COUPLING FOR BLOCK DYNAMICS AND k-HEIGHTS

1. k-HEIGHTS MODELS AND TwO RANDOM WALKS

In statistical physics, the k-heights is a great important model for studying the energy of gas
models. We use a combinatorial language to express it. Given a graph G = (V| E) and a positive
integer k, a k-height is an assignment o : V' — {0,1,...,k} such that for every e = (u,v) € E,
lo(u) —o(v)| < 1. Let Q = Qg be the set of all k-heights on G.

We study how to sample from the uniform distribution on 2. We use U(-) to denote the uniform
distribution on the state space. The method we apply is a Markov chain named the up-down
random walk. Let M denote the dynamics. A transition of M depends on a vertex v € V and a
signature A € {—1,+1} which direct the developing of the value on v. We describe this random
walk as Algorithm 1.

Algorithm 1: a transition step of the up-down random walk M;

input :an initial assignment X; € ) in the Markov chain;
output: a final assignment X1 € 2 meaning a step of transition from Xj;
1 sample v € V, A € {—1,41} and p € [0, 1] uniformly at random,;
2 if p< % then
3 | Xip — Xy
4 else
5 define the assignment o : V — {0,1,...,k} as

() = Xi(u)+A u=v
| Xe(w) u#v

if o is a valid k-height then
| Xiy1 o
else
8 L X1+ Xy

9 return X;;;.

The aperiodicity and ergodicity of M come directly from the definition. It can be easily shown
that the detailed balanced equation holds and hence M is reversible with respect to the uniform
distribution on ).

Unfortunately, it is not easy to analyze directly the mixing rate of M. Instead, we analyze the
block dynamics Mg and use Markov chain comparison to show the rapid mixing of M. We firstly
fix a family of blocks B = {Bj,..., By} covering V, i.e., UleBi = V. For a block B € B, we define
the boundary OB as the set 9B := {v € V\ B | Ju € B, (u,v) € E}. We denote by Qp the set of
k-heights of the subgraph of G induced by B, i.e.,

Qp:={0:B—{0,1,...,k} | 0 k-height w.r.t. G[B]}.

For X € Qand o : B — {0,1,...,k}, we define the assignment [X|o] : V — {0,1,...,k} as the
assignment which maps v € B to o(v) and v € V' \ B to X (v).
1



Now we are ready to define admissible fillings of B in X. We denote the set of all these admissible

fillings by Qpx as
QB\X = {O’ S QB ‘ [X‘O'] S Q}

Note that Qp|y satisfies a kind of Markov property such that Qpx and g x: are same when X
corresponds to X’ at dB. We then safely extend the definition of B|x to k-heights X only defined
on dB. We call such a X € Qgp a boundary constraint. A boundary constraint X € Qgp is extensible
if Qpx # 0.

The block dynamics Mg could be seen as an extension of the up-down random walk M. At each
transition step, we pick a block uniformly at random and update it to obtain the next assignment.
We formally state Mg in Algorithm 2.

Algorithm 2: a transition step of the block dynamics Mp;
input :an initial assignment X; € ) in the Markov chain;
output: a final assignment X;;; € {2 meaning a step of transition from Xi;
sample B € B, 0 € Qp|x, and p € [0, 1] uniformly at random;
if p< % then
| X1+ Xy
else
| Xiy1  [Xilo];

return X; ;.

R W N =

=]

For convenience, we use £(+) to denote the transitions in a Markov scheme.

1.1. Path coupling. A main technique to show the rapid mixing of the Markov dynamics is the
coupling of Markov chains. The main ingredient of this classical method is to construct a proper
coupling for two Markov chains (X3)¢>0 and (Y;);>0 and then show the contraction of such a coupling.

Definition 1 (Contraction of coupling). Fix a state space € and a metric d on €. Let (X¢);>0 and
(Y2)t>0 be two chains induced by the Markov kernel C on © and v = (X3, Y;):>0 be a coupling of
them. We say v is a-contractive with d for a factor a < 1 if for every ¢ > 0, it holds that

E [d(X¢41,Yi41) | X1, Ye] < ad(Xy, V7).

Usually, we choose the Hamming distance dy(-,-) as the metric d. The mixing rate of a Markov
chain C can be upper bounded by the factor a.

Theorem 2. Let v = (X4, Y:)i>0 be a coupling of a Markov kernel C on the state space €. Suppose
that v is a-contractive with a metric d on ). Define the diameter of ) with d as

Amax 1= max d(z,y).

)

The the mizing rate 7(C,e) of C can be upper bounded by
log(dmax/€)

1—«

7(C,e) <
Unfortunately, it is often hard to show the contraction of a coupling directly. For instance,
calculating the decrement/increment after one transition for any pair of (X;,Y;) is not often easy.

