
COMPUTATIONAL TREE FOR MULTI-SPIN SYSTEMS

1. Multi-spin Systems

In the field of statistical physics, multi-spin systems are a family of models describing the energy of
interactions between spins. We study on graphic multi-spin models, namely the Ising model (2-spin) or the
Potts model (𝑞-spin for 𝑞 ≥ 3).

Definition 1.1 (Multi-spin systems). A multi-spin system is a tuple S = (𝐺, 𝑞, {𝝀𝑣}𝑣∈𝑉 , {𝐴𝑒}𝑒∈𝐸) where
𝐺 = (𝑉, 𝐸) is a graph, 𝑞 ≥ 2 is a positive integer denoting the number of spins, 𝝀𝑣 ∈ R𝑞 is a vector
representing the energy of each spin for each 𝑣 ∈ 𝑉 and 𝐴𝑒 ∈ R𝑞×𝑞≥0 is a symmetric matrix representing the
energy of interactions between spins for each edge 𝑒 ∈ 𝐸 .

The energy or weight of a configuration 𝜎 ∈ [𝑞]𝑉 is defined by

𝑤S (𝜎) :=
∏
𝑣∈𝑉

𝝀𝑣 (𝜎(𝑣))
∏
{𝑢,𝑣}∈𝐸

𝐴{𝑢,𝑣} (𝜎(𝑢), 𝜎(𝑣))

The partition function of the system which denotes the energy of the whole system is defined by

𝑍S :=
∑︁

𝜎∈[𝑞 ]𝑉
𝑤S (𝜎) =

∑︁
𝜎∈[𝑞 ]𝑉

∏
𝑣∈𝑉

𝝀𝑣 (𝜎(𝑣))
∏
{𝑢,𝑣}∈𝐸

𝐴{𝑢,𝑣} (𝜎(𝑢), 𝜎(𝑣)).(1)

Another important term is the Gibbs distribution of S. Let 𝜇 = 𝜇S be the Gibbs distribution defined by

𝜇S (𝜎) :=
𝑤(𝜎)
𝑍S

, ∀𝜎 ∈ [𝑞]𝑉 .

1.1. Notations. At first, for a graph 𝐺 = (𝑉, 𝐸), we give an order to 𝑉 . Then there exists a natural order on
𝐸 extended by the order on 𝑉 .

An instance of a 𝑞-spin system with a pinning is a tuple (S,Λ, 𝜎Λ) where Λ ⊆ 𝑉 is the frozen vertex set
and 𝜎Λ ∈ [𝑞]Λ. The frozen vertex set Λ together with 𝜎Λ is called a pinning. We note here that 𝜎Λ encodes
the information of the frozen vertices Λ and simply use 𝜎Λ to denote the pinning. The weights, partition
function and Gibbs distribution of Φ are defined similarly to the multi-spin system denoted by 𝑤

𝜎Λ

S , 𝑍𝜎Λ

S and
𝜇
𝜎Λ

S defined on [𝑞]𝑉\Λ. We say 𝜎Λ is a feasible pinning if 𝑍𝜎Λ

S > 0. We only consider feasible pinnings to
ensure the Gibbs distribution is well-defined. Let Ω𝜎Λ be the support of 𝜇𝜎Λ

S . For a subset 𝐵 ⊆ 𝑉 \ Λ, we
use 𝜇

𝜎Λ

S,𝐵 to denote the marginal distribution of 𝜇𝜎Λ

S projected to 𝐵 conditional on 𝜎Λ. When S is clear, we
drop the script S.

2. Self-avoiding Walk Tree and Correlation-decay Tree

To estimate the partition function of a multi-spin system S, Weitz [Wei06] proposed a structure named the
self-avoiding walk tree for the case 𝑞 = 2. Nair and Tetali [NT07] generalized the self-avoiding walk tree to
the correlation-decay tree for general multi-spin systems. A crucial property motivating the two structures is
the recursion for the marginal ratio. For an instance (S,Λ, 𝜎Λ) and a vertex 𝑣 ∈ 𝑉 , the marginal ratio of 𝑣 is
defined by

