A Local-to-Global Framework: Localization Schemes
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Abstract

This is a technique handbook of the newly developed framework — localization schemes — related to the topic of
local-to-global. Briefly saying, we focus on the tools that are useful in the field of approximate counting and sampling.

1 Localization Schemes and Markov Chains

Now we introduce another framework to show the local-to-global theorem. This framework, named the localization
schemes, is highly related to the recent breakthrough of the famous Kannan-Lovasz-Simonovits Conjecture, and deeply
studied in Chen and Eldan [ ] to analyze the mixing time of the Markov chains.

We fix a state space Q equipped with a g-algebra ¥. Usually we assume that ¥ = 2 when Q is finite and ¥ = Borel(Q)
when Q is a continuous space, and then we omit X. Let M(Q) be the space of all probability measures on Q.

Definition 1.1 (Localization Process). A localization process (11;);>¢ on the state space Q is a stochastic process satisfying
(P1) Almost surely p; is a probability measure on Q for all ¢ > 0.
(P2) For every measurable A C Q, the process (¢;(A));»o is a martingale.
(P3) For every measurable A C Q, the process (y;(A)):>o almost surely converges to either 0 or 1 as t — oo.
For convenience, we use 0, to denote the distribution of y; for every ¢ > 0.

Definition 1.2 (Localization Scheme). A localization scheme L on Q is a mapping assigning to each probability measure
u € M(Q) alocalization process (p;);>o With gy = p. In this case, we say (y;); is the localization process associated
with y via the localization scheme L.

For convenience, for every t > 0, let I, ; be the collection of all possible probability measures at time ¢, and ®,,; be
the probability measure on I,; where for every v € I},;, ©,,(v) equals the probability such that y; = v with gy = p
under L. Usually p is clear, and we will drop the subscript p.

1.1 Doob localization schemes

Now we set a kind of fancy-looking localization scheme as an example. Given a state space Q C R” with a g-algebra .,
we say that a filtration 7; of Q is precise if

tlim Fr = 2.
Then let Mp(Q) be the space of probability measures over the set of precise filtrations on Q.

Fix a probability measure ® € Mp(Q). For a probability measure y on Q, we construct a localization process (y)>0
as

p(A) =E(rye0 [Prxu [X € A| F]], YACQ.

Such a localization scheme is named a Doob localization scheme. It has been shown that this kind of localization scheme
is strongly related to the diffusion process from an information-theoretic view. See [ ] for detailed arguments.



1.2 Markov dynamics associated with the localization process

In this part we associate a localization process (y;);>0 = L(p) with a Markov dynamics reversible with respect to the
distribution p € M(Q).

Definition 1.3 (Markov Chains Associated with Localization Processes). Let (p;);>0 be a localization process on Q
associated with y via a localization scheme £ and 7 > 0 be a stopping time. The Markov dynamics P = P(£7) associated
with (p;);>0 and 7 is defined as

He () pr (A)
p(x)

Remark 1.4. An optional way to view Definition 1.3 is, let X, Y be two random variables taking values in QX Q satisfying

P(x,A) = Eg,

], Vx e QA€

Pr(X €AY eB]=E[u(Ap,(B)], VABeX.
Then we define the kernel as
P(x,A)=Pr[YeA|X=x].
Fact 1.5. Let P = P(£7) be the transition kernel defined as Definition 1.3. Then P is reversible with respect to .

Proof. For every x € Q, it almost surely holds that

P(x,Q) = Fo, [M] - Fo,

p(x)

m@q_
a7

Then we know P(x, -) is a probability measure on Q almost surely. Also for every A, B € %, it holds that

du(x
[ opeemau= [ e[ M(B)] du(x)
x€A x€A d,u(x)
“E [ [l dueto
x€Q
=E [.ur (A).UT (B)]
- [ P.) duy).
yeB
Therefore we know P is reversible with respect to p. ]

To view the Markov chain more clearly, consider the following two-step transition: at the current state x € Q,

v(x) .
p(x)>

« firstly we draw a probability measure v € I} following probability ©,(v) -
« then we draw the next state y ~ v.

Define the transition operators Z)ﬁt) : QxT; —» Rand ‘L(,Et) I} xQ > Ras

zﬁ%xw=®40159 U (r,x) =v(x), VxeQveTl.

p(x)’

It is easy to see P(£7) = D,Y)fu,ﬁ”.