To overcome this difficulty, we employ the path coupling theorem which allows us to focus only on

pairs in a much smaller subset.
2



Theorem 3. Suppose that C is a Markov chain on Q and d : Q x Q — N is a metric on Q.
Furthermore, suppose that there exists a subset S C Q x Q such that for every (z,y) € Q, there exists
a path x = xg,1,...,2r =y such that
k—1
(i, xi41) € S,¥Vi=0,1,...,k—1 and Zd(xi,ﬂfi+1) =d(z,y).
i=0
If for every (Xy,Y:) € S, there exists a coupling (X, Y:) = (X¢t1, Yir1) and a factor a < 1 such that
E [d(Xt+1, Y;H*l) | Xt7 }/t] S O[d(Xt, }/t)a

then this coupling can be extended to an a-contractive coupling on the whole €.

1.2. Relationship between M and Mpg. We state here how to derive the mixing rate of M
with the mixing rate of Mg in hand. This comparison technique is the so-called “canonical path”
introduced by Jerrum and Sinclair | |, and we use a version stated in Randall and Tetali | |.

Theorem 4 (Theorem 3 in | |). Let C and C be two reversible Markov chains on the same state
space Q and having the same stationary distribution m. Let E(C) be the set of transitions of C and

E(C) be the set of transitions in C.
Suppose that for each transition (x,y) € E(C), there is a path Yz, @ © = xo,...,T, = Yy of
transitions (x;, x;y+1) in E(C). For a transition (u,v) € C, let

P(u,v) = { (@,9) € BO) | (w0) € 1y}

Define the quantity

1
A= S — .
(wo)ene) 7(w)C(u, v) 2 b

(z,y)€l(z,y)

m(z)C(z,y)

where |ygy| is the length of the path v, and the quantities C(u,v) = Pre¢ (X = v | Xy = 1],
C(:U y) = Prz[Xi11 =y | Xy = 2] are transition probabilities in Markov chains C, C respectively.

Then for every € € (0,1), the mizing rate 7(C, ) of C can be upper bounded by the mizing rate T(C, €)
as

41og(1/(e - Tmin))

og(1/2e) m(C.e)

7(C,e) <

where Tyin = Mingeo 7(x).

2. MONOTONE COUPLING AND RAPID MIXING OF M AND Mp

Now we construct a monotone coupling for (X;,Y;) to apply the path coupling theorem. However,
the existence of such a monotone coupling is not trivial to see. We establish some properties of
k-heights and the block dynamics at first and construct a monotone coupling according to these
properties. In the end, we analyze the contraction of this monotone coupling and prove the mixing
rate of Mp and leading to the rapid mixing of M.

2.1. Properties of k-heights and block divergence. The most important property of the block
dynamics is the stochastic dominance. We offer a partial order on €2 defined as X <Y if X (v) < Y'(v)
for every v € V. We say U C () is an upset if x € U then y € U for every x < y € ). For two
probability distributions g1, e on Q, we say p1 stochastically dominated by pg if p1(U) < po(U) for
every upset U C .
The following theorem can be viewed as a discrete version of a theorem by Strassen.
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Theorem 5. Let puy and po be two probability distributions over € such that uy is stochastically
dominated by po. Then there exists a joint distribution \ of 1 and ps on  x Q satisfying that if
Az,y) >0, then x < y.

To describe the mixing rate of Mg, the following concept named block divergence plays a critical
role. We call a pair (X,Y) € Q x Q a cover pair if X <Y and dy(X,Y) = 1. That is to say, X
and Y only differ at exactly one vertex v € V and Y (v) = X(v) + 1. Let B € B be some block. If
v € OB, the sets of admissible fillings Qp|x and Qpy might be different. The uniform distributions
U(Qpx) and U(Qpjy) too. We view U(Qpx) and U(Qpjy) as two distributions on Qp. Then by
Theorem 5 there exists a joint distribution A x y on Qp x {25, which is exactly a joint distribution
on QB|X X QB|Y'

To show the rapid mixing of Mp, when the next state (X’,Y’) is drawn from Ap xy, the
expectation of d(X’,Y”) is of great importance. Define the block divergence Ep,, for every B € B
and v € 0B as

EB,U = max E(X’,Y’)N)\B Xy [dH(X/,Y,)] .
(X,Y)eQxQ a cover palr,Y (v)=X(v)+1 o

An immediate question is how to compute E(xsyn o, .y [dr(X',Y)]. The following lemma

gives an answer. For an admissible filling o € Qp, let w(o) := > .y o(v) be its weight.

