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1 Groups, Rings, and Fields
Firstly we introduce some basic definitions.

Definition 1.1 (groups). A group (𝐺, ·) is a tuple consist of a non-empty set 𝐺 and an operator · : 𝐺 ×𝐺 → 𝐺

satisfying:

1. Associativity: For all 𝛼, 𝛽,𝛾 ∈ 𝐺 , (𝛼𝛽)𝛾 = 𝛼 (𝛽𝛾).

2. Identity: There exists an element 𝜀 ∈ 𝐺 with 𝜀𝛼 = 𝛼𝜀 = 𝛼 for all 𝛼 ∈ 𝐺 .

3. Inverses: For all 𝛼 ∈ 𝐺 , there exists an element 𝛼−1 ∈ 𝐺 such that 𝛼𝛼−1 = 𝛼−1𝛼 = 𝜀.

Moreover, if 𝛼𝛽 = 𝛽𝛼 for all 𝛼, 𝛽 ∈ 𝐺 , we call (𝐺, ·) to be abelian or commutative.

Remark 1.2. We often use ’1’ to denote the identity. And when we use ’+’ to denote the operator, we usually use
’0’ to denote the identity and ’−𝛼 ’ to denote the inverse.

Example 1.3. (Z, +), (Q, +), (R, +), (C, +), (Q \ {0} , ·), (R \ {0} , ·) and (C \ {0} , ·) are groups (actually they are
all abelian groups).

(𝑀𝑛 (R), +) and (GL𝑛 (R), ·) are groups where𝑀𝑛 (R) = R𝑛×𝑛 and GL𝑛 (R) := {𝐴 ∈ 𝑀𝑛 (R) : det(𝐴) ≠ 0}.
Let 𝑍𝑛 := {0, 1, . . . , 𝑛 − 1} for all 𝑛 ∈ N>0. For modular operators + and ·, (Z𝑛, +) and (Z𝑝 \ {0} , ·) are groups

for all 𝑛 ∈ N>0 and prime number 𝑝 .

For the sake of simplicity, we define some notations here. For 𝑥 ∈ 𝐺 , we define 𝑥0 = 1, and for all 𝑛 ≥ 1,
let 𝑥𝑛 := 𝑥𝑛−1 · 𝑥 = 𝑥 · 𝑥𝑛−1. For 𝑛 < 0, we define 𝑥−𝑛 := (𝑥𝑛)−1 = (𝑥−1)𝑛 . It’s not hard to see for all 𝑛,𝑚 ∈ N,
(𝑥𝑛)𝑚 = (𝑥𝑚)𝑛 = 𝑥𝑛𝑚 .

Order of a group and an element

For a finite group (𝐺, ·), we define its order 𝑜 (𝐺) as 𝑜 (𝐺) := |𝐺 |. With some abuse, for an element 𝛼 ∈ 𝐺 , we
define its order 𝑜 (𝛼) as: if there exists 𝑛 ∈ N>0, 𝛼𝑛 = 1, then 𝑜 (𝛼) = min {𝑛 ∈ N>0 : 𝛼𝑛 = 1}; otherwise 𝑜 (𝛼) = ∞.

It is not hard to see, if |𝐺 | < ∞, then for all 𝛼 ∈ 𝐺 , 𝑜 (𝛼) < ∞.

Subgroups

Definition 1.4 (subgroups). Given a group (𝐺, ·), for 𝑆 ⊂ 𝐺 , we call (𝑆, ·) is a subgroup of (𝐺, ·) if (𝑆, ·) is a
group. We write it as 𝑆 < 𝐺 .

Remark 1.5. Note that the class of subgroups is not closed under the set product, e.g., for two subgroups 𝐻 , 𝐾 ,
the set product

𝐻𝐾 := {ℎ𝑘 : ∀ℎ ∈ 𝐻,𝑘 ∈ 𝐾}

is not necessarily a subgroup of 𝐺 .
We introduce a kind of subgroups named cyclic subgroups.

Definition 1.6 (cyclic subgroups). Given a group (𝐺, ·) and 𝛼 ∈ 𝐺 , the cyclic subgroup (𝛼) is defined as

(𝛼) := {𝛼𝑛 : 𝑛 ∈ N} .

We call this group as the cyclic subgroup of 𝐺 generated by 𝛼 . When 𝐺 is (𝛼), we say 𝐺 is cyclic.

Corollary 1.7. If 𝑜 (𝐺) is a prime, then 𝐺 is cyclic.

For 𝐺 = (𝑎) with 𝑜 (𝑎) = 𝑛, it holds that for every 𝑘 ∈ N>0,

𝑜 (𝑎𝑘 ) = 𝑛

(𝑛, 𝑘) .
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1.1 Cosets and Lagrange’s Theorem
Given a group 𝐺 and 𝐻 < 𝐺 , we define a relation ∼ on 𝐺 by: for all 𝛼, 𝛽 ∈ 𝐺 , we say 𝛼 ∼ 𝛽 if and only if
𝛼−1𝛽 ∈ 𝐻 . It’s not hard to verify ∼ is an equivalence relation.

Based on ∼, we introduce the definition of cosets.

Definition 1.8 (left cosets). For 𝛼 ∈ 𝐺 , the left coset 𝛼𝐻 is defined as

𝛼𝐻 := {𝛼ℎ : ℎ ∈ 𝐻 } .

Definition 1.9 (right cosets). For 𝛼 ∈ 𝐺 , the right coset 𝐻𝛼 is defined as

𝐻𝛼 := {ℎ𝛼 : ℎ ∈ 𝐻 } .

Under ∼, it is obvious to see the equivalence class of 𝛼 is 𝛼𝐻 (𝛼 ∼ 𝛽 ⇐⇒ 𝛼−1𝛽 ∈ 𝐻 ⇐⇒ 𝛽 ∈ 𝛼𝐻 ), thus
leading to the statement that 𝛼 ∼ 𝛽 ⇐⇒ 𝛼𝐻 = 𝛽𝐻 . Then we can partition 𝐺 as

𝐺 =
⋃
𝛼∈𝐺

𝛼𝐻 .

Consider the mapping 𝜑 : 𝐻 → 𝛼𝐻,ℎ ↦→ 𝛼ℎ. It can be verified that 𝜑 is a bijection. Then it holds that, if 𝐺
is finite, |𝐻 | = |𝛼𝐻 |.

Theorem 1.10 (Lagrange’s Theorem). For a finite group 𝐺 and 𝐻 < 𝐺 , it holds that |𝐻 | | |𝐺 | .

Then it is safe to introduce the index of 𝐻 .

Definition 1.11 (index). For a finite group 𝐺 and 𝐻 < 𝐺 , we define the index of 𝐻 as

(𝐺 : 𝐻 ) := |𝐺 |/|𝐻 |.

Moreover, we use 𝐺/𝐻 to denote the collection of all distinct left cosets of 𝐻 .

Normal subgroups

Consider the set 𝐺/𝐻 , we want to define a proper operator ∗ on it such that (𝐺/𝐻, ∗) is a new group. The goal
is:

𝛼𝐻 ∗ 𝛽𝐻 = 𝛼𝛽𝐻 .

A natural idea is to let ∗ to be the set product,
Note that, if for all 𝛽 ∈ 𝐻 , 𝐻𝛽 = 𝛽𝐻

𝛼𝐻𝛽𝐻 = 𝛼𝛽𝐻𝐻 = 𝛼𝛽𝐻 .

Then (𝐺/𝐻, ∗) is a proper group. Then it motivates us to investigate such subgroups.

Definition 1.12 (normal subgroups). We say a subgroup𝐻 < 𝐺 is normal if and only if for all 𝛼 ∈ 𝐻 , 𝛼𝐻 = 𝐻𝛼 .
We write it as 𝐻 ▷𝐺 .

Corollary 1.13. If 𝐺 is an abelian group and 𝐻 < 𝐺 , then 𝐻 ▷𝐺 .

1.2 Euler’s 𝜙 function
Now we show a typical application of groups. For 𝑛 ∈ N>0, define the Euler’s 𝜙 function as

𝜙 (𝑛) := |{𝑖 ∈ [𝑛] : 𝑖 ⊥ 𝑛}|.

It is not hard to show that

𝜙 (𝑚1𝑚2) = 𝜙 (𝑚1)𝜙 (𝑚2),∀(𝑚1,𝑚2) = 1.