1.3 Functional inequalities

Recall the Dirichlet form of a random walk P with stationary distribution yu: for two functions f,g: Q — R,

&n(f9)= [ f00(1=Plg(x) dutx)
Xe
and the spectral gap and modified log-Sobolev inequality constant of P:

&)  &e(flogf)
Gap(P) := f:gl—fﬂR Var, [f1° prs(P) := f:gzlgg§>0 Ent, [f]

The following identity and inequality illustrate the connection between the functional inequalities and the variance
or entropy of the localization process.

Proposition 1.6. Let P = P'£7) be a transition kernel associated with a localization process (ji;)rso = L () and T > 0.
Then it holds that

&p(f.f) =Ee, [Var, [f1].  &p(f.logf) > Ee, [Ent,, [f]].
for every function f supported on Q when the Dirichlet forms are well-defined.

Proof. We prove them one by one. By calculation,
&N = [ f@T-PfE) di)
x€Q
- [ U= @) aut)

=/ f(x)? du(X)—/ f(X)( f(y) dP(x,y)) du(x)

x€Q x€Q yeQ

du.(x)

du(x)

=E, [f*] - Ee, / f(X)( f) duf(y)) du(x)]
x€Q yeQ

=Eo, [Ey, [f*] ~Ey [f1?]

= Ee, [Var,, [f]]

where the identity E, [ f 2] =Eep, [E#T [ f 2]] holds from the martingality of the process.
For the MLSI constant, by calculation, we know

~ B, [f] - / o, duf<y>] au()

&p(f log f) = / S0 (1= PYlog ) (3) du)
- / () log £(3) = () (Plog ) (x) d(x)
- / ) log £ () du(x) - / £(x) ( / log £ () dP(x,y>) dpu(x)
x€Q x€Q yeQ

dp.(x)
du(x)

“nlflogfl- [ [ fetogfwte, duf<y>] ()

x€Q JyeQ

= E, [flog f] - Eo, / e ( / log (1) duf<y>) du<x>]
x€ ye

=Eo, [Ey, [flog f] - E,, [f]E,, [logf]]
> Eo, [E,, [flog f] —Ey, [f]logE,, [f]]
= Eo, [Ent,, [f]]




where the inequality holds from the Jensen’s inequality log E, [f] > E, [log f] for every distribution 7 on Q and every
test function f : Q — R.. O

2 Linear-Tilt Localization Processes

Now we introduce a family of localization processes that lies at the core of the analysis of the mixing time. For a
distribution 7 on Q, we use b() to denote the mass center of 7, ie.,

b(r) =/ Qx dr(x).

Definition 2.1 (Linear-Tilt Localization Processes). For a localization process (p;);>0, We say it is a linear-tilt localization
process if:

« (Discrete version) For allt € Nand x € Q,

Hee1 (%) = pr(x) (1+ (x = b(pe), Zt)) (1)
where Z; is a random variable with E [Z; | ;] = 0. Or,

« (Continuous version) For all t > 0 and x € Q,

dp (x) = pe (x) x = b(p), Zy) (2)
where Z; is a random variable with E [Z; | y;] = 0.
For convenience, we say (Z;);»¢ is the driving factor of (1;);>0.

We will focus on two localization schemes: (1) the coordinate-by-coordinate localization schemes; and (2) the
stochastic localization schemes driven by standard Brownian motion.

2.1 The coordinate-by-coordinate localization schemes
Given a distribution p over Q C R”, we construct a discrete-time localization process (p);»¢ as follows:
« Firstly we pick a permutation ki, . . ., k, of [n] uniformly at random.
« Let X ~ p. For t > 0, we set i, to be the law of X conditional on X, ..., Xk, where i = min {n, | t]}.

Now we show the observation that the dynamics associated with the coordinate-by-coordinate localization process
is the well-known Glauber dynamics.

Fact 2.2. Given a coordinate-by-coordinate localization scheme L over Q C R" and an integer t = n — 1, the Markov
chain P = P'£7) associated with (j;)s»0 = L (1) and 7 is the single-site Glauber dynamics denoted by PSP with stationary
distribution p.

Proof. We verify the fact by definition. For every x € Q and i € [n], define L, ; := {z eQ ! Vje [n]\{i},zj = xj}. It’s
not hard to see that it suffices to show the case ||x — y||, = 1.



Assume that x, y only differ at the coordinate i € [n], ie, x; # y; and x; = y; for every j € [n] \ {i}. Then by
definition,

P(x, y) — E@ﬂ_1 [,un—l(x)ﬂn—l (y) ]

p(x)

- Z 1e [lln—l(x)un_1(y) K, = j}
jemn " Hx)

_ lE [,Un—l(x)/ln—l(y) k, = i]
n p(x)

= %Pr [suPP(ﬂn—l) = Lx,i] E [w

kn = i,supp(pn-1) = Ly,

p(x)
_ 1 p(Lx)p(x0)p(y)
S p(p(Ly)?
_1 4@
n .U(Lx,i) '
When ||x — yl|, > 2, it is easy to see P(x,y) = P°P(x,y) = 0. Thus we conclude the statement. ]

Remark 2.3. When 7 = n—¢, the corresponding Markov kernel associated with the coordinate-by-coordinate localization
process and 7 is the £-uniform block dynamics P‘~6P.