Lemma 6. Let (X,Y) € Q x Q be a cover pair and B € B be some block. Then it holds that
E(X’,Y’)N)\BJ(’Y [dH(X/7 Y/)] = EO'NM(QB‘}/) [w(o-)] - EO'NM(QB‘X) [w(o-)] ‘
The proof of Lemma 6 comes directly from the definition after noting that X’ <Y’ by Theorem 5.

2.2. Stochastic dominance in block chains. Now we state the most important property of
U(Qpx) and U(Qpjy) when (X,Y) is a cover pair. We will make use of the Ahlswede-Daykin four
functions theorem.

Lemma 7 (Four functions theorem). Let D be a distributive lattice and f1, fa, f3, f1 : D — Rxg
such that for all a,b € D,
fi(a)f2(b) < fs(aV b)fa(a AD).
Then for all A,B C D,
f1(A) f2(B) < f3(AV B) fa(A A B)
where fi(A) = ,cafila), AVB={aVblac Abe B} and ANB={aAb|lac Abc B}
Lemma 8. Let X,Y € Q, X <Y be two k-heights of G = (V,E) and B CV be a block. Let D be

the smallest distributive sublattice of g containing Qp|x UQpy. Then Qpx forms a downset and
Qpjy forms an upset.

Proof. By symmetry, we prove that p|x forms a downset in D. That is to say, for g,h € D, g < h,
if h < QB|X then g S QB‘X
Suppose that g ¢ Qp|x. Since g € Qp, we must have |g(v) — X (v')| > 1 for two adjacent vertices
v € B and v’ € dB. Since we know h € Qp|x, it holds that g(v) < h(v) < X (v') +1 so that
g(v) < X(v') — 1.
For every f € Qp|x, we know that f(v) > X (v) — 1 by definition. Also for every f € Q2py- we have
f(v) >Y (V') =1 and thus f(v) > X(v') — 1 by X <Y. Therefore,

?g{)lf(v) =min {f(v) | f € Qx UQpy} > X (V') — 1> g(v).

This leads to a contradiction to g € D. O

Then we are ready to introduce stochastic dominance in block chains.
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Proposition 9. Let X, Y € Q, X <Y be two k-heights of G = (V,E) and B CV be a block. Then
U(Qp|x) is stochastic dominated by U(Qpgjy) on Qp.

Proof. Let D be the smallest distributive lattice of Qp|x USp)y. We consider U (g x) and U(Qp)y)
on D. Then we want to show that for every upset U C D,

0 <UQpy)(U) —U px)(U) =

We define the four functions as
fi(h) =1 [h € UOQB|X] ,fa(h) =1 [h € UOQB|Y] ,
f3(h):==1[heUNQpgy]|, fa(h) :==1][h e UNQpx].
We aim to verify that for every g,h € D,

fi(h) f2(g) < f3(hV g)fa(h A g).

When fi(h)f2(g) = 0, the inequality holds trivially. Then we assume that fi(h) = fa2(g) =0, i.e.,
h € UNQp x and g € Qp|y. By properties from Lemma 8, we conclude that f3(hVg) = fa(hAg) = 1.
Then by Lemma 7, it holds that

0 < f3(D) fa(D) = f1(D) f2(D) = [UNQpy| - |Qpx| = |UNQpix| - |5y |-
Then we yield the inequality we need. O

2.3. Monotone coupling for block dynamics. Now we are ready to construct a monotone
coupling for Mpg. To apply Theorem 3, we define

Q' ={(X,Y)eQxQ|(X,Y) is a cover pair}.

Then we only construct the monotone coupling on S and extend it to the whole space.

Algorithm 3: monotone coupling (X, Y;)¢>0 of Mpg;
input :a pair of (Xy,Y;) € Q x Q;
output :a pair of (X¢41,Yi+1) € Q x Q meaning a step of monotone coupling;

1 sample p € [0, 1] uniformly at random;

2 if p< % then

3 | (Xig1, Vi) < (X, V2);

4 else

5 | if dg(X:,Y;) <1 then

6 sample B € B uniformly at random;

7 if X;(v) =Yi(v) for all v € OB then
8 sample o ~ U(Qp|x, );

9 (Xt41, Yiq1) < ([Xelo], [Yi[o]);

10 else

11 obtain A = Ap x,y; by Theorem 5;
12 sample (ox,0y) ~ A,

13 | (X1, Yig) < ([Xefox], [Yilov]);
14 else
15 L define (X¢41, Yi+1) using path coupling theorem;

16 return (X;y1, Yiq1).




It is not hard to verify that the coupling we construct is a proper coupling of Mg on €. Also by
Theorem 5, the coupling is trivially monotone.