By definition, 𝜙 (𝑝𝑛) = 𝑝𝑛−1 (𝑝 − 1) for all prime 𝑝 and 𝑛 ≥ 1.
Now we consider the group (Z∗𝑛, ·) where Z∗𝑛 := {𝛼 ∈ Z𝑛 : (𝛼, 𝑛) = 1}.
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Theorem 1.14 (Euler’s Theorem). For all 𝛼 ∈ Z∗𝑛 , it holds that

𝛼𝜙 (𝑛) = 1.

Proof. Since Z∗𝑛 is finite, 𝑜 (𝛼) is finite. Then the cyclic subgroup (𝛼) is a finite subgroup with cardinality 𝑜 (𝛼).
By Theorem 1.10, it holds that 𝑜 (𝛼) | |𝐺 | = 𝜙 (𝑛) Then 𝛼𝜙 (𝑛) = 1. □

Corollary 1.15 (Fermat’s Little Theorem). For all 𝛼 ∈ Z∗𝑝 with prime 𝑝 , it holds that

𝛼𝑝 = 𝛼.

1.3 Group homomorphism
Now we introduce a very important definition for groups.

Definition 1.16 (group homomorphism). Given two groups 𝐺,𝐻 , we say a mapping 𝜑 : 𝐺 → 𝐻 is a group
homomorphism if for all 𝛼, 𝛽 ∈ 𝐺 , 𝜑 (𝛼𝛽) = 𝜑 (𝛼)𝜑 (𝛽).

Moreover, when 𝜑 is bijective, we say 𝜑 is an isomorphism.

There are some trivial properties for group homomorphism.

• It holds that 𝜑 (1) = 1.

• For all 𝛼 ∈ 𝐺 , it holds that 𝜑 (𝛼−1) = 𝜑 (𝛼)−1.

For a group homomorphism 𝜑 , define its kernel as

ker(𝜑) := {𝛼 ∈ 𝐺 | 𝜑 (𝛼) = 1} .

Corollary 1.17. It holds that ker(𝜑) ▷𝐺 .

Proof. Firstly, it is not hard to see ker(𝜑) < 𝐺 . Now we show the kernel is normal.
For all 𝛼 ∈ 𝐺 , 𝛽 ∈ ker(𝜑), since 𝜑 is a group homomorphism,

𝜑 (𝛼−1𝛽𝛼) = 𝜑 (𝛼−1)𝜑 (𝛽)𝜑 (𝛼)
= 𝜑 (𝛼−1)𝜑 (𝛼) = 1.

Then it holds that 𝛼−1𝛽𝛼 ∈ ker(𝜑), which means
⋃
𝛼 𝛼

−1 ker(𝜑)𝛼 ⊆ ker(𝜑).
On the other hand, it holds that ker(𝜑) ⊆ ⋃

𝛼 𝛼
−1 ker(𝜑)𝛼 . Then we can show ker(𝜑) is normal. □

Since the kernel is a normal group, we can show (𝐺/ker(𝜑), ·) is a proper group.

Theorem 1.18 (First Isomorphism Theorem). Given a group homomorphism 𝜑 : 𝐺 → 𝐻 (without loss of gener-
ality assume that 𝜑 is surjective), the mapping 𝜑 ′ : 𝐺/ker(𝜑) → 𝐻 , 𝛼 ker(𝜑) ↦→ 𝜑 (𝛼) is a group isomorphism.

Proof. Firstly we prove the mapping 𝜑 ′ is well-defined. For 𝛼 ∼ 𝛽 (𝛼−1𝛽 ∈ ker(𝜑)), it holds that 𝜑 (𝛼−1𝛽) = 1,
thus leading to 𝜑 (𝛼) = 𝜑 (𝛽). Then it holds that 𝜑 ′ (𝛼 ker(𝜑)) = 𝜑 ′ (𝛽 ker(𝜑)), which means 𝜑 ′ is well-defined.

Since 𝜑 is a group homomorphism, by direct calculation, for all 𝛼, 𝛽 ∈ 𝐺 ,

𝜑 ′ (𝛼 ker(𝜑) · 𝛽 ker(𝜑)) = 𝜑 (𝛼𝛽 ker(𝜑))
= 𝜑 (𝛼𝛽)
= 𝜑 (𝛼)𝜑 (𝛽)
= 𝜑 ′ (𝛼 ker(𝜑))𝜑 ′ (𝛽 ker(𝜑)) .

Then we can show 𝜑 ′ is a group homomorphism. Since 𝜑 is surjective, it holds that 𝜑 ′ is surjective. And for
𝛼, 𝛽 ∈ 𝐺 , if 𝜑 ′ (𝛼 ker(𝜑)) = 𝜑 ′ (𝛽 ker(𝜑)), it holds that 𝜑 (𝛼) = 𝜑 (𝛽), which means 𝛼 ∼ 𝛽 . Then we can show that
𝜑 ′ is injective. Combining all above, we conclude 𝜑 ′ is a group isomorphism. □

Example 1.19. The mapping 𝜑 : Z→ Z𝑛 , 𝑧 ↦→ 𝑧mod𝑛 induces a group isomorphism 𝜑 ′ : Z/𝑛Z→ Z𝑛 .
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1.4 Rings
Now we introduce rings beyond the groups.

Definition 1.20 (rings). A ring (𝑅, +, ·) is a tuple consist of a non-empty set 𝑅 and two operators + : 𝑅 ×𝑅 → 𝑅

(addition), · : 𝑅 × 𝑅 → 𝑅 satisfying

• (𝑅, +) is an abelian group.

• Associativity: (𝛼𝛽)𝛾 = 𝛼 (𝛽𝛾) for all 𝛼, 𝛽,𝛾 ∈ 𝑅.

• Distributivity: For all 𝛼, 𝛽,𝛾 ∈ 𝑅,

(𝛼 + 𝛽)𝛾 = 𝛼𝛾 + 𝛽𝛾 and 𝛼 (𝛽 + 𝛾) = 𝛼𝛽 + 𝛼𝛾 .

There are some special families of rings.

• If there exists 1 ∈ 𝑅 such that, for all 𝑟 ∈ 𝑅, 𝑟 · 1 = 1 · 𝑟 = 𝑟 , then 1 is the identity and 𝑅 is a ring with
identity.

• If for all 𝛼, 𝛽 ∈ 𝑅, 𝛼𝛽 = 𝛽𝛼 , then 𝑅 is commutative.

• For 𝛼 ∈ 𝑅, if there exists 𝛽 ∈ 𝑅 such that 𝛼𝛽 = 𝛽𝛼 = 1, then we say 𝛼 is a unit. All units of 𝑅 form the unit
group of 𝑅.

• For 𝛼 ∈ 𝑅, if there exists 𝛽 ∈ 𝑅, 𝛽 ≠ 0 such that 𝛼𝛽 = 0, then we call 𝛼 a zero-divisor. If a commutative ring
𝑅 with identity has no non-zero zero-divisor, then we say 𝑅 is an integral domain.

We see a field as a special kind of ring.

Definition 1.21 (fields). A ring (𝐹, +, ·) with identity is called a field if (𝐹 \ {0} , ·) is an abelian group.

Example 1.22. Two typical fields are (Q, +, ·) and (Z𝑝 , +, ·).

Example 1.23. Given a field (or a ring) 𝐹 , define the polynomial ring over 𝐹 as

𝐹 [𝑥] :=
{

𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

����� 𝑛 ∈ N≥0, 𝑎𝑖 ∈ 𝐹
}
.

It’s not hard to verify (𝐹 [𝑥], +, ·) is a ring.

Sub-rings and sub-fields

Definition 1.24 (sub-rings). Given a ring 𝑅 and 𝑆 ⊆ 𝑅, 𝑆 ≠ ∅, we say 𝑆 is a sub-ring if (𝑆, +, ·) is a ring.

Remark 1.25. In some references, if 𝑅 is a ring with identity, 𝑆 must contain the identity (𝑝Z < Z in our sense).

Definition 1.26 (sub-fields). Given a field 𝐸 and 𝐹 ⊆ 𝐸, if 𝐹 is a field then we say 𝐹 is a sub-field of 𝐸. In this
case, we call 𝐸 is an extended field of 𝐹 .

Example 1.27. A typical example is (Q, +, ·) < (R, +, ·) < (C, +, ·).

1.5 Ring homomorphism
Similar to the group homomorphism, we can introduce the ring homomorphism.

Definition 1.28 (ring homomorphism). Given two rings 𝑅, 𝑆 , we say a mapping 𝜑 : 𝑅 → 𝑆 is a ring homomor-
phism if for all 𝛼, 𝛽 ∈ 𝑅

𝜑 (𝛼) + 𝜑 (𝛽) = 𝜑 (𝛼 + 𝛽) and 𝜑 (𝛼)𝜑 (𝛽) = 𝜑 (𝛼𝛽).
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Analogously we can define the kernel as

ker(𝜑) := {𝛼 ∈ 𝑅 | 𝜑 (𝛼) = 0} .

