
COUPLING FOR BLOCK DYNAMICS AND k-HEIGHTS

1. k-heights Models and Two Random Walks

In statistical physics, the k-heights is a great important model for studying the energy of gas
models. We use a combinatorial language to express it. Given a graph G = (V,E) and a positive
integer k, a k-height is an assignment σ : V → {0, 1, . . . , k} such that for every e = (u, v) ∈ E,
|σ(u)− σ(v)| ≤ 1. Let Ω = ΩG,k be the set of all k-heights on G.

We study how to sample from the uniform distribution on Ω. We use U(·) to denote the uniform
distribution on the state space. The method we apply is a Markov chain named the up-down
random walk. Let M denote the dynamics. A transition of M depends on a vertex v ∈ V and a
signature ∆ ∈ {−1,+1} which direct the developing of the value on v. We describe this random
walk as Algorithm 1.

Algorithm 1: a transition step of the up-down random walkM;
input : an initial assignment Xt ∈ Ω in the Markov chain;
output : a final assignment Xt+1 ∈ Ω meaning a step of transition from Xt;

1 sample v ∈ V , ∆ ∈ {−1,+1} and p ∈ [0, 1] uniformly at random;
2 if p ≤ 1

2 then
3 Xt+1 ← Xt;
4 else
5 define the assignment σ : V → {0, 1, . . . , k} as

σ(u) :=

{
Xt(u) + ∆ u = v

Xt(u) u ̸= v
;

if σ is a valid k-height then
6 Xt+1 ← σ;
7 else
8 Xt+1 ← Xt;

9 return Xt+1.

The aperiodicity and ergodicity ofM come directly from the definition. It can be easily shown
that the detailed balanced equation holds and hence M is reversible with respect to the uniform
distribution on Ω.

Unfortunately, it is not easy to analyze directly the mixing rate ofM. Instead, we analyze the
block dynamicsMB and use Markov chain comparison to show the rapid mixing ofM. We firstly
fix a family of blocks B = {B1, . . . , Bℓ} covering V , i.e., ∪ℓi=1Bi = V . For a block B ∈ B, we define
the boundary ∂B as the set ∂B := {v ∈ V \B | ∃u ∈ B, (u, v) ∈ E}. We denote by ΩB the set of
k-heights of the subgraph of G induced by B, i.e.,

ΩB := {σ : B → {0, 1, . . . , k} | σ k-height w.r.t. G[B]} .

For X ∈ Ω and σ : B → {0, 1, . . . , k}, we define the assignment [X|σ] : V → {0, 1, . . . , k} as the
assignment which maps v ∈ B to σ(v) and v ∈ V \B to X(v).
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Now we are ready to define admissible fillings of B in X. We denote the set of all these admissible
fillings by ΩB|X as

ΩB|X := {σ ∈ ΩB | [X|σ] ∈ Ω} .
Note that ΩB|X satisfies a kind of Markov property such that ΩB|X and ΩB|X′ are same when X
corresponds to X ′ at ∂B. We then safely extend the definition of ΩB|X to k-heights X only defined
on ∂B. We call such a X ∈ Ω∂B a boundary constraint. A boundary constraint X ∈ Ω∂B is extensible
if ΩB|X ̸= ∅.

The block dynamics MB could be seen as an extension of the up-down random walk M. At each
transition step, we pick a block uniformly at random and update it to obtain the next assignment.
We formally stateMB in Algorithm 2.

Algorithm 2: a transition step of the block dynamicsMB;
input : an initial assignment Xt ∈ Ω in the Markov chain;
output : a final assignment Xt+1 ∈ Ω meaning a step of transition from Xt;

1 sample B ∈ B, σ ∈ ΩB|Xt
and p ∈ [0, 1] uniformly at random;

2 if p ≤ 1
2 then

3 Xt+1 ← Xt;
4 else
5 Xt+1 ← [Xt|σ];
6 return Xt+1.

For convenience, we use E(·) to denote the transitions in a Markov scheme.

1.1. Path coupling. A main technique to show the rapid mixing of the Markov dynamics is the
coupling of Markov chains. The main ingredient of this classical method is to construct a proper
coupling for two Markov chains (Xt)t≥0 and (Yt)t≥0 and then show the contraction of such a coupling.

Definition 1 (Contraction of coupling). Fix a state space Ω and a metric d on Ω. Let (Xt)t≥0 and
(Yt)t≥0 be two chains induced by the Markov kernel C on Ω and γ = (Xt, Yt)t≥0 be a coupling of
them. We say γ is α-contractive with d for a factor α < 1 if for every t ≥ 0, it holds that

E [d(Xt+1, Yt+1) | Xt, Yt] ≤ αd(Xt, Yt).