𝑅
𝜎Λ

S,𝑣 (𝜋𝑣 , 𝜌𝑣) :=
𝜇
𝜎Λ

S,𝑣 (𝜋𝑣)
𝜇
𝜎Λ

S,𝑣 (𝜌𝑣)
, ∀𝜋𝑣 , 𝜌𝑣 ∈ Ω𝜎Λ

𝑣 .(2)

For an instance (S = (𝐺 = (𝑉, 𝐸), 𝑞, {𝝀𝑣}𝑣∈𝑉 , {𝐴𝑒}𝑒∈𝐸),Λ, 𝜎Λ) and an unfrozen vertex 𝑣 ∈ 𝑉 \ Λ, let
𝑢1, . . . , 𝑢𝑚 be the neighbors of 𝑣 in 𝐺 in order. We define a new graph 𝐺𝑣 by making 𝑚 copies {𝑣1, . . . , 𝑣𝑚}
of 𝑣 and each 𝑣𝑖 has exactly a single edge to 𝑢𝑖. Fix two different feasible spins 𝜋𝑣 , 𝜌𝑣 ∈ Ω

𝜎Λ
𝑣 on 𝑣. For

each 𝑖 = 1, . . . , 𝑚, define the partial assignment (𝜌𝑣 ⊕ 𝜋𝑣) (𝑖) by assigning 𝜋𝑣 to 𝑣1, . . . , 𝑣𝑖−1 and 𝜌𝑣 to
𝑣𝑖+1, . . . , 𝑣𝑚. Then, for each 𝑖 = 1, . . . , 𝑚, define a new instance

(
S (𝑖) ,Λ(𝑖) , 𝜎Λ(𝑖)

)
as following:

1



2 COMPUTATIONAL TREE FOR MULTI-SPIN SYSTEMS

• S (𝑖) =
(
𝐺 (𝑖) = (𝑉 (𝑖) , 𝐸 (𝑖) ), 𝑞,

{
𝝀 (𝑖)𝑢

}
𝑢∈𝑉 (𝑖)

,

{
𝐴
(𝑖)
𝑒

}
𝑒∈𝐸 (𝑖)

)
where 𝐺 (𝑖) = 𝐺𝑣 \ {𝑣𝑖}, 𝝀 (𝑖)𝑢 = 𝝀𝑢 for

𝑢 ≠ 𝑣 𝑗 and 𝝀 (𝑖)𝑣 𝑗 = 𝝀1/𝑚
𝑣 𝑗 for each 𝑗 ≠ 𝑖, and 𝐴

(𝑖)
𝑒 = 𝐴𝑒 for 𝑒 ≠ {𝑣𝑖 , 𝑢𝑖} and 𝐴

(𝑖)
{𝑣𝑖 ,𝑢𝑖 } = 𝐴{𝑣,𝑢𝑖 } ;

• Λ(𝑖) = Λ ∪ {𝑣1, . . . , 𝑣𝑖−1, 𝑣𝑖+1, . . . , 𝑣𝑚};
• 𝜎Λ(𝑖) = 𝜎Λ ∪ (𝜌𝑣 ⊕ 𝜋𝑣) (𝑖) .

The following lemma illustrates the recursive form of the marginal ratio.

Lemma 2.1 ([NT07]). For a multi-spin instance (S,Λ, 𝜎Λ), a vertex 𝑣 ∈ 𝑉 \ Λ and 𝜋𝑣 , 𝜌𝑣 ∈ Ω
𝜎Λ
𝑣 , the

following recursion holds for the marginal ratio 𝑅
𝜎Λ

S,𝑣 (𝜋𝑣 , 𝜌𝑣):

𝑅
𝜎Λ

S,𝑣 (𝜋𝑣 , 𝜌𝑣) =
𝝀𝑣 (𝜋𝑣)
𝝀𝑣 (𝜌𝑣)

𝑚∏
𝑖=1

∑𝑞

𝑐=1 𝐴{𝑣,𝑢𝑖 } (𝜋𝑣 , 𝑐)𝑅
𝜎
Λ(𝑖)

S (𝑖) ,𝑢𝑖
(𝑐, 𝜌𝑣)∑𝑞

𝑐=1 𝐴{𝑣,𝑢𝑖 } (𝜌𝑣 , 𝑐)𝑅
𝜎
Λ(𝑖)

S (𝑖) ,𝑢𝑖
(𝑐, 𝜌𝑣)