And also, we introduce the ideal which corresponds to normal groups.

Definition 1.29 (ideals). We say 𝐼 is an ideal of ring 𝑅 if 𝐼 is a sub-ring of 𝑅 and for all 𝑟 ∈ 𝑅, 𝑎 ∈ 𝐼 , 𝑎𝑟, 𝑟𝑎 ∈ 𝐼 .

Consider (𝑅/𝐼 , +, ·) where the operators are defined as for all 𝛼, 𝛽 ∈ 𝑅,

(𝛼 + 𝐼 ) + (𝛽 + 𝐼 ) := (𝛼 + 𝛽) + 𝐼 and (𝛼 + 𝐼 ) · (𝛽 + 𝐼 ) := (𝛼𝛽) + 𝐼 .

For the sake of simplicity, we use 𝛼 to denote the coset 𝛼 + 𝐼 . The following lemma shows us the motivation to
define the ideal.

Lemma 1.30. (𝑅/𝐼 , +, ·) is a ring if and only if 𝐼 is an ideal of 𝑅.

Proof. When (𝑅/𝐼 , +, ·) is a ring, it holds that for all 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐼 ,

0 = 0 · 𝑟 = 0 · 𝑟 = 𝑎 · 𝑟 = 𝑎𝑟,

which means 𝑎𝑟 ∈ 𝐼 . Similarly we can show 𝑟𝑎 ∈ 𝐼 . Thus we conclude 𝐼 is an ideal.
When 𝐼 is an ideal, it holds that for all 𝑟 ∈ 𝑅, 𝑎 ∈ 𝐼 , 𝑟𝑎, 𝑎𝑟 ∈ 𝐼 . Then for all 𝛼, 𝛽 ∈ 𝑅, 𝛼 ′ ∼ 𝛼 , 𝛽 ′ ∼ 𝛽 (𝛼 −𝛼 ′ ∈ 𝐼 ,

𝛽 − 𝛽 ′ ∈ 𝐼 ), it holds that

𝛼𝛽 − 𝛼 ′𝛽 ′ = (𝛼 − 𝛼 ′)𝛽 + 𝛼 ′ (𝛽 − 𝛽 ′) ∈ 𝐼 ,

which means 𝛼𝛽 = 𝛼 ′𝛽 ′. Then we can show the operators are well-defined. What remains to do is to show the
associativity and distributivity of ·, and it is not hard to verify them. □

Given 𝑋 ⊆ 𝑅, we say the minimal ideal containing 𝑋 is the ideal generated by 𝑋 , denoted by (𝑋 ). It might
be not easy to construct (𝑋 ) for general case. We only consider the case when 𝑅 is a commutative ring with
identity 1 ∈ 𝑅. Then by definition,

(𝑋 ) :=
{

𝑛∑︁
𝑖=1

𝑟𝑖𝑥𝑖

����� 𝑛 ∈ N, 𝑥𝑖 ∈ 𝑋, 𝑟𝑖 ∈ 𝑅
}
.

Example 1.31. For (Z, +, ·) and any prime number 𝑝 , it holds that (𝑝) = 𝑝Z. For (𝐹 [𝑥], +, ·) and 𝑓 (𝑥) ∈ 𝐹 [𝑥], we
have (𝑓 (𝑥)) = 𝑓 · 𝐹 [𝑥] = {𝑓 · 𝑔 | 𝑔 ∈ 𝐹 [𝑥]}.

For every single element 𝑥 ∈ 𝑅, it is not hard to show (𝑥) = 𝑅𝑥 . We call (𝑥) a principal ideal of 𝑅. If 𝑅 is an
integral domain and all ideas of 𝑅 are principal, we say 𝑅 is a principal ideal domain. (Z, +, ·) and (𝐹 [𝑥], +, ·) are
two typical principal ideal domains.

For a ring homomorphism 𝜑 : 𝑅 → 𝑆 , it is easy to verify that ker(𝜑) is an ideal of 𝑅. Then, analogous to
Theorem 1.18, we have the following theorem.

Theorem 1.32 (First Isomorphism Theorem). Given a ring homomorphism 𝜑 : 𝑅 → 𝑆 (without loss of generality
assume that 𝜑 is surjective), the mapping 𝜑 ′ : 𝑅/ker(𝜑) → 𝑆 , 𝛼 ker(𝜑) ↦→ 𝜑 (𝛼) is a ring isomorphism.

The proof of Theorem 1.32 is quite trivial directly from the definition.
For a ring 𝑅 and an ideal 𝐼 of 𝑅, if for all ideals 𝐽 of 𝑅, 𝐼 ⊆ 𝐽 ⊆ 𝑅 implies 𝐽 = 𝐼 or 𝐽 = 𝑅, then we call 𝐼 a

maximal ideal. In this case, 𝑅/𝐼 is a field.
For all 𝑎, 𝑏 ∈ 𝑅, if 𝑎𝑏 ∈ 𝐼 =⇒ 𝑎 ∈ 𝐼 or 𝑏 ∈ 𝐼 , then we call 𝐼 a prime ideal. It holds that in the ring (Z, +, ·), (𝑝)

is prime and maximal.
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1.6 Integral domain
Now we introduce some definitions in integral domain 𝑅.

• For 𝛼, 𝛽 ∈ 𝑅, if there exists 𝛾 ∈ 𝑅 such that 𝛽 = 𝛼𝛾 , then we say 𝛼 divides 𝛽 (𝛼 | 𝛽 ). If 𝛼 and 𝛾 are not units,
we say 𝛼 properly divides 𝛽 .

• For 𝛼, 𝛽 ∈ 𝑅, if there exists some unit 𝑢 such that 𝛽 = 𝛼𝑢, then we say 𝛼 and 𝛽 are associated (𝛼 ∼ 𝛽).

• For 𝛼 ∈ 𝑅, 𝛼 ≠ 0 and 𝛼 ∉ unit, if 𝛼 has no proper divisor, then we say 𝛼 is irreducible.

• For 𝜋 ∈ 𝑅, 𝜋 ≠ 0 and 𝜋 ∉ unit, if 𝜋 | 𝛼𝛽 =⇒ 𝜋 | 𝛼 or 𝜋 | 𝛽 , then we say 𝜋 is prime. Note that, every
prime element is irreducible.

• Let 𝛼, 𝛽 ∈ 𝑅. An element 𝑑 ∈ 𝑅 is called a greatest common divisor (gcd) of 𝛼 and 𝛽 if (i) 𝑑 | 𝛼 and 𝑑 | 𝛽 ;
(ii) for all 𝑒 | 𝛼 and 𝑒 | 𝛽 , 𝑒 | 𝑑 .
If 𝑑 is unit, we say 𝛼 and 𝛽 are relatively prime.

1.6.1 Unique factorization domain

Now we introduce a kind of integral domains.

Definition 1.33 (unique factorization domain). An unique factorization domain (UFD) 𝑅 is an integral domain
satisfying that, for all 𝛼 ∈ 𝑅:

• We can write 𝛼 = 𝑝1 . . . 𝑝𝑛 where 𝑝𝑖 is irreducible.

• If 𝛼 = 𝑝1 . . . 𝑝𝑛 = 𝑞1 . . . 𝑞𝑚 , then 𝑛 =𝑚 and 𝑝1 . . . 𝑝𝑛 is some permutation of 𝑞1 . . . 𝑞𝑛 .

Corollary 1.34. For an UFD 𝑅, every irreducible element is prime.

1.7 Characteristic of a ring
Let 𝑅 be a ring and 𝑟 ∈ 𝑅, we define

𝑛𝑟 = (𝑛 − 1)𝑟 + 𝑟,∀𝑛 ≥ 1

and (−𝑛)𝑟 = −𝑛𝑟 .
For a ring 𝑅, we define the char(𝑅) as the smallest positive integer𝑛 such that𝑛1 = 0 if exists and 0 otherwise.

It holds that for all 𝑟 ∈ 𝑅, 𝑛𝑟 = 0.
If char(𝑅) = 0, consider the mapping 𝜑 : Z → 𝑅, 𝑛 ↦→ 𝑛 · 1. It is easy to verify 𝜑 is a ring homomorphism

and it is injective. Then we say 𝑅 contains Z.
If char(𝑅) = 𝑝 where 𝑝 is prime, consider the mapping 𝜑 : Z → 𝑅, 𝑛 ↦→ 𝑛 · 1 and ker(𝜑) = (𝑝). Then we

show that 𝑅 contains Z/(𝑝) = Z𝑝 .