Usually, we choose the Hamming distance dH(·, ·) as the metric d. The mixing rate of a Markov
chain C can be upper bounded by the factor α.

Theorem 2. Let γ = (Xt, Yt)t≥0 be a coupling of a Markov kernel C on the state space Ω. Suppose
that γ is α-contractive with a metric d on Ω. Define the diameter of Ω with d as

dmax := max
x,y∈Ω

d(x, y).

The the mixing rate τ(C, ε) of C can be upper bounded by

τ(C, ε) ≤ log(dmax/ε)

1− α
.

Unfortunately, it is often hard to show the contraction of a coupling directly. For instance,
calculating the decrement/increment after one transition for any pair of (Xt, Yt) is not often easy.
To overcome this difficulty, we employ the path coupling theorem which allows us to focus only on
pairs in a much smaller subset.
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Theorem 3. Suppose that C is a Markov chain on Ω and d : Ω × Ω → N is a metric on Ω.
Furthermore, suppose that there exists a subset S ⊆ Ω×Ω such that for every (x, y) ∈ Ω, there exists
a path x = x0, x1, . . . , xk = y such that

(xi, xi+1) ∈ S, ∀i = 0, 1, . . . , k − 1 and
k−1∑
i=0

d(xi, xi+1) = d(x, y).

If for every (Xt, Yt) ∈ S, there exists a coupling (Xt, Yt)→ (Xt+1, Yt+1) and a factor α < 1 such that

E [d(Xt+1, Yt+1) | Xt, Yt] ≤ αd(Xt, Yt),

then this coupling can be extended to an α-contractive coupling on the whole Ω.

1.2. Relationship between M and MB. We state here how to derive the mixing rate of M
with the mixing rate ofMB in hand. This comparison technique is the so-called “canonical path”
introduced by Jerrum and Sinclair [JS96], and we use a version stated in Randall and Tetali [RT98].

Theorem 4 (Theorem 3 in [RT98]). Let C and C̃ be two reversible Markov chains on the same state
space Ω and having the same stationary distribution π. Let E(C) be the set of transitions of C and
E(C̃) be the set of transitions in C̃.

Suppose that for each transition (x, y) ∈ E(C̃), there is a path γx,y : x = x0, . . . , xk = y of
transitions (xi, xi+1) in E(C). For a transition (u, v) ∈ C, let

Γ(u, v) :=
{
(x, y) ∈ E(C̃)

∣∣∣ (u, v) ∈ γx,y

}
.

Define the quantity

A := max
(u,v)∈E(C)

1

π(u)C(u, v)
∑

(x,y)∈Γ(x,y)

|γx,y|π(x)C̃(x, y)

where |γx,y| is the length of the path γx,y and the quantities C(u, v) = PrC [Xt+1 = v | Xt = u],
C̃(x, y) = PrC̃ [Xt+1 = y | Xt = x] are transition probabilities in Markov chains C, C̃ respectively.
Then for every ε ∈ (0, 1), the mixing rate τ(C, ε) of C can be upper bounded by the mixing rate τ(C̃, ε)
as

τ(C, ε) ≤ 4 log(1/(ε · πmin))

log(1/2ε)
·A · τ(C̃, ε)

where πmin = minx∈Ω π(x).

2. Monotone Coupling and Rapid Mixing of M and MB

Now we construct a monotone coupling for (Xt, Yt) to apply the path coupling theorem. However,
the existence of such a monotone coupling is not trivial to see. We establish some properties of
k-heights and the block dynamics at first and construct a monotone coupling according to these
properties. In the end, we analyze the contraction of this monotone coupling and prove the mixing
rate ofMB and leading to the rapid mixing ofM.

2.1. Properties of k-heights and block divergence. The most important property of the block
dynamics is the stochastic dominance. We offer a partial order on Ω defined as X ≤ Y if X(v) ≤ Y (v)
for every v ∈ V . We say U ⊆ Ω is an upset if x ∈ U then y ∈ U for every x ≤ y ∈ Ω. For two
probability distributions µ1, µ2 on Ω, we say µ1 stochastically dominated by µ2 if µ1(U) ≤ µ2(U) for
every upset U ⊆ Ω.