Proof. Consider the following multi-spin system S′ =
(
𝐺′ = (𝑉 ′, 𝐸 ′),

{
𝝀′𝑢

}
𝑢∈𝑉 ′ , {𝐴𝑒}𝑒∈𝐸′

)
defined by:

• 𝐺′ = 𝐺𝑣;
• 𝝀′𝑣 𝑗 = 𝝀1/𝑚

𝑣 𝑗 for every 𝑗 = 1, . . . , 𝑚 and 𝝀′𝑢 = 𝝀𝑢 for 𝑢 ≠ 𝑣 𝑗 ;
• 𝐴′𝑒 = 𝐴𝑒 for 𝑒 ≠ {𝑣𝑖 , 𝑢𝑖} and 𝐴′{𝑣𝑖 ,𝑢𝑖 } = 𝐴{𝑣,𝑢𝑖 } .

Observe that
PS (𝜎(𝑣) = 𝜋𝑣 | 𝜎Λ)
PS (𝜎(𝑣) = 𝜌𝑣 | 𝜎Λ)

=
PS′ (𝜎(𝑣1) = 𝜋𝑣 , . . . , 𝜎(𝑣𝑚) = 𝜋𝑣 | 𝜎Λ)
PS′ (𝜎(𝑣1) = 𝜌𝑣 , . . . , 𝜎(𝑣𝑚) = 𝜌𝑣 | 𝜎Λ)

Then we consider the following marginal ratios:

𝑅𝑖 =
PS′ (𝜎(𝑣1) = 𝜋𝑣 , . . . , 𝜎(𝑣𝑖−1) = 𝜋𝑣 , 𝜎(𝑣𝑖) = 𝜋𝑣 , 𝜎(𝑣𝑖+1) = 𝜌𝑣 , . . . , 𝜎(𝑣𝑚) = 𝜌𝑣 | 𝜎Λ)
PS′ (𝜎(𝑣1) = 𝜋𝑣 , . . . , 𝜎(𝑣𝑖−1) = 𝜋𝑣 , 𝜎(𝑣𝑖) = 𝜌𝑣 , 𝜎(𝑣𝑖+1) = 𝜌𝑣 , . . . , 𝜎(𝑣𝑚) = 𝜌𝑣 | 𝜎Λ)

.

Trivially it holds that 𝑅𝜎Λ

S,𝑣 (𝜋𝑣 , 𝜌𝑣) =
∏𝑚

𝑖=1 𝑅𝑖 .
For each 𝑖 = 1, . . . , 𝑚, by definition it holds that 𝑅𝑖 is equal to the marginal ratio 𝑅

𝜎
Λ(𝑖)
S′ ,𝑣𝑖 (𝜋𝑣 , 𝜌𝑣) of

𝜎(𝑣𝑖) = 𝜋𝑣 and 𝜎(𝑣𝑖) = 𝜌𝑣 conditional on 𝜎Λ and (𝜋𝑣 ⊕ 𝜌𝑣) (𝑖) . Then we enumerate the value of 𝜎(𝑢𝑖) and
remove the edge {𝑣𝑖 , 𝑢𝑖}, obtaining that

𝑅
𝜎
Λ(𝑖)
S′ ,𝑣𝑖 (𝜋𝑣 , 𝜌𝑣) =

𝝀′𝑣𝑖 (𝜋𝑣)
𝝀′𝑣𝑖 (𝜌𝑣)

∑𝑞

𝑐=1 𝐴
′
{𝑣,𝑢𝑖 } (𝜋𝑣 , 𝑐)𝑅

𝜎
Λ(𝑖)

S (𝑖) ,𝑢𝑖
(𝑐, 𝜌𝑣)∑𝑞

𝑐=1 𝐴
′
{𝑣,𝑢𝑖 } (𝜌𝑣 , 𝑐)𝑅

𝜎
Λ(𝑖)

S (𝑖) ,𝑢𝑖
(𝑐, 𝜌𝑣)

=
𝝀𝑣𝑖 (𝜋𝑣)1/𝑚

𝝀𝑣𝑖 (𝜌𝑣)1/𝑚

∑𝑞

𝑐=1 𝐴{𝑣,𝑢𝑖 } (𝜋𝑣 , 𝑐)𝑅
𝜎
Λ(𝑖)

S (𝑖) ,𝑢𝑖
(𝑐, 𝜌𝑣)∑𝑞

𝑐=1 𝐴{𝑣,𝑢𝑖 } (𝜌𝑣 , 𝑐)𝑅
𝜎
Λ(𝑖)

S (𝑖) ,𝑢𝑖
(𝑐, 𝜌𝑣)

.