Theorem 1.35. For an integral domain 𝑅, char(𝑅) = 0 or char(𝑅) = 𝑝 for some prime number 𝑝 .

Proof. We prove the case char(𝑅) ≠ 0. Let 𝑟 = char(𝑅) and assume that 𝑟 = 𝑠𝑡 . Then it holds that

𝑟 · 1 = 𝑠𝑡 · 1 = (𝑠1) (𝑡1) = 0.

Since 𝑅 is an integral domain, we have 𝑠1 = 0 or 𝑡1 = 0. This means 𝑟 = 𝑠 or 𝑟 = 𝑡 . Then we conclude 𝑝 is
prime. □

For a field 𝐹 , if char(𝐹 ) = 𝑝 > 0, it holds that Z𝑝 ⊆ 𝐹 . Then we say Z𝑝 is a prime sub-field of 𝐹 . If F = 0,
consider the mapping 𝜑 : 𝑄 → 𝐹 , 𝑎/𝑏 ↦→ (𝑎1)/(𝑏1). Since ker𝜑 = {0}, it holds that 𝜑 is a homomorphism and
injection. This means 𝐹 contains 𝑄 . Then we say 𝑄 is a prime sub-field of 𝐹 .

There are some useful properties for a commutative ring 𝑅 with 1 and char(𝑅) = 𝑝 .

• For all 𝛼, 𝛽 ∈ 𝑅, (𝛼 ± 𝛽)𝑝𝑛 = 𝛼𝑝
𝑛 ± 𝛽𝑝𝑛 .
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1.8 Euclidean domain
For every 𝑎, 𝑏 ∈ Z, 𝑏 ≠ 0, there exists 𝑞, 𝑟 ∈ Z such that

𝑎 = 𝑞𝑏 + 𝑟, 𝑟 = 0 or |𝑟 | < |𝑏 |.

And it is easy to verify (𝑎, 𝑏) = (𝑏, 𝑟 ). Now we extend the definition to rings.

Definition 1.36 (Euclidean domain). We say a ring 𝑅 is an Euclidean domain if there exists 𝑣 : 𝑅 \ {0} → R
satisfying

• For 𝑎 ∈ 𝑅 \ {0}, 𝑣 (𝑎) ≥ 0.

• For 𝑎 ∈ 𝑅, 𝑏 ∈ 𝑅 \ {0}, there exists 𝑞, 𝑟 ∈ 𝑅 such that

𝑎 = 𝑞𝑏 + 𝑟, 𝑟 = 0 or 𝑣 (𝑟 ) < 𝑣 (𝑏).

Example 1.37. For a field 𝐹 , (𝐹 [𝑥], +, ·) is an Euclidean domain if we define 𝑣 (𝑓 ) := deg(𝑓 ). Note that in some
reference we define deg(0) = −∞.

Theorem 1.38. Every Euclidean domain is a principal ideal domain.

Proof. For an Euclidean domain 𝑅 and an ideal 𝐼 of 𝑅, we pick the element 𝑎 ∈ 𝐼 such that 𝑣 (𝑎) is smallest in 𝐼 .
Then for all 𝑏 ∈ 𝐼 , there exists 𝑞, 𝑟 ∈ 𝑅 such that

𝑏 = 𝑞𝑎 + 𝑟, 𝑟 = 0 or 𝑣 (𝑟 ) < 𝑣 (𝑎).

Since 𝑎, 𝑏 ∈ 𝐼 , it holds that 𝑟 ∈ 𝐼 . Since 𝑣 (𝑎) is minimal in 𝐼 , we obtain 𝑟 = 0. Then we can show 𝐼 = (𝑎). □
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2 Polynomials over Fields
For a field 𝐹 , consider (𝐹 [𝑥], +, ·). For all ideal 𝐼 ⊆ 𝐹 [𝑥], since 𝐹 [𝑥] is an Euclidean domain, it holds that
𝐼 = (𝑝 (𝑥)) for some 𝑝 (𝑥) ∈ 𝐹 [𝑥]. It is trivial that the units are 𝐹 \ {0}. For all 𝑓 , 𝑔 ∈ 𝐹 [𝑥], it holds that

(𝑓 , 𝑔) = 𝑓 · 𝐹 [𝑥] + 𝑔 · 𝐹 [𝑥] = {𝑎𝑓 + 𝑏𝑔 | 𝑎, 𝑏 ∈ 𝐹 [𝑥]} .

Then there exists 𝑝 ∈ 𝐹 [𝑥] such that (𝑓 , 𝑔) = (𝑝). Then it holds that 𝑝 | 𝑓 and 𝑝 | 𝑔 . On the other hand, for all
𝑟 | 𝑓 and 𝑟 | 𝑔 , it holds that 𝑟 | 𝑝 (since 𝑝 = 𝑎𝑓 + 𝑏𝑔 for some 𝑎, 𝑏 ∈ 𝐹 [𝑥]). Then we can show 𝑝 is the greatest
common divisor of 𝑓 , 𝑔.

Without loss of generality, assume that 𝑝 is monic (so the greatest common divisor is unique).
As an extension, for 𝑓1, . . . , 𝑓𝑛 ∈ 𝐹 [𝑥]. If (𝑓1, . . . , 𝑓𝑛) = 𝑝 , then there exist 𝑎1, . . . , 𝑎𝑛 ∈ 𝐹 [𝑥] such that∑︁

𝑖∈[𝑛]
𝑎𝑖 𝑓𝑖 = 𝑝.

2.1 The field independence of the greatest common divisor
For fields 𝐹 < 𝐾 , and for two polynomials 𝑓 , 𝑔 ∈ 𝐹 [𝑥] (also 𝑓 , 𝑔 ∈ 𝐾 [𝑥]), we denote the greatest common divisor
of 𝑓 and 𝑔 in 𝐹 by 𝑟𝐹 (𝑥) = (𝑓 , 𝑔) ∈ 𝐹 [𝑥], and similarly denote the one in 𝐾 by 𝑟𝐾 (𝑥) = (𝑓 , 𝑔) ∈ 𝐾 [𝑥]. Then,

𝑟𝐹 | 𝑓 , 𝑟𝐹 | 𝑔 =⇒ 𝑟𝐹 | 𝑟𝐾 .

Then it holds that 𝑟𝐹 = 𝑎𝑓 + 𝑏𝑔 ∈ 𝐾 [𝑥], which means 𝑟𝐾 | 𝑟𝐹 . Then it holds that 𝑟𝐹 = 𝑟𝐾 .

Corollary 2.1. 𝑓 , 𝑔 ∈ 𝐹 [𝑥] have a non-constant divisor in 𝐹 [𝑥] if and only if 𝑓 , 𝑔 have a non-constant divisor in
𝐾 [𝑥].

2.2 Roots and common roots
Now we consider the roots of a polynomial.

Theorem 2.2. For a field 𝐹 and 𝑓 ∈ 𝐹 [𝑥] with deg(𝑓 ) ≥ 1, there exists an extension 𝐸 of 𝐹 (𝐹 < 𝐸) such that for
some 𝑎 ∈ 𝐸, 𝑓 (𝑎) = 0.

Proof. Without loss of generality we assume that 𝑓 is irreducible. Firstly we prove the ideal (𝑓 ) is maximal. In
fact, assume that 𝐽 = (𝑔) for some 𝑔 ∈ 𝐹 [𝑥] such that (𝑓 ) ⊆ (𝑔) ⊆ 𝐹 [𝑥]. It holds that 𝑓 ∈ (𝑔), which means
𝑔 | 𝑓 . This means 𝑔 is unit or 𝑔 ∼ 𝑓 . Then we know 𝐽 = 𝐹 [𝑥] or 𝐽 = (𝑓 ). Thus we know (𝑓 ) is maximal.

Now, we let 𝐸 := 𝐹 [𝑥]/(𝑓 ). Consider the mapping 𝜑 : 𝐹 → 𝐸, 𝑎 ↦→ 𝑎 + (𝑓 ). Since ker𝜑 = 0, it holds that 𝜑 is
injective, which means 𝐹 < 𝐸. Assume that

𝑓 (𝑥) =
𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 , ∀0 ≤ 𝑖 ≤ 𝑛, 𝑎𝑖 ∈ 𝐹 .