The following theorem can be viewed as a discrete version of a theorem by Strassen.
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Theorem 5. Let µ1 and µ2 be two probability distributions over Ω such that µ1 is stochastically
dominated by µ2. Then there exists a joint distribution λ of µ1 and µ2 on Ω× Ω satisfying that if
λ(x, y) > 0, then x ≤ y.

To describe the mixing rate of MB, the following concept named block divergence plays a critical
role. We call a pair (X,Y ) ∈ Ω × Ω a cover pair if X ≤ Y and dH(X,Y ) = 1. That is to say, X
and Y only differ at exactly one vertex v ∈ V and Y (v) = X(v) + 1. Let B ∈ B be some block. If
v ∈ ∂B, the sets of admissible fillings ΩB|X and ΩB|Y might be different. The uniform distributions
U(ΩB|X) and U(ΩB|Y ) too. We view U(ΩB|X) and U(ΩB|Y ) as two distributions on ΩB. Then by
Theorem 5 there exists a joint distribution λB,X,Y on ΩB × ΩB , which is exactly a joint distribution
on ΩB|X × ΩB|Y .

To show the rapid mixing of MB, when the next state (X ′, Y ′) is drawn from λB,X,Y , the
expectation of d(X ′, Y ′) is of great importance. Define the block divergence EB,v for every B ∈ B
and v ∈ ∂B as

EB,v := max
(X,Y )∈Ω×Ω a cover pair,Y (v)=X(v)+1

E(X′,Y ′)∼λB,X,Y

[
dH(X ′, Y ′)

]
.

An immediate question is how to compute E(X′,Y ′)∼λB,X,Y
[dH(X ′, Y ′)]. The following lemma

gives an answer. For an admissible filling σ ∈ ΩB, let w(σ) :=
∑

v∈V σ(v) be its weight.

Lemma 6. Let (X,Y ) ∈ Ω× Ω be a cover pair and B ∈ B be some block. Then it holds that

E(X′,Y ′)∼λB,X,Y

[
dH(X ′, Y ′)

]
= Eσ∼U(ΩB|Y ) [w(σ)]−Eσ∼U(ΩB|X) [w(σ)] .

The proof of Lemma 6 comes directly from the definition after noting that X ′ ≤ Y ′ by Theorem 5.

2.2. Stochastic dominance in block chains. Now we state the most important property of
U(ΩB|X) and U(ΩB|Y ) when (X,Y ) is a cover pair. We will make use of the Ahlswede-Daykin four
functions theorem.

Lemma 7 (Four functions theorem). Let D be a distributive lattice and f1, f2, f3, f4 : D → R≥0

such that for all a, b ∈ D,
f1(a)f2(b) ≤ f3(a ∨ b)f4(a ∧ b).

Then for all A,B ⊆ D,
f1(A)f2(B) ≤ f3(A ∨B)f4(A ∧B)

where fi(A) =
∑

a∈A fi(a), A ∨B = {a ∨ b | a ∈ A, b ∈ B} and A ∧B = {a ∧ b | a ∈ A, b ∈ B}.

Lemma 8. Let X,Y ∈ Ω, X ≤ Y be two k-heights of G = (V,E) and B ⊆ V be a block. Let D be
the smallest distributive sublattice of ΩB containing ΩB|X ∪ ΩB|Y . Then ΩB|X forms a downset and
ΩB|Y forms an upset.

Proof. By symmetry, we prove that ΩB|X forms a downset in D. That is to say, for g, h ∈ D, g ≤ h,
if h ∈ ΩB|X then g ∈ ΩB|X .

Suppose that g /∈ ΩB|X . Since g ∈ ΩB , we must have |g(v)−X(v′)| ≥ 1 for two adjacent vertices
v ∈ B and v′ ∈ ∂B. Since we know h ∈ ΩB|X , it holds that g(v) ≤ h(v) ≤ X(v′) + 1 so that

g(v) < X(v′)− 1.

For every f ∈ ΩB|X , we know that f(v) ≥ X(v′)− 1 by definition. Also for every f ∈ ΩB|Y we have
f(v) ≥ Y (v′)− 1 and thus f(v) ≥ X(v′)− 1 by X ≤ Y . Therefore,

min
f∈D

f(v) = min
{
f(v)

∣∣ f ∈ ΩB|X ∪ ΩB|Y
}
≥ X(v′)− 1 > g(v).

This leads to a contradiction to g ∈ D. □

Then we are ready to introduce stochastic dominance in block chains.
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Proposition 9. Let X,Y ∈ Ω, X ≤ Y be two k-heights of G = (V,E) and B ⊆ V be a block. Then
U(ΩB|X) is stochastic dominated by U(ΩB|Y ) on ΩB.