Hence we obtain the desired result. □

Remark 2.2. We remark here that when 𝑇 is a rooted tree and we aim to estimate the marginal ratio at the
root 𝑣, the recursion is of the following form: suppose that 𝑣 has 𝑚 subtrees 𝑇1, . . . , 𝑇𝑚, then

𝑅
𝜎Λ

T ,𝑣 (𝜋𝑣 , 𝜌𝑣) =
𝝀𝑣 (𝜋𝑣)
𝝀𝑣 (𝜌𝑣)

𝑚∏
𝑖=1

∑𝑞

𝑐=1 𝐴{𝑣,𝑢𝑖 } (𝜋𝑣 , 𝑐)𝑅
𝜎Λ𝑖

T𝑖 ,𝑢𝑖 (𝑐, 𝜌𝑣)∑𝑞

𝑐=1 𝐴{𝑣,𝑢𝑖 } (𝜌𝑣 , 𝑐)𝑅
𝜎Λ𝑖

T𝑖 ,𝑢𝑖 (𝑐, 𝜌𝑣)

where Λ𝑖 includes the frozen vertices in the subtree 𝑇𝑖 fixed to 𝜌𝑣 when we fix the spin at 𝑣 to be 𝜋𝑣 .

2.1. Weitz’s computational tree and correlation-decay tree. With Lemma 2.1 in hand, Nair and
Tetali [NT07] proposed a computational tree named the correlation-decay tree to estimate the partition
function of a multi-spin system. However, instead of introducing the correlation-decay tree directly, we first
introduce Weitz’s computational tree [Wei06] which can be viewed as a special case of the correlation-decay
tree when 𝑞 = 2.

For a graph 𝐺 = (𝑉, 𝐸) and a vertex 𝑣 ∈ 𝑉 , remember that we have an order on 𝐸 . We define a
self-avoiding walk tree 𝑇SAW(𝐺, 𝑣) rooted at 𝑣 as following.
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Definition 2.3 (Self-avoiding walk tree [Wei06]). For a graph𝐺 = (𝑉, 𝐸) and a vertex 𝑣 ∈ 𝑉 , the self-avoiding
walk tree 𝑇 = 𝑇SAW(𝐺, 𝑣) is a tree rooted at 𝑟 = 𝑟 (𝐺, 𝑣) where each internal node is associated with a
self-avoiding walk starting from 𝑣 and each leaf is associated with a self-avoiding walk with no expansion or
a self-avoiding walk with a edge closing a cycle on 𝐺 satisfying that node 𝑤 is the father of 𝑤′ if and only the
walk from 𝑤′ is extended by 𝑤 with a single-step walk.

Moreover, we label all leaves representing cycles of 𝑇 as occupied or unoccupied according to the following
law: for a leaf, we say it is occupied if and only if the edge closing the cycle is larger than that starting the
cycle.

For a node 𝑤 in the self-avoiding walk tree 𝑇 = 𝑇SAW(𝐺, 𝑣), it is natural to identify 𝑤 with a vertex
𝑣𝑤 on the original graph 𝐺. Fix a 2-spin system S = (𝐺 = (𝑉, 𝐸), 2, {𝝀𝑣}𝑣∈𝑉 , {𝐴𝑒}𝑒∈𝐸) and a vertex
𝑣 ∈ 𝑉 . We extend the 2-spin system S to the self-avoiding walk tree from 𝑣 on 𝐺. Let TSAW(S, 𝑣) :=(
𝑇 = (𝑉 (𝑇), 𝐸 (𝑇)), 2,

{
𝝀𝑇𝑤

}
𝑤∈𝑉 (𝑇 ) ,

{
𝐴𝑇
𝑒

}
𝑒∈𝐸 (𝑇 )

)
be the 2-spin system generated from S by:

• 𝑇 = 𝑇SAW(𝐺, 𝑣) be the self-avoiding walk tree from 𝑣 on 𝐺;
• 𝝀𝑇𝑤 = 𝝀𝑣𝑤 for each 𝑤 ∈ 𝑉 (𝑇);
• 𝐴𝑇

{𝑤,𝑧} = 𝐴{𝑣𝑤 ,𝑧𝑤 } for each {𝑤, 𝑧} ∈ 𝐸 (𝑇).
For a pinning 𝜎Λ, we extend it to a pinning on 𝑇 by fixing all nodes identified with 𝑢 ∈ 𝜎Λ with the
corresponding value in 𝜎Λ.