Then we know

𝑓 (𝑥) =
𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

where 𝑎𝑖 = 𝑎𝑖 + (𝑓 ). Now we consider 𝑓 (𝑥 + (𝑓 )). This means

𝑓 (𝑥 + (𝑓 )) =
𝑛∑︁
𝑖=0

𝑎𝑖 (𝑥 + (𝑓 ))𝑖

=

𝑛∑︁
𝑖=0

(𝑎𝑖 + (𝑓 )) (𝑥 + (𝑓 ))𝑖

= 𝑓 (𝑥) + (𝑓 ) = 0.

□
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Corollary 2.3. For 𝑓 ∈ 𝐹 [𝑥] with deg(𝑓 ) = 𝑛, there exists 𝐸 > 𝐹 such that 𝑓 has 𝑛 roots on 𝐸.

Now we show the common root of two polynomials is strongly related with the common divisor. For two
polynomials 𝑓 , 𝑔, if 𝑓 (𝑎) = 0 and 𝑔(𝑎) = 0, then we say 𝑎 is the common root of 𝑓 , 𝑔.

Corollary 2.4. 𝑓 , 𝑔 have a non-constant common divisor 𝑑 if and only 𝑓 and 𝑔 have a common root on some
extended field.

If 𝑓 (𝑥) ∈ 𝐹 [𝑥] can be written as 𝑓 (𝑥) = 𝐶 (𝑥 − 𝑎1) . . . (𝑥 − 𝑎𝑛), then we say 𝑓 splits in 𝐹 .

2.3 Minimal polynomials
Let 𝐹 < 𝐸. For 𝑎 ∈ 𝐸, we say 𝑎 is algebraic over 𝐹 if 𝑎 is the root of some 𝑝 (𝑥) ∈ 𝐹 [𝑥]. Otherwise we say 𝑎 is
transcendental over 𝐹 .

Definition 2.5 (minimal polynomials). For an algebraic element 𝑎 over 𝐹 , we say a monic polynomial 𝑝 ∈ 𝐹 [𝑥]
is the minimal polynomial of 𝑎 if 𝑝 (𝑎) = 0 and deg(𝑝) is the smallest. We write it as 𝑝 = min(𝐹, 𝑎).

The following definitions are the equivalent.

• The monic irreducible 𝑝 ∈ 𝐹 [𝑥] with 𝑝 (𝑎) = 0.

• The monic 𝑝 ∈ 𝐹 [𝑥] satisfying for all 𝑓 ∈ 𝐹 [𝑥], 𝑓 (𝑎) = 0, 𝑝 | 𝑓 .

The ideal generated by 𝑝 is 𝐼 = {𝑓 | 𝑓 (𝑎) = 0}.

Definition 2.6. We say 𝛼, 𝛽 ∈ 𝐸 are conjugates over 𝐹 if they share the same minimal polynomial.

2.4 Extend a field
Now we discuss more about how to extend a field. Given a field 𝐹 , for 𝑓 ∈ 𝐹 [𝑥], we have already known that
(𝑓 ) is a maximal ideal if and only if 𝑓 is irreducible. When 𝑓 is irreducible, 𝐸 := 𝐹 [𝑥]/(𝑓 ) is a field and 𝐸 < 𝐹 .
Now we consider |𝐸 |.

Assume that |𝐹 | < ∞ and deg(𝑓 ) = 𝑛. Then it holds that

𝐸 = {𝑝 (𝑥) + (𝑓 ) | 𝑝 (𝑥) ∈ 𝐹 [𝑥]} .

Since 𝐹 [𝑥] is an Euclidean domain, we know

𝑝 (𝑥) = 𝑞(𝑥) 𝑓 (𝑥) + 𝑟 (𝑥)

which means 𝑝 (𝑥) − 𝑟 (𝑥) = 𝑞(𝑥) 𝑓 (𝑥) ∈ (𝑓 ). Then we obtain 𝑝 (𝑥) + (𝑓 ) = 𝑟 (𝑥) + 𝑓 (𝑥) where deg(𝑟 ) < deg(𝑓 ).
When 𝑟1 ≠ 𝑟2, it holds that 𝑟1 + (𝑓 ) ≠ 𝑟2 + (𝑓 ). Thus we can show that

|𝐸 | = |𝐹 |𝑛 .

Example 2.7. Let 𝐹 = 𝐹2 = {0, 1}. Consider 𝑓 (𝑥) = 𝑥2 + 𝑥 + 1. Then we can construct a new field 𝐹22 = 𝐹2 [𝑥]/(𝑓 ).

2.5 Multiple roots
In this part, we discuss the multiple roots of a polynomial. Given 𝑓 (𝑥) ∈ 𝐹 [𝑥], 𝛼 is a root of 𝑓 (𝛼 might be
in an extended field of 𝐹 not necessarily in 𝐹 ). The multiplicity of 𝛼 is the largest natural number 𝑛 such that
(𝑥 − 𝛼)𝑛 | 𝑓 (𝑥). If 𝑛 > 1, we say 𝛼 is a multiple root. Otherwise we say 𝛼 is a simple root of 𝑓 .

Definition 2.8. Given an irreducible polynomial 𝑓 (𝑥) ∈ 𝐹 [𝑥], we say 𝑓 (𝑥) is separable if it has no multiple
roots. Otherwise we say 𝑓 (𝑥) is inseparable.
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It’s necessary to introduce the derivative of polynomial. For 𝑓 (𝑥) = ∑𝑛
𝑖=0 𝑎𝑖𝑥

𝑖 , define its derivative 𝑓 ′ (𝑥) as

𝑓 ′ (𝑥) =
𝑛∑︁
𝑖=1

𝑖𝑎𝑖𝑥
𝑖−1.

It’s not hard to verify

(𝑎𝑓 )′ = 𝑎𝑓 ′, (𝑓 ± 𝑔)′ = 𝑓 ′ ± 𝑔′, (𝑓 𝑔)′ = 𝑓 ′𝑔 + 𝑓 𝑔′, (𝑔𝑛)′ = 𝑛𝑔𝑛−1𝑔′ .

Assume that (without loss of generality suppose that 𝑓 is monic),

𝑓 (𝑥) = (𝑥 − 𝑎1)𝑒1 . . . (𝑥 − 𝑎𝑛)𝑒𝑛

and 𝑎1, . . . , 𝑎𝑛 are different.

Theorem 2.9. 𝑓 (𝑥), 𝑓 ′ (𝑥) share a common root if and only if there exists 𝑒𝑖 > 1.

Proof. When 𝑓 (𝑥), 𝑓 ′ (𝑥) share a common root. Assume that 𝑓 (𝑎𝑖 ) = 𝑓 ′ (𝑎𝑖 ) = 0 and 𝑒𝑖 = 1. Then there exists
𝑝 (𝑥) ∈ 𝐹 [𝑥] such that

𝑓 (𝑥) = (𝑥 − 𝑎𝑖 )𝑝 (𝑥), 𝑓 ′ (𝑥) = 𝑝 (𝑥) + (𝑥 − 𝑎𝑖 )𝑝′ (𝑥).

Then we know 0 = 𝑓 ′ (𝑎𝑖 ) = 𝑝 (𝑎𝑖 ) ≠ 0, which leads to a contradiction. Then 𝑒𝑖 > 1.
If there exists 𝑒𝑖 > 1, assume that 𝑓 (𝑥) = (𝑥 − 𝑎𝑖 )𝑒𝑖𝑝 (𝑥). Then

𝑓 ′ (𝑥) = 𝑒𝑖 (𝑥 − 𝑎𝑖 )𝑒𝑖−1𝑝 (𝑥) + (𝑥 − 𝑎𝑖 )𝑒𝑖𝑝′ (𝑥).

It is obvious that 𝑓 ′ (𝑎𝑖 ) = 0. Then we know 𝑓 , 𝑓 ′ share a common root. □

By the above theorem, we know that 𝑓 , 𝑓 ′ share no common roots if and only if 𝑓 is separable. Based on
Theorem 2.9, we have the following results.

Corollary 2.10. For an irreducible polynomial 𝑓 (𝑥) ∈ 𝐹 [𝑥], 𝑓 is separable if and only if 𝑓 ′ (𝑥) ≠ 0.

Proof. When 𝑓 is separable, by Theorem 2.9, we know 𝑓 and 𝑓 ′ share no common root. This means (𝑓 , 𝑓 ′) = 1.
Since deg(𝑓 ′) < deg(𝑓 ), it holds that 𝑓 ′ (𝑥) ≠ 0.