2.1.1 The coordinate-by-coordinate localization process as a linear-tilt process

In this part, we will show the coordinate-by-coordinate localization process (;);>¢ is a linear-tilt localization process.
Fix a probability measure p on Q = {-1,+1}". We pick a permutation ki, ...,k, of [n] uniformly at random. Let
Ui, ..., U, be independent random variables uniformly distributed in [-1, +1].

Let yo = p. Fori =0,1,...,n, we define

Hivr(x) = pi(x) (14 (x = b(p), Zi)), Vx € Q

where Z; is a a(uy, . . ., yt;)-measurable random variable defined as

1
Zi=e. . X m b(;ui)kiﬂ > Ui,
' i+1 _
s Pk S Use

where (ey, ..., e,) is the standard basis of R".
It is not hard to see E [Z; | ;] = 0, and

Hir1(Q) :/ 0 dpis (x)
:/ Q(1+<x—b(ﬂi),Zi>) du;(x)

=i (Q) + </ Q(x = b(pi)) d/Ji(x)aZi>

= pi(Q)

meaning that p;(Q) = 1 for each i € [n]. To show p;4 is a pinning of y;, firstly note that the marginal distribution of
the coordinate k;q is
_ 1+ b(.ui)km

1—b(u)k.
PrXNIJt [in+1 = 1] T, PrX~y, [AinH = 1] = —(z‘ul)k‘“ .

By the definition of Z;, when x is not identical to the pinned value, the inner product will be —1 and the probability will
vanish.



2.2 Stochastic localization schemes driven by standard Brownian motion

Now we introduce a kind of linear-tilt localization scheme named the stochastic localization scheme firstly constructed
by Eldan [ ]. Fix a probability measure pon Q € R”. Let (B;);»( be the standard Brownian motion in R" adapted to

the filtration (%;);»¢. Let (C;);»0 be a stochastic process adapted to (F;);»0 taking values in n X n positive semidefinite

matrices. We define a measure-valued stochastic process (y;)s>0 by %(x) = F;(x) as,

Fo(x) =1, dF;(x) = F;(x) {(x = b(y),C; dB;), Vx € Q. (3)
Proposition 2.4. Iff:; C? dt = oo, then (u);»0 is a localization process. Moreover,

dp

1 1
d_llt(X) =F;(x) = Z exp -3 (Zpx, x) + (ys, x)

where Z; is a normalizing factor to ensure that /er Fi(x) du(x) =1 and (2¢)¢50, (Yt):=0 are stochastic processes adapted
to Fy in the form of

dYt = Ct dBt + C?b(‘ut) dt, dzt = C? dt.

Proof. We prove the proposition by solving (3). Consider the stochastic process (log F;(x));¢. By Itd’s formula,

dF;(x)  d[F(®)]
Fi(x)  2F(x)?

(= b), € dBe) = 2 ICulx = bl I .

dlog F;(x) =

This leads to the form
1 1
Fi(x) = Z exp (—5 Ex, x) + (y1, x))

where Z;, 3, y, are described as the proposition. Also we know p;(x) > 0 for every x € Q. By definition,

dn(©) = d / A

/ F(3) (= (), dBe) duo)

< / G = b)) A€, dBt>

=0.

Then we know y;(Q) = 1 for every t > 0 almost surely. Thus we know g, is almost surely a probability measure on Q.
The martingality comes directly from the definition, and to see the convergence of the process, note that when ¥, — co,
by the form of F; it will be a Dirac measure. ]

When C; = 0~'/2, we know the law of y, by El Alaoui and Montanari [ ].

Theorem 2.5 ([ 1). Fix a probability measure y1 on Q and a positive semidefinite matrix Q € R™". Let (j1;)s>0 be a
stochastic localization process starting from u driven by C; = Q~'/2. Define the stochastic process (2¢)ss0, (V¢)r0 as above.
Then

T =tQ 7, yi/t ~ px N(0,%,), Vit >0.



2.3 Variance contraction via linear-tilt localization processes

Now we show how to bound the spectral gap of the Glauber dynamics P°P. The following property named the variance
conservation is the key in our analysis.