Proof. Let D be the smallest distributive lattice of ΩB|X ∪ΩB|Y . We consider U(ΩB|X) and U(ΩB|Y )
on D. Then we want to show that for every upset U ⊆ D,

0 ≤ U(ΩB|Y )(U)− U(ΩB|X)(U) =

∣∣U ∩ ΩB|Y
∣∣∣∣ΩB|Y

∣∣ −
∣∣U ∩ ΩB|X

∣∣∣∣ΩB|X
∣∣ .

We define the four functions as

f1(h) := 1
[
h ∈ U ∩ ΩB|X

]
, f2(h) := 1

[
h ∈ U ∩ ΩB|Y

]
,

f3(h) := 1
[
h ∈ U ∩ ΩB|Y

]
, f4(h) := 1

[
h ∈ U ∩ ΩB|X

]
.

We aim to verify that for every g, h ∈ D,

f1(h)f2(g) ≤ f3(h ∨ g)f4(h ∧ g).

When f1(h)f2(g) = 0, the inequality holds trivially. Then we assume that f1(h) = f2(g) = 0, i.e.,
h ∈ U∩ΩB|X and g ∈ ΩB|Y . By properties from Lemma 8, we conclude that f3(h∨g) = f4(h∧g) = 1.
Then by Lemma 7, it holds that

0 ≤ f3(D)f4(D)− f1(D)f2(D) =
∣∣U ∩ ΩB|Y

∣∣ · ∣∣ΩB|X
∣∣− ∣∣U ∩ ΩB|X

∣∣ · ∣∣ΩB|Y
∣∣.

Then we yield the inequality we need. □

2.3. Monotone coupling for block dynamics. Now we are ready to construct a monotone
coupling forMB. To apply Theorem 3, we define

Ω′ := {(X,Y ) ∈ Ω× Ω | (X,Y ) is a cover pair} .

Then we only construct the monotone coupling on S and extend it to the whole space.

Algorithm 3: monotone coupling (Xt, Yt)t≥0 ofMB;
input : a pair of (Xt, Yt) ∈ Ω× Ω;
output : a pair of (Xt+1, Yt+1) ∈ Ω× Ω meaning a step of monotone coupling;

1 sample p ∈ [0, 1] uniformly at random;
2 if p ≤ 1

2 then
3 (Xt+1, Yt+1)← (Xt, Yt);
4 else
5 if dH(Xt, Yt) ≤ 1 then
6 sample B ∈ B uniformly at random;
7 if Xt(v) = Yt(v) for all v ∈ ∂B then
8 sample σ ∼ U(ΩB|Xt

);
9 (Xt+1, Yt+1)← ([Xt|σ], [Yt|σ]);

10 else
11 obtain λ = λB,Xt,Yt by Theorem 5;
12 sample (σX , σY ) ∼ λ;
13 (Xt+1, Yt+1)← ([Xt|σX ], [Yt|σY ]);
14 else
15 define (Xt+1, Yt+1) using path coupling theorem;

16 return (Xt+1, Yt+1).
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It is not hard to verify that the coupling we construct is a proper coupling ofMB on Ω. Also by
Theorem 5, the coupling is trivially monotone.

Lemma 10. Define the quantity α as for every v ∈ V ,

1− 1

2|B|

|B ∈ B | v ∈ B| −
∑

B∈B,v∈∂B
(EB,v − 1)

 ≤ α.

Then for every (X,Y ) ∈ Ω′ and the transition (X ′, Y ′) after the monotone coupling, it holds that

E
[
dH(X ′, Y ′)

∣∣ (X,Y )
]
≤ αdH(X,Y ).

Proof. Let Y (v) = X(v) + 1 for some v ∈ V and X(w) = Y (w) for every w ∈ V \ {v}. We study
the case p ≥ 1

2 since the distance does not change when p ≤ 1/2.
When v ∈ B, then X(w) = Y (w) for every w ∈ ∂B. By definition, we know that X ′ = Y ′ and

thus dH(X ′, Y ′) = 0. When v ∈ ∂B, by the definition of EB,v, it holds that

E
[
dH(X ′, Y ′)

∣∣ v ∈ ∂B
]
≤ EB,v.