When 𝑓 ′ (𝑥) ≠ 0, we assume that 𝑓 and 𝑓 ′ share a common root. Then it holds that (𝑓 , 𝑓 ′) = 𝑝 (𝑥) where
deg(𝑝) ≥ 1. This means 𝑝 | 𝑓 , which leads to a contradiction to 𝑓 is irreducible. □

Then we have the following two conclusions:

• For a field 𝐹 with char(𝑓 ) = 0, it holds that every irreducible 𝑓 ∈ 𝐹 [𝑥] is separable.

• For a finite field 𝐹 , it holds that every irreducible 𝑓 ∈ 𝐹 [𝑥] is separable.

Remark 2.11. The conclusions above do not hold for every field 𝐹 . In fact, the quotient field of 𝐹2 [𝑥] is a coun-
terexample.

2.6 Testing for irreducibility
Now we test whether a polynomial is irreducible.

Definition 2.12. Given an UFD 𝑅 and its quotient field 𝐹 , let 𝑓 (𝑥) be a polynomial in 𝑅 [𝑥]. We write 𝑓 (𝑥) as

𝑓 (𝑥) = 𝑎𝑛𝑥𝑛 + . . . 𝑎1𝑥 + 𝑎0.

We say (𝑎0, . . . , 𝑎𝑛) is the content of 𝑓 , denoted by 𝑐 (𝑓 ).

If 𝑐 (𝑓 ) ∼ 1, we say 𝑓 is primitive. Note that, for all 𝑑 ∈ 𝑅, 𝑐 (𝑑 𝑓 ) ∼ 𝑑𝑐 (𝑓 ). Then for all 𝑓 ∈ 𝑅 [𝑥], it holds that

𝑓 = 𝑐 (𝑓 ) 𝑓1, 𝑓1 is primitive.

Lemma 2.13 (Gauss’s Lemma). For two polynomials 𝑓 , 𝑔 ∈ 𝑅 [𝑥], it holds that 𝑐 (𝑓 𝑔) ∼ 𝑐 (𝑓 )𝑐 (𝑔).
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Proof. Assume that 𝑓 = 𝑐 (𝑓 ) 𝑓1 and 𝑔 = 𝑐 (𝑔)𝑔1 where 𝑓1, 𝑔1 ∈ 𝑅 [𝑥] are primitive polynomials. Then we know
that

𝑓 𝑔 = 𝑐 (𝑓 )𝑐 (𝑔) 𝑓1𝑔1 =⇒ 𝑐 (𝑓 𝑔) = 𝑐 (𝑓 )𝑐 (𝑔)𝑐 (𝑓1𝑔1).

What remains to do is to prove 𝑓1𝑔1 is a primitive polynomial. We write 𝑓1, 𝑔1 as

𝑓1 =
𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 , 𝑔1 =

𝑚∑︁
𝑗=0
𝑏 𝑗𝑥

𝑗

and write 𝑓1𝑔1 as

𝑓1𝑔1 =
𝑚+𝑛∑︁
𝑘=0

𝑐𝑘𝑥
𝑘 , 𝑐𝑘 =

∑︁
𝑖+𝑗=𝑘

𝑎𝑖𝑏 𝑗 ∀0 ≤ 𝑘 ≤ 𝑚 + 𝑛.

Suppose that 𝑓1𝑔1 is not primitive, which means there exists a prime 𝑝 such that 𝑝 | 𝑐𝑘 for all 0 ≤ 𝑘 ≤ 𝑛 +𝑚.
Since 𝑐 (𝑓1) = 𝑐 (𝑔1) = 1, we choose 𝑎𝑠 as the very element 𝑝 ∤ 𝑎𝑠 with smallest 𝑠 and 𝑏𝑡 as the element 𝑝 ∤ 𝑏𝑡
with largest 𝑡 . We consider the coefficient 𝑐𝑠+𝑡 :

𝑐𝑠+𝑡 =
∑︁

𝑖+𝑗=𝑠+𝑡
𝑎𝑖𝑏 𝑗

=
∑︁

𝑖+𝑗=𝑠+𝑡
𝑖<𝑠

𝑎𝑖𝑏 𝑗 + 𝑎𝑠𝑏𝑡 .

Since 𝑝 | 𝑐𝑠+𝑡 , we know 𝑝 | 𝑎𝑠𝑏𝑡 , which means 𝑝 | 𝑎𝑠 or 𝑝 | 𝑏𝑡 . This leads to a contradiction. So we conclude that
𝑓1𝑔1 is primitive. □

Corollary 2.14. Given an UFD 𝑅, its quotient field 𝐹 and a primitive polynomial 𝑓 ∈ 𝑅 [𝑥] with deg(𝑓 ) ≥ 1, 𝑓 is
irreducible in 𝑅 [𝑥] if and only if 𝑓 is irreducible in 𝐹 [𝑥].

Proof. When 𝑓 is irreducible in 𝐹 [𝑥], assume that 𝑓 = 𝑔ℎ in 𝑅 [𝑥]. Since 𝐹 is the quotient field of 𝑅, we know
𝑓 = 𝑔ℎ is also a decomposition in 𝐹 [𝑥]. Since 𝑓 is irreducible in 𝐹 [𝑥], assume that 𝑔 is the unit. Then 𝑔 ∈ 𝐹 \ {0}.
Moreover, since 𝑔 ∈ 𝑅 [𝑥], it holds that 𝑔 ∈ 𝑅 \ {0}. Additionally, by Lemma 2.13,

1 ∼ 𝑐 (𝑓 ) ∼ 𝑔 · 𝑐 (ℎ).

Then we know 𝑔 is unit in 𝑅, which means 𝑓 is irreducible in 𝑅 [𝑥].
When 𝑓 is irreducible in 𝑅 [𝑥], assume that 𝑓 = 𝑔ℎ in 𝐹 [𝑥] with deg(𝑔) ≥ 1 and deg(ℎ) ≥ 1. We can write

𝑔, ℎ as

𝑔(𝑥) = 𝑎

𝑏
𝑔1 (𝑥), ℎ(𝑥) =

𝑐

𝑑
ℎ1 (𝑥)

where 𝑔1, ℎ1 ∈ 𝑅 [𝑥] are primitive polynomials. This means

𝑓 =
𝑎𝑐

𝑏𝑑
𝑔1ℎ1 or 𝑏𝑑 𝑓 = 𝑎𝑐𝑔1ℎ1 .

By Lemma 2.13, it holds that

𝑏𝑑 ∼ 𝑏𝑑𝑐 (𝑓 ) ∼ 𝑎𝑐𝑐 (𝑔1)𝑐 (ℎ1).

This means 𝑏𝑑 ∼ 𝑎𝑐 and 𝑓 = 𝑢𝑔1ℎ1 where𝑢 is a unit. Then we conclude 𝑓 is reducible, leading to a contradiction.
□

Based on above, we introduce Eisenstein’s criterion to test the irreducibility.

Theorem 2.15 (Eisenstein’s criterion). Given an UFD 𝑅 and primitive 𝑓 (𝑥) = ∑𝑛
𝑖=0 𝑎𝑖𝑥

𝑖 ∈ 𝑅 [𝑥] with deg(𝑓 ) ≥ 1,
if there exists an irreducible element 𝑝 ∈ 𝑅 satisfying 𝑝 | 𝑎0, . . . , 𝑎𝑛−1 and 𝑝 ∤ 𝑎𝑛 , 𝑝2 ∤ 𝑎0, then 𝑓 is irreducible in
𝑅 [𝑥].
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Proof. Assume 𝑓 = 𝑔ℎ in 𝑅 [𝑥] with deg(𝑔) ≥ 1 and deg(ℎ) ≥ 1. We write 𝑔, ℎ as

𝑔(𝑥) = 𝑏𝑟𝑥𝑟 + . . . + 𝑏1𝑥 + 𝑏0,
ℎ(𝑥) = 𝑐𝑠𝑥𝑥 + . . . + 𝑐1𝑥 + 𝑐0.

Since 𝑝 | 𝑎0 = 𝑏0𝑐0 and 𝑝2 ∤ 𝑎0 = 𝑏0𝑐0, we assume 𝑝 | 𝑏0 and 𝑝 ∤ 𝑐0.
Since 𝑓 is primitive, it holds that 𝑔 and ℎ are primitive. Then we can pick 𝑏𝑘 as the element 𝑝 ∤ 𝑏𝑘 with the

smallest 𝑘 . It holds that 1 ≤ 𝑘 ≤ 𝑟 < 𝑛. Consider the coefficient 𝑎𝑘 . It holds that

𝑎𝑘 =
∑︁
𝑖+𝑗=𝑘

𝑏𝑖𝑐 𝑗 =
∑︁
𝑖+𝑗=𝑘
𝑖<𝑘

𝑏𝑖𝑐 𝑗 + 𝑏𝑘𝑐0 .