The following lemma shows that 𝑇SAW preserves the marginal ratio of the Gibbs distribution of a 2-spin
system.

Lemma 2.4 ([Wei06]). Fix a 2-spin system S = (𝐺 = (𝑉, 𝐸), 2, {𝝀𝑣}𝑣∈𝑉 , {𝐴𝑒}𝑒∈𝐸). For an instance
(S,Λ, 𝜎Λ) where Λ ⊆ 𝑉 is a frozen vertex subset and 𝜎Λ is a feasible pinning and a vertex 𝑣 ∈ 𝑉 \ Λ, let
T = TSAW(S, 𝑣) be the 2-spin system extended by S and 𝑣. Then it holds that

𝜇
𝜎Λ

T (𝜎(𝑣) = 1) = 𝜇
𝜎Λ

S (𝜎(𝑣) = 1).

Lemma 2.4 can be shown easily from the recursion on 𝑇SAW(𝐺, 𝑣) and the recursion on the original spin
system. For simplicity we omit it here.

In [Wei06], the author raised a question whether the method of the self-avoiding walk tree could be
generalized to multi-spin systems. Nair and Tetali [NT07] illustrates that the very difference between two-spin
systems and multi-spin systems lies in the recursion that in the binary spin model, one of the spin systems
was always the reference spin and the other was the subject of this recursion. To overcome this barrier, they
generalize the construction of 𝑇SAW(𝐺, 𝑣) and use a similar structure named correlation-decay tree by adding
some coupling lines on the self-avoiding walk tree.

Definition 2.5 (Coupling line [NT07]). A coupling line on a rooted tree is a virtual line connecting a vertex 𝑢

to some vertex 𝑣 in the subtree rooted at 𝑢. This line works as following: when one descends into the subtree
rooted at 𝑢 with assumed spin 𝑐, we freeze 𝑣 with the spin 𝑐.

Definition 2.6 (Correlation-decay tree [NT07]). Given a positive integer 𝑞 ≥ 2, fix a multi-spin system
S = (𝐺 = (𝑉, 𝐸), 𝑞, {𝝀𝑣}𝑣∈𝑉 , {𝐴𝑒}𝑒∈𝐸) and a vertex 𝑣 ∈ 𝑉 . Let 𝑇 = 𝑇SAW(𝐺, 𝑣) be the self-avoiding walk
tree from 𝑣 on 𝐺. For a feasible reference spin 𝑐, we define the correlation-decay tree 𝑇CD(𝐺, 𝑣, 𝑐) from
𝑇SAW by drawing coupling line from occupied leaves to their ancestors with the same identified vertex on 𝑇

and associating all unoccupied leaves with spin 𝑐.

We define the instance TCD(S, 𝑣, 𝑐) in a similar way to TSAW(S, 𝑣). Similar to Lemma 2.4, 𝑇CD(𝐺, 𝑣, 𝑐)
preserves the marginal ratio.

Lemma 2.7 ([NT07]). Fix a spin system S = (𝐺 = (𝑉, 𝐸), 𝑞, {𝝀𝑣}𝑣∈𝑉 , {𝐴𝑒}𝑒∈𝐸). For an instance
(S,Λ, 𝜎Λ) where Λ ⊆ 𝑉 is a frozen vertex subset and 𝜎Λ is a feasible pinning, a vertex 𝑣 ∈ 𝑉 \ Λ and a
feasible reference spin 𝜌𝑣 ∈ Ω𝜎Λ

𝑣 , let T = TCD(S, 𝑣, 𝜌𝑣) be the 𝑞-spin system extended by S, 𝑣 and 𝜌𝑣 . Then
it holds that

𝑅
𝜎Λ

T ,𝑣 (𝜋𝑣 , 𝜌𝑣) = 𝑅
𝜎Λ

S,𝑣 (𝜋𝑣 , 𝜌𝑣), ∀𝜋𝑣 ∈ Ω𝜎Λ
𝑣 .
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3. Spatial Mixing by Correlation-decay Tree

To estimate the partition function 𝑍S , the following spatial mixing property is crucial.