Definition 2.6 (Variance Conservation - Discrete). Given a time-discrete localization process (pi;);en on Q satisfying
(x1, kg, . . .)-variance conservation up to time t € N, if for every test function f : Q — R,

E [Vary, [f] | pi-1] = (1 — k) Vary,,_, [f], Vi<i<t

Proposition 2.7. Let (1;):en be a time-discrete localization process on Q satisfying (ki, k2, . . .)-variance conservation up
to timet € N. Let P be the random walk associated with (y;)sen and time t. Then its spectral gap Gap(P) satisfies

Gap(P) > ]_[(1 —x).

i=1
Proof. By Proposition 1.6, it suffices to show for every test function f : Q — R”,

Ee, Var,,t :
Var, [f l_l
Note that yy = p. Then by direct calculation,

Bo, [Vary, /1] _ [Varm [f]]
Var,, [f] T Var,, [f]

—EI|E E Var/lt [f] Var/ll [f]
S van, T 1 Va1 1
t
2 l_l(l —Ki)
i=1
where the last inequality holds from Definition 2.6. ]

Now it’s time for us to show the variance contraction for a linear-tilt localization process (y;)ren. The first step is
to show the form of the evolution of its variance.

Lemma 2.8. Let (y;);en be a time-discrete linear-tilt localization process and (Z;);en be its driving factor. Then for every
test function f : Q —» R andt € N,

E [Vary,,, [f] | ] = Var, [f] = (V..C:V2)

where
Vi / (= () f(x) dpe(x), Cr = Cov (Z; | ).
xeQ

Proof. Fix a test function f : Q — R. By direct calculation,

E [Varllt+1 | 'ut -

5| [ 160* dps(a) - ( [ 760 dpe <x>)

= [ 6 a2
Q

2
( /Q ) (14 (x = b, Z2)) dﬂt(x))

:

2 2
- / £ dut(X)—( / F) dut(x)) B ( / F) (e = (o), Z0) dut(x))
Q Q Q

= Var, [f] -E [<Vt’Zt>2 ’ Ht]
=Var,, [f] -VE[Z]Z: | | Vi
= Vary, [f] - V,'C,V,.




O

Proposition 2.9. Let (y;);en be a time-discrete linear-tilt localization process and (Z;);en be its driving factor. Then
(pe)ren satisfies (k1, Kz, . . .)-variance conservation where

Kepp =1 -

c2Cov (1) c}/ZHOP, Vi € N.

Proof. Firstly it is not hard to see that it suffices to show the case E, [f] = E,, [f] = 0. By Lemma 2.8, we only need to
bound the term (V;, C;V;). By definition,
2

W Vi) =i

2
= sup <C;/2Vt, 9>
6:110]l,=1

= sup (/Q (Ci(x =b(p)), 0) f(x) dpse ()

6:116],=1

< sup Var, [f]/g)(Ct(x—b(ﬂt)),Wf(X) dpe (x)

6:11611,=1

where the inequality is held by the Cauchy-Schwarz inequality. ]

2

C;/ZCOV (pe) Ctl/ZHOPVar,,t [f]

2.3.1 Variance conservation via the coordinate-by-coordinate localization process

Now we show the main result of rapid mixing via the spectral independence by Anari, Liu and Oveis Gharan [ ]

Lemma 2.10. Fix a disbribution p on Q C {-1,+1}". Let (i);en be a coordinate-by-coordinate localization process
starting from p. Then (pi;);en satisfies (k1, K, . . .)-variance conservation up to n such that

Cor
Koy = 1 — I (lltt)”op’ Vo<t<n
n —

where Cor (1) = diag (Cov (,u,f))_l/2 Cov (y;) diag (Cov (,u,))_l/z.
Proof. By Proposition 2.9, it suffices to show

Cor (p1)

C/*Cov () ¢}/ = ——=

By direct calculation, for every unpinned i € [n],

Ci(i,i) = Cov (Z; | llt)i,i

1 1
T n—t1-b()?
_ 1
- (n—t)Cov (,Ut)i,i.
Then the identity holds. o
Since we have already know ||‘I’,,t|| op = IICor (1) [|op, We can establish the result of [ ].
Lemma 2.11 (A Reformulation of the Main Result in [ 1). Given an (ny, ..., nn)-spectrally independent Gibbs

distribution p of some hardcore model over the state space Q C {—1,+1}", the spectral gap of the £-uniform block dynamics
is at least

n—{-1

Gap(P‘~°P) > l_[ (1— i )

r—
t=0 n—t




3 Entropic Contraction

To show the entropic decay of Markov dynamics associated with a localization scheme, we consider the notions named
entropic stability put in Anari et al. | 1.
For a probability measure ;1 on Q@ C R" and a vector v € R", we define the exponential tilt T,y of j1 as

(v.x)
d7op (x) == ¢ Vx € Q.

dy Jyea €Y du(y)’

Definition 3.1 (Entropic Stability). For a probability measure y on Q € R", a function ¢ : R X R” — Ryg and a > 0,
we say that u is a-entropically stable with respect to i if

Y(b(Top), b(p) < aDxr (Top |l p), Vo € R™

Remark 3.2. The function ¢ is usually a kind of distance on R".