Since 𝑘 < 𝑛, we know 𝑝 | 𝑎𝑘 , which means 𝑝 | 𝑏𝑘𝑐0. Then 𝑝 | 𝑏𝑘 or 𝑝 | 𝑐0. This leads to a contradiction. Thus we
conclude 𝑓 is irreducible. □

Remark 2.16. Note that the most important thing is 𝑝 is prime. So when 𝑅 is an integral domain and 𝑝 is prime,
the same argument holds.
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3 Field Extensions
Now we come to the kernel in this course. Firstly we give a view of field extensions from linear spaces.

Definition 3.1 (vector space over a field). A vector space over a field 𝐹 is a non-empty set𝑉 with two operators
+ : 𝑉 ×𝑉 → 𝑉 and · : 𝐹 ×𝑉 → 𝑉 satisfying:

• (𝑉 , +) is an abelian group.

• For all 𝑟, 𝑠 ∈ 𝐹 , 𝑢, 𝑣 ∈ 𝑉 , it holds that

𝑟 (𝑢 + 𝑣) = 𝑟𝑢 + 𝑟𝑣,
(𝑟 + 𝑠)𝑢 = 𝑟𝑢 + 𝑠𝑢,
𝑟𝑠 · 𝑢 = 𝑟 · (𝑠𝑢),
1 · 𝑢 = 𝑢.

For two fields 𝐹 < 𝐸, if we view 𝐸 as 𝑉 , it is not hard to see 𝐸 is a vector space over 𝐹 . The dimension of 𝐸
over 𝐹 is called the degree of 𝐸 over 𝐹 denoted by [𝐸 : 𝐹 ].

Example 3.2. For R < C, it holds that [C : Q] = 2 since the basis can be picked as {1, 𝑖}.
For Q < R, we will prove later that [R : Q] = ∞.

Theorem 3.3. Let 𝐹 < 𝐾 < 𝐸 be finite fields. Then it holds that

[𝐸 : 𝐹 ] = [𝐸 : 𝐾] · [𝐾 : 𝐹 ] .

Proof. Let 𝐴 = {𝛼𝑖 | 𝑖 ∈ 𝐼 } be a basis for 𝐸 over 𝐾 and 𝐵 =
{
𝛽 𝑗

�� 𝑗 ∈ 𝐽 } be a basis for 𝐸 over 𝐹 . Now we prove
that

𝐶 =
{
𝛼𝑖𝛽 𝑗

�� 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 }
is a basis for 𝐸 over 𝐹 . Firstly we show 𝐶 is linearly independent. Assume that∑︁

𝑖∈𝐼 , 𝑗∈ 𝐽
𝑎𝑖 𝑗𝛼𝑖𝛽 𝑗 = 0.

This means

0 =
∑︁
𝑖∈𝐼

(∑︁
𝑗∈ 𝐽

𝑎𝑖 𝑗𝛽 𝑗

)
𝛼𝑖 = 0.

Since 𝐴, 𝐵 are both linearly independent, we know 𝑎𝑖 𝑗 = 0 for all 𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 . Then 𝐶 is linearly independent.
Next, for 𝛾 ∈ 𝐸, there exist 𝑎𝑖 ∈ 𝐾 such that 𝛾 =

∑
𝑖∈ 𝐽 𝑎𝑖𝛼𝑖 . Since all 𝑎𝑖 =

∑
𝑗∈ 𝐽 𝑏𝑖 𝑗𝛽 𝑗 , we know

𝛾 =
∑︁

𝑖∈𝐼 , 𝑗∈ 𝐽
𝑏𝑖 𝑗𝛼𝑖𝛽 𝑗 .

This means 𝐶 is a basis for 𝐸 over 𝐹 . Then we obtain what we desire. □

3.1 Generated extensions
Now we introduce the definition of generated extensions.

Definition 3.4. Let 𝐹 < 𝐸 and 𝑋 ⊆ 𝐸. We say the minimal field containing 𝐹 and 𝑋 is the generated extension
of 𝐹 by 𝑋 , denoted by 𝐹 (𝑋 ).

If 𝑋 = {𝛼1, . . . , 𝛼𝑛}, we say 𝐹 (𝑋 ) = 𝐹 (𝛼1, . . . , 𝛼𝑛) is finitely generated by 𝑋 . If 𝑋 = {𝛼}, we say 𝐹 (𝑋 ) = 𝐹 (𝛼)
is a simple extension, and 𝛼 is called a primitive element of 𝐹 (𝛼).
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• When 𝑋 = {𝛼}, we consider the minimal ring containing 𝐹 and 𝛼

𝐹 [𝑥] := {𝑓 (𝛼) | 𝑓 (𝑥) ∈ 𝐹 [𝑥]} ⊆ 𝐹 (𝛼).

Then we can show that

𝐹 (𝛼) =
{
𝑓 (𝛼)
𝑔(𝛼)

���� 𝑓 , 𝑔 ∈ 𝐹 [𝑥], 𝑔(𝛼) ≠ 0
}
.

• When 𝑋 = {𝛼1, . . . , 𝛼𝑛}, the minimal ring containing 𝐹 and 𝑋 is

𝐹 [𝛼1, . . . , 𝛼𝑛] = {𝑓 (𝛼1, . . . , 𝛼𝑛) | 𝑓 ∈ 𝐹 [𝑥1, . . . , 𝑥𝑛]} .

Then we know

𝐹 (𝛼1, . . . , 𝛼𝑛) =
{
𝑓 (𝛼1, . . . , 𝛼𝑛)
𝑔(𝛼1, . . . , 𝛼𝑛)

���� 𝑓 , 𝑔 ∈ 𝐹 [𝑥1, . . . , 𝑥𝑛], 𝑔(𝛼1, . . . , 𝛼𝑛) ≠ 0
}
.

• When 𝑋 is infinite, now we prove that

𝐹 (𝑋 ) =
⋃

𝛼1,...,𝛼𝑛

𝐹 (𝛼1, . . . , 𝛼𝑛)

Where {𝛼1, . . . , 𝛼𝑛} range over all finite subsets of 𝑋 . It’s trivial to see 𝐹 (𝑋 ) ⊆ ⋃
𝛼1,...,𝛼𝑛 𝐹 (𝛼1, . . . , 𝛼𝑛).

On the other hand, for every {𝛼1, . . . , 𝛼𝑛}, it holds that 𝐹 (𝛼1, . . . , 𝛼𝑛) ⊆ 𝐹 (𝑋 ), meaning that 𝐹 (𝑋 ) =⋃
𝛼1,...,𝛼𝑛 𝐹 (𝛼1, . . . , 𝛼𝑛).

3.2 Algebraic extensions
An important definition in field extensions is the algebraic extensions.

Definition 3.5. We say 𝐹 < 𝐸 is algebraic if for all 𝛼 ∈ 𝐸, 𝛼 is algebraic over 𝐹 .

3.2.1 Simple algebraic extensions

Let 𝐹 < 𝐸 and 𝛼 ∈ 𝐸 be an algebraic element over 𝐹 . We say 𝐹 (𝛼) is a simple algebraic extension. Now we
investigate 𝐹 (𝛼). Let 𝑝 (𝑥) := min(𝐹, 𝛼) be the minimal polynomial of 𝛼 over 𝐹 . Consider 𝑓 (𝛼)/𝑔(𝛼) ∈ 𝐹 (𝛼).
Since 𝑔(𝛼) ≠ 0, it holds that (𝑝,𝑔) = 1, meaning that ∃𝑎, 𝑏 ∈ 𝐹 [𝑥] such that 𝑎𝑝 + 𝑏𝑔 = 1. Then we know
𝑏 (𝛼)𝑔(𝛼) = 1, which means

𝑓 (𝛼)
𝑔(𝛼) = 𝑓 (𝛼)𝑏 (𝛼) ∈ 𝐹 [𝛼] .