Definition 3.1 (Strong/weak spatial mixing). The Gibbs distribution 𝜇 of a multi-spin system S = (𝐺 =

(𝑉, 𝐸), 𝑞, {𝝀𝑣}𝑣∈𝑉 , {𝐴𝑒}𝑒∈𝐸) is said to have the strong spatial mixing property if there exists a constant
𝐶 > 0 such that for every Λ ⊆ 𝑉 , for each 𝑣 ∈ 𝑉 \ Λ and any pair of feasible pinnings 𝜎Λ, 𝜏Λ on Λ, it holds
that 

𝜇𝜎Λ

𝑣 − 𝜇𝜏Λ
𝑣




TV ≤ exp(−𝐶 · dist𝐺 (𝑣, Γ))(3)

where Γ ⊆ Λ stands for the subset of vertices that 𝜎Λ and 𝜏Λ differ.
Similarly, the Gibbs distribution 𝜇 of a multi-spin system S = (𝐺 = (𝑉, 𝐸), 𝑞, {𝝀𝑣}𝑣∈𝑉 , {𝐴𝑒}𝑒∈𝐸) is said

to have the weak spatial mixing property if there exists a constant 𝐶 > 0 such that for every Λ ⊆ 𝑉 , for each
𝑣 ∈ 𝑉 \ Λ and any pair of feasible pinnings 𝜎Λ, 𝜏Λ on Λ, it holds that

𝜇𝜎Λ

𝑣 − 𝜇𝜏Λ
𝑣




TV ≤ exp(−𝐶 · dist𝐺 (𝑣,Λ)).(4)

To relate the strong spatial mixing on the original graph 𝐺 and that on the correlation-decay tree
𝑇CD(𝐺, 𝑣, 𝑐), we formally introduce the following concepts for a collection of valid coupling lines and the
very strong spatial mixing on trees.

Fix a rooted tree 𝑇 with its root 𝑟. For a collection 𝐿 of virtual edges on 𝑇 , we say 𝐿 is a collection of
valid coupling lines if 𝐿 satisfies that: each line in 𝐿 joins a node to some node in the subtree under it; the
lower endpoints of the coupling lines are unique; no pair of lines form a nested pair or an interleaved pair, i.e.,
the endpoints do not lie on a single path.

Definition 3.2 (Very strong spatial mixing on trees [NT07]). Fix a rooted tree 𝑇 with its root 𝑟. Let
𝛿 : N→ R>0 be a decreasing function tending to 0 as 𝑛→∞. We say the distribution over the spin system
at the root 𝑣 of 𝑇 exhibits the very strong spatial mixing with rate 𝛿 if and only if for every feasible spin 𝜋𝑣 at
𝑣, every set of legal coupling lines 𝐿 on 𝑇 , every subset Λ ⊆ 𝑉 (𝑇) of nodes and any two feasible pinnings
𝜎Λ, 𝜏Λ on Λ, it holds that

|P𝑇 (𝜎(𝑣) = 𝜋𝑣 | 𝜎Λ, 𝐿) − P𝑇 (𝜎(𝑣) = 𝜋𝑣 | 𝜏Λ, 𝐿) | ≤ 𝛿(dist𝑇 (𝑣, Γ))(5)

where Γ ⊆ Λ is the set of nodes where 𝜎Λ and 𝜏Λ differ.

Some observations from statistical physics have shown that, when we investigate the uniqueness of the
Gibbs distribution on infinite graphs of maximum degree 𝑑, the infinite regular tree T𝑑 of maximum degree
𝑑 becomes the hardest case. In detail, the infinite regular tree T𝑑 is a rooted tree with its root 𝑣 satisfying that
each node except 𝑣 has exactly 𝑑 − 1 children and the root has 𝑑 ones. We consider the case that 𝝀𝑢 = 𝝀 for
all 𝑢 ∈ 𝑉 and 𝐴𝑒 = 𝐴 for all {𝑢, 𝑣} ∈ 𝐸 . For convenience, we assume a special spin 0 with 𝝀(0) = 𝛾 > 0 and
𝐴(0, 𝑐) = 𝜅 > 0 for each 𝑐 = 0, . . . , 𝑞 + 1.