By the principle of maximum entropy, the following corollary comes immediately.

Corollary 3.3. Suppose that a probability measure u on Q is a-entropically stable with respect to . Then for every
probability p that is absolutely continuous with respect to y, it holds that

Y(b(p),b(p)) < aDxr (p || p) -

3.1 Entropic contraction via stochastic localization

Assuming the entropic stability of the probability measure y on Q C R”", we can conveniently show the entropic
contraction via stochastic localization processes.

Proposition 3.4. Suppose that p is a probability measure on Q C R"™ and (y;)s>0 is a stochastic localization process driven
by (Cy)so starting from o = p. Fix a real T > 0. Assume that, almost surely for every t € [0,T], y; is a;-entropically
stable with respect to (x,y) = 3||C¢(x — y) ||?. Then we have the following approximate entropic conservation bound

T
E [EntyT [f]] > exp (—/0 a; dt) Ent, [f]

for every function f : Q — R.,.

Proof. Fix a test function f : Q@ — R.. For every ¢t > 0, define a probability measure p; absolutely continuous with
respect to y; as

fx)

= , Q.
S I T AT

Consider the martingale (M;);»¢:

My = e (f) = / SR () du(x)

Then by elementary calculation,

aM, = / FOOF(6) = b3, Co dBe) )
= M; (C+(b(ps) —b(ps)), dBy) .



Then by It&’s formula,
1
dM; log M; = EMtHCt(b(pt) —b(u))||* dt + d(martingale).
Then we finally know

1
dEnt,, [f] = —ZMlICi(b(p:) - b(p))|I* dt + d(martingale).

Since y; is a;-entropically stable with respect to ¥/(x, y) = %llCt(x —y)||%, it holds that

dEnt,, [f] > —a;Ent,, [f] dt + d(martingale).

Then we consider the process (exp ( fos as ds) Ent,, [f ]) . By Itd’s formula,
>0

t 1 ¢ t
d (e/o @ dspnt, | f]) = —eb M ICe(b(pr) ~b(ue)II dt + ayeh  “Enty, [f] dt + d (martingale)

> —atefot s dSEntpt [f] dt + octefot %s clSEnt,,t [f] dt + d (martingale)

= d (martingale) .

t
which implies el clSEnt,,t [f1 is a sub-martingale. Thus we conclude

T
E [Entyr [f]] > exp (—/0 a; dt) Ent, [f].

4 Annealing via Localization Schemes

To utilize the power of localization schemes, we show how to anneal via two localization schemes.

Definition 4.1 (Concatenation of Localization Schemes). Given two localization schemes .£;, L on a space Q, a prob-
ability measure 1 on Q and areal T > 0, define the localization process (i) in the concatenation of L;, L associated
with p at time T as

(i)
My t<T
= Vi >0
b {ﬂ;{; {27

where (,u§ D ) - is the localization process obtained by applying £; to y and (,uif ) ) o is the localization process obtained

by applying L to ,u;i). Such a localization scheme is denoted by concate(.L;, L, T).

Lemma 4.2 (Variance Contraction via Annealing). Under the above settings, fix a time © > 0 additionally. Let P! :=
pLrr) (,ugl)) foreveryt > 0. If

« Forevery function f : Q — R,
E [Varl,T [f]] > eVar, [f].
« Almost surely we have

Gap(PT) > &.

10



Then almost surely it holds that
Gap(P°) > &6.
Similarly, we have an entropic version of Lemma 4.2.

Lemma 4.3 (Entropic Contraction via Annealing). Under the above settings, fix a time t > 0 additionally. Let P! :=
pLro (,ugl)) foreveryt > 0. If

« For every function f : Q — Ry,
E [Ent,, [f]]| > Ent, [f].

o For every function f : Q — R,

E [Enty,., [f]|pr] = 8Ent,, [f].
Then almost surely it holds that
prs(P’) > &.

The proof of Lemmas 4.2 and 4.3 is the observation that the Dirichlet form is a super-martingale. The details of this
observation can be found in [ ] and for simplicity we omit here.
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