When v /∈ (B ∪ ∂B), then we know that dH(X ′, Y ′) = 1. Putting all things together, we obtain

E
[
dH(X ′, Y ′)

]
≤ 1

2
+

1

2

(∑
B∈B,v∈∂B EB,v

|B|
+

(
1− |B ∈ B | v ∈ B ∨ v ∈ ∂B|

|B|

))

= 1− 1

2|B|

|B ∈ B | v ∈ B| −
∑

B∈B,v∈∂B
(EB,v − 1)

 ≤ α.

□

Then we conclude the main result of k-heights on G = (V,E).

Theorem 11. Let G = (V,E) be a finite graph and B be a finite family of blocks such that
∪B∈BB = V . If there exists a factor α < 1 such that for all v ∈ V ,

1− 1

2|B|

|B ∈ B | v ∈ B| −
∑

B∈B,v∈∂B
(EB,v − 1)

 ≤ α,

then for the mixing time τ(M, ε) of the up-down random walk on k-heights of G, we have

τ(M, ε) ≤ cB,k ·

(
|V | log (1/ε) + |V |2 log (k + 1)

)
· log (k|V |/ε)

log (1/2ε)

where m := maxv∈V |B ∈ B | v ∈ B| and b := maxB∈B|B| and

cB,k :=
8 · bmk(k + 1)b

(1− α)|B|
.

Proof. Since 1− 1
2|B|

(
|B ∈ B | v ∈ B| −

∑
B∈B,v∈∂B(EB,v − 1)

)
≤ α, by Lemma 10 and Theorem 3,

it holds that the monotone coupling is α-contractive on Ω. Therefore, by Theorem 2, the mixing
rate τ(MB, ε) of the block dynamicsMB can be upper bounded by

τ(MB, ε) ≤
log (k|V |/ε)

1− α

together with the observation dmax = k · |V |.
To bound the mixing rate of M, we use the Markov chain comparison Theorem 4. Let b :=

maxB∈B|B| and let X → Y be a transition in MB. Then there exists a block B ∈ B such that
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the two k-heights X and Y only differ at B. Note that there exists a shortest path γX,Y of length
|γX,Y | = dH(X,Y ) ≤ k|B| ≤ k · b using transitions in M. We could only choose γX,Y of length
dH(X,Y ) since only values on vertices in B will change.

For every B ∈ B, we use the notationMB(·, · | B) to denote the transition probabilities conditional
on p ≥ 1

2 and the picked transition block B ∈ B. For X ≠ Y , by the law of total probability, it holds
that

MB(X,Y ) =
1

2|B|
∑
B∈B
MB(X,Y | B).

Now fix some (W,Z) in transitions ofM which is not a loop. Let v be the vertex on which W
and Z differ. Then the probability is

M(W,Z) =
1

4|V |
.

We consider the set
Γ(W,Z) := {(X,Y ) ∈ E(MB) | (W,Z) ∈ γX,Y } .

Let (X,Y ) ∈ Γ(W,Z) and B be a block withMB(X,Y | B) > 0. Observe that X and Y only differ
at B. Moreover, since (W,Z) ∈ γX,Y , it holds that X(v) ̸= Y (v) and v ∈ B. For any arbitrary block
B ∈ B, observe that ∑

(X,Y )∈Γ(W,Z)

MB(X,Y | B) ≤
∑

X′,Y ′∈ΩB

1

|ΩB|
= |ΩB| ≤ (k + 1)b.

Then we know that ∑
(X,Y )∈Γ(W,Z)

MB(X,Y ) ≤ 1

2|B|
∑

B∈B,v∈B

∑
(X,Y )∈Γ(W,Z)

MB(X,Y | B)

≤ |{B ∈ B | v ∈ B}|
2|B|

(k + 1)b.

Now we consider the quantity A(W,Z) defined as

A(W,Z) :=
1

π(W )M(W,Z)

∑
(X,Y )∈Γ(W,Z)

|ΓX,Y |π(X)MB(X,Y ).

Plugging all bounds into it, we obtain that

A(W,Z) ≤ 2|V | · bk(k + 1)b
|{B ∈ B | v ∈ B}|

|B|
.

Then we obtain the desired upper bound of the mixing rate τ(M, ε). □

The following corollary is easier to use.

Corollary 12. Let G = (V,E) be a finite graph and B be a family of blocks such that ∪B∈BB = V .
Furthermore, assume that for every vertex v ∈ V , it occurs in at most m blocks and in at most s
boundaries of blocks. Let Emax := maxB∈B,v∈∂B EB,v. If there exists α < 1 such that

1− 1

2|B|
(m− s · (Emax − 1)) ≤ α,

then the mixing rate τ(M, ε) of the up-down random walk has an upper bound stated in Theorem 11.
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