From the view of spatial mixing, the following lemma shows that the very strong spatial mixing on the
infinite regular tree T𝑑 with an extra spin 0 implies the strong spatial mixing on graphs of maximum degree
𝑑 with same interactions.

Theorem 3.3 (Theorem 3.10 in [NT07]). Fix a positive integer 𝑑 ≥ 2. If the infinite regular tree T𝑑 exhibits
the very strong spatial mixing with rate 𝛿 for the spin system with 𝝀𝑢 = 𝝀 for all 𝑢 ∈ 𝑉 and 𝐴𝑒 = 𝐴 for all
𝑒 ∈ 𝐸 and a special spin 0 with 𝝀(0) = 𝛼 > 0 and 𝐴(0, 𝑐) = 𝛽 > 0, then the Gibbs distribution on graphs of
maximum degree 𝑑 with the same interactions exhibits the strong spatial mixing with rate 𝛿.

Proof. Let 𝑇Λ is the tree generated from 𝑇CD(𝐺, 𝑣, 𝑞) with a frozen vertex subset Λ. That is to say, when we
meet a frozen vertex, we stop the growth of the tree and prune it. Note that the tree 𝑇Λ does not depend on
the pinning on Λ. Then with a same manner in the proof of Lemma 2.7, it holds that:

|P𝐺 (𝜎(𝑣) = 𝜋𝑣 | 𝜎Λ) − P𝐺 (𝜎(𝑣) = 𝜋𝑣 | 𝜏Λ) | =
��P𝑇Λ (𝜎(𝑣) = 𝜋𝑣 | 𝜎Λ) − P𝑇Λ (𝜎(𝑣) = 𝜋𝑣 | 𝜏Λ)

��
for any two feasible configuration 𝜎Λ, 𝜏Λ on Λ.

Assume that Λ includes nodes pinned to 𝑞. Note that we can view 𝑇Λ as a subtree of T𝑑 . Let 𝜕 (𝑇Λ) be the
non-fixed boundary of 𝑇Λ, i.e., nodes in 𝑇Λ that are not pinned by Λ, are not the lower endpoints of a dotted
line, and have degree strictly less than 𝑏 + 1. Let Λ1 be the set of nodes in T𝑑 \ 𝑇Λ that is attached to one of
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the nodes in 𝜕 (𝑇Λ). Then we append Λ1 to TΛ to obtain a subtree TΛ
𝑑

of T. We fix the spins on Λ1 to 0. Then
by calculation, it holds that

P𝑇Λ (𝜎(𝑣) = 𝜋𝑣 | 𝜎Λ) = PTΛ
𝑑
(𝜎(𝑣) = 𝜋𝑣 | 𝜎Λ ∧ Λ1 ← 0 ∧ 𝑇Λ ̸← 0)

where the event 𝑇Λ ̸← 0 means that nodes in 𝑇Λ do not receive the spin 0. Then by the very strong spatial
mixing on T𝑑 with rate 𝛿, it holds that

|P𝐺 (𝜎(𝑣) = 𝜋𝑣 | 𝜎Λ) − P𝐺 (𝜎(𝑣) = 𝜋𝑣 | 𝜏Λ) |
=
��P𝑇Λ (𝜎(𝑣) = 𝜋𝑣 | 𝜎Λ) − P𝑇Λ (𝜎(𝑣) = 𝜋𝑣 | 𝜏Λ)

��
=

���PTΛ
𝑑
(𝜎(𝑣) = 𝜋𝑣 | 𝜎Λ ∧ Λ1 ← 0 ∧ 𝑇Λ ̸← 0) − PTΛ

𝑑
(𝜎(𝑣) = 𝜋𝑣 | 𝜏Λ ∧ Λ1 ← 0 ∧ 𝑇Λ ̸← 0)

���
≤ 𝛿(dist𝑇 (𝑣, Γ)). □
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