Then we know 𝐹 (𝛼) = 𝐹 [𝛼]. Furthermore, for all 𝑓 ∈ 𝐹 [𝑥], it holds that ∃𝑞, 𝑟 ∈ 𝐹 [𝑥],

𝑓 (𝑥) = 𝑞(𝑥)𝑝 (𝑥) + 𝑟 (𝑥)

where 𝑟 = 0 or deg(𝑟 ) < deg(𝑝). Then 𝑓 (𝛼) = 𝑟 (𝛼). So,

𝐹 (𝛼) = {𝑟 (𝛼) | 𝑟 = 0 ∨ deg(𝑟 ) < deg(𝑝)} .

Let 𝑛 = deg(𝑝). If |𝐹 | < ∞, we obtain that |𝐹 (𝛼) | = |𝐹 |𝑛 .
Since 𝑝 (𝑥) is the minimal polynomial of 𝛼 over 𝐹 , it’s not hard to show the basis of 𝐹 (𝛼) over 𝐹 is{

1, 𝛼, . . . , 𝛼𝑛−1
}
.

Equivalently [𝐹 (𝛼) : 𝐹 ] = 𝑛 = deg(𝑝).

Example 3.6. It holds that [Q(
√
2) : Q] = 2. For 𝜔 = 𝑒2𝜋𝑖/3, it holds that [Q(𝜔) : Q] = 2.
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For 𝐹 < 𝐹 (𝛼) where 𝛼 is algebraic over 𝐹 and 𝛽 ∈ 𝐹 (𝛼), let 𝑛 = deg(min(𝐹, 𝛼)). Since [𝐹 (𝛼) : 𝐹 ] = 𝑛, we
know

1, 𝛽, . . . , 𝛽𝑛

are not linearly independent. Then we know 𝛽 is algebraic over 𝐹 . This means 𝐹 (𝛼) is algebraic over 𝐹 .

Theorem 3.7. Let 𝐹 < 𝐸 and 𝛼1, . . . , 𝛼𝑛 ∈ 𝐸 be algebraic elements over 𝐹 . Then

[𝐹 (𝛼1, . . . , 𝛼𝑛) : 𝐹 ] ≤
𝑛∏
𝑖=1

[𝐹 (𝛼𝑖 ) : 𝐹 ] .

Proof. We prove it by induction. For 𝑛 = 1 it holds trivially. Assume that the inequality holds when 𝑘 = 𝑛 − 1.
Let 𝐿 := 𝐹 (𝛼1, . . . , 𝛼𝑛−1). By Theorem 3.3, it holds that

[𝐿(𝛼𝑛) : 𝐹 ] = [𝐿(𝛼𝑛) : 𝐿] · [𝐿 : 𝐹 ] .

Consider the minimal polynomial 𝑝 (𝑥) ∈ 𝐹 [𝑥] of 𝛼𝑛 over 𝐹 . It holds that 𝑝 (𝑥) ∈ 𝐿[𝑥]. So we know

[𝐿(𝛼𝑛) : 𝐿] ≤ [𝐹 (𝛼𝑛) : 𝐹 ] .

Then we know

[𝐿(𝛼𝑛) : 𝐹 ] ≤ [𝐹 (𝛼𝑛) : 𝐹 ] · [𝐿 : 𝐹 ] ≤
𝑛∏
𝑖=1

[𝐹 (𝛼𝑖 ) : 𝐹 ] .

□

To prove more properties, we need the following fact.

Fact 3.8. The multiplication group of a finite field is cyclic.

Together with Fact 3.8, we can establish the following lemma.

Lemma 3.9. Let 𝐹 < 𝐸 and 𝛼1, . . . , 𝛼𝑛 ∈ 𝐸 be algebraic elements over 𝐹 . If |𝐹 | < ∞, then 𝐹 (𝛼1, . . . , 𝛼𝑛) = 𝐹 (𝛼) for
some 𝛼 .

Proof. By Theorem 3.7, it holds that

[𝐹 (𝛼1, . . . , 𝛼𝑛) : 𝐹 ] ≤
𝑛∏
𝑖=1

[𝐹 (𝛼𝑖 ) : 𝐹 ] < ∞.

Since |𝐹 | < ∞, it holds that |𝐹 (𝛼1, . . . , 𝛼𝑛) | < ∞. By Fact 3.8, its multiple group is cyclic. Denote by 𝛼 the
generator of such a group. Then we know that

𝐹 (𝛼) =
{
0, 1, 𝛼1, . . . , 𝛼 |𝐹 (𝛼1,...,𝛼𝑛 ) |−2

}
= 𝐹 (𝛼1, . . . , 𝛼𝑛).

On the other hand, it is trivial that 𝛼 is algebraic. □

Remark 3.10. It’s not hard to see every finite extension of a finite field is a simple algebraic extension.

Example 3.11. Consider the field extension Q( 4√2, 4√18) over Q. It holds that

[Q( 4√2, 4√18) : Q] ≤ 16.

However, it holds that Q( 4√2, 4√18) = Q( 4√2,
√
3). Then we know

[Q( 4√2, 4√18) : Q] = [Q( 4√2,
√
3) : Q] ≤ 8 < 16.
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3.2.2 Finite extensions and algebraic extensions

Now we discuss the relationship between finite extensions and algebraic extensions.
Theorem 3.12. Let 𝐹 < 𝐸. If [𝐸 : 𝐹 ] < ∞, then 𝐸 is algebraic over 𝐹 .

Proof. Let 𝑛 := [𝐸 : 𝐹 ] < ∞. For all 𝛽 ∈ 𝐸, it holds that

1, 𝛽, . . . , 𝛽𝑛

are not linearly independent. Then we know 𝛽 is algebraic over 𝐹 . □

Based on Theorem 3.12, we have the following corollaries.
Corollary 3.13. Let 𝐹 < 𝐸 and 𝑋 ⊆ 𝐸 such that every element 𝑥 ∈ 𝑋 is algebraic over 𝐹 . Then 𝐹 (𝑋 ) is algebraic
over 𝐹 .

Proof. For all {𝛼1, . . . , 𝛼𝑛} ⊆ 𝑋 , it holds that 𝐹 (𝛼1, . . . , 𝛼𝑛) is algebraic over 𝐹 ([𝐹 (𝛼1, . . . , 𝛼𝑛) : 𝐹 ] < ∞ and by
Theorem 3.12). Then for all 𝛼 ∈ 𝐹 (𝑋 ), there exists 𝛼1, . . . , 𝛼𝑛 ⊆ 𝑋 such that 𝛼 ∈ 𝐹 (𝛼1, . . . , 𝛼𝑛). Then we know 𝛼

is algebraic. Thus we know 𝐹 (𝑋 ) is algebraic. □

Corollary 3.14. Let 𝐹 < 𝐿 < 𝐸. If 𝐿 is algebraic over 𝐹 and 𝐸 is algebraic over 𝐹 , then 𝐸 is algebraic over 𝐹 .

Proof. For 𝛼 ∈ 𝐸, since 𝐸 is algebraic over 𝐿, then there exists

min(𝐿, 𝛼) =
𝑛∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 , ∀0 ≤ 𝑖 ≤ 𝑛, 𝑎𝑖 ∈ 𝐿.

Consider 𝐿0 = 𝐹 (𝑎0, . . . , 𝑎𝑛). It holds that 𝐹 < 𝐿0 < 𝐿0 (𝛼) < 𝐸. It holds that

[𝐿0 (𝛼) : 𝐹 ] = [𝐿0 (𝛼) : 𝐿] · [𝐿 : 𝐹 ] < ∞.

Then we know 𝐿0 (𝛼) is algebraic over 𝐹 , thus we know 𝛼 is algebraic. □

Definition 3.15. Let 𝐹 < 𝐸. The set 𝐾 of all algebraic elements in 𝐸 over 𝐹 is called the algebraic closure of 𝐹 in
𝐸.
Lemma 3.16. The algebraic closure 𝐾 of 𝐹 in 𝐸 is a field. Thus it is the maximal algebraic extension of 𝐹 in 𝐸.

Proof. For all 𝛼, 𝛽 ∈ 𝐾 , by Corollary 3.13, 𝐹 (𝛼, 𝛽) is algebraic over 𝐹 , meaning that 𝛼±𝛽 , 𝛼𝛽 and 𝛼/𝛽 are algebraic
(they are both in 𝐾 ). Then we prove that 𝐾 is a field. □

Note that, algebraic extensions are not necessarily finite. See the following counterexample: for Q < C,
consider the algebraic closure𝐴 ofQ in C, for all 𝑛 ∈ N, 𝑥𝑛 −2 = 0 can be a minimal polynomial of some element
in 𝐴, meaning that [𝐴 : Q] = ∞.

3.3 Transcendental extensions
Now we discuss more types of extensions

3.3.1 Simple transcendental extensions

Let 