Lemma 10. Define the quantity o as for everyv € V,

1
l--—=([BeBlveBl- Y (Ep,—1)]<a

218 Bebeon
Then for every (X,Y) € Q' and the transition (X', Y") after the monotone coupling, it holds that
E [dy(X"Y") | (X,Y)] < adu(X,Y).
Proof. Let Y(v) = X (v) + 1 for some v € V and X (w) = Y (w) for every w € V' \ {v}. We study
the case p > % since the distance does not change when p < 1/2.

When v € B, then X(w) =Y (w) for every w € 9B. By definition, we know that X’ = Y’ and
thus dg(X',Y’) = 0. When v € 9B, by the definition of Ep,, it holds that

E [dy(X',Y') | v € 8B] < Ep,,.
When v ¢ (B UJB), then we know that dy (X', Y’) = 1. Putting all things together, we obtain

1 1 ZBereaBEB,U |BEB’UEB\/’U€8B|
Eldg(X' . Y| <=+= . 1-—
(X Y] < 5 4 g (FPEEEE 3]
1 (|BeBlveB - Y (Bp.-1)] <
=1-— v — — Q.
2|B| B,U —=

BeB,wedB

Then we conclude the main result of k-heights on G = (V, E).

Theorem 11. Let G = (V,E) be a finite graph and B be a finite family of blocks such that
UpepB = V. If there exists a factor a < 1 such that for allv €'V,

1
L5 | [BeBlveB| - > (Bpy-1)| <a,
‘| BeB,weoB

then for the mizing time T(M,e) of the up-down random walk on k-heights of G, we have
(1VI10g (1/2) + [V log (k + 1)) -og (K[V'|/2)

log (1/2¢)
where m := max,cy|B € B | v € B| and b := maxpep|B| and

S 8- bmk(k + 1)
BET 1 - a)B]

T<AA7€)SECB£'

Proof. Since 1 — ﬁ(\B €B|veB|l—> pepocon(EBw — 1)) < «, by Lemma 10 and Theorem 3,

it holds that the monotone coupling is a-contractive on 2. Therefore, by Theorem 2, the mixing
rate 7(Mp, €) of the block dynamics Mp can be upper bounded by
(Mg, e) < B kIVI/e)
l-«

together with the observation dpax = k - |V].

To bound the mixing rate of M, we use the Markov chain comparison Theorem 4. Let b :=
maxpep|B| and let X — Y be a transition in Mp. Then there exists a block B € B such that
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the two k-heights X and Y only differ at B. Note that there exists a shortest path vxy of length
lvxy| = du(X,Y) < k|B| < k- b using transitions in M. We could only choose yxy of length
di(X,Y) since only values on vertices in B will change.

For every B € B, we use the notation Mg(-,- | B) to denote the transition probabilities conditional
onp > % and the picked transition block B € B. For X # Y, by the law of total probability, it holds

that

Ma(X,Y) = 2,15, S Ms(X,Y | B).
BeB

Now fix some (W, Z) in transitions of M which is not a loop. Let v be the vertex on which W

and Z differ. Then the probability is

‘We consider the set
W, 2) ={(X,)Y)e EMp) | (W, Z) e yxy}-

Let (X,Y) € I'(W, Z) and B be a block with Mg(X,Y | B) > 0. Observe that X and Y only differ
at B. Moreover, since (W, Z) € vx,y, it holds that X (v) # Y (v) and v € B. For any arbitrary block
B € B, observe that

1
Z Mp(X,Y | B) < Z WZIQBIS(/{—FDI’.
(X,Y)er(W,z) x'yeqp N'B

Then we know that

3 MB<X,Y>52|18| S Y Ms(X,Y|B)
JED(

(X,Y)el(W,Z) BEBWEB (X,Y)el(W,2)
{B € B |ve B} b
E+1)°.
ST
Now we consider the quantity A(W, Z) defined as
1
AW, Z) = —————r r X X,Y).
( ) ) W(W)M(W, Z) Z | X,Y|7T( )MB( > )

(X,Y)er(W,2)
Plugging all bounds into it, we obtain that

y|[{B € B|ve B}
|B| '

AW, Z) < 2|V] - bk(k + 1)

Then we obtain the desired upper bound of the mixing rate 7(M,¢). O

The following corollary is easier to use.

Corollary 12. Let G = (V, E) be a finite graph and B be a family of blocks such that UgepB = V.
Furthermore, assume that for every vertex v € V, it occurs in at most m blocks and in at most s
boundaries of blocks. Let Eyax := maxpepveoB EBw- If there exists a < 1 such that

1

1— —
28|

(m_s' (Emax_ 1)) < o,

then the mizing rate (M, ¢) of the up-down random walk has an upper bound stated in Theorem 11.
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