇

. Such a localization scheme is denoted by concate(L𝑖 ,L𝑓 ,𝑇 ).

Lemma 4.2 (Variance Contraction via Annealing). Under the above settings, fix a time 𝜏 > 0 additionally. Let 𝑃𝑡 :=
𝑃 (L𝑓 ,𝜏 ) (𝜇 (𝑖 )𝑡 ) for every 𝑡 > 0. If

• For every function 𝑓 : Ω → R,

E
[
Var𝜇𝑇 [𝑓 ]

]
≥ 𝜀Var𝜇 [𝑓 ] .

• Almost surely we have

Gap(𝑃𝑇 ) ≥ 𝛿.
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Then almost surely it holds that

Gap(𝑃0) ≥ 𝜀𝛿 .

Similarly, we have an entropic version of Lemma 4.2.

Lemma 4.3 (Entropic Contraction via Annealing). Under the above settings, fix a time 𝜏 > 0 additionally. Let 𝑃𝑡 :=
𝑃 (L𝑓 ,𝜏 ) (𝜇 (𝑖 )𝑡 ) for every 𝑡 > 0. If

• For every function 𝑓 : Ω → R>0,

E
[
Ent𝜇𝑇 [𝑓 ]

]
≥ 𝜀Ent𝜇 [𝑓 ] .

• For every function 𝑓 : Ω → R>0,

E
[
Ent𝜇𝑇+𝜏 [𝑓 ]

�� 𝜇𝑇 ] ≥ 𝛿Ent𝜇𝑇 [𝑓 ] .

Then almost surely it holds that

𝜌LS(𝑃0) ≥ 𝜀𝛿 .

The proof of Lemmas 4.2 and 4.3 is the observation that the Dirichlet form is a super-martingale. The details of this
observation can be found in [CE22] and for simplicity we omit here.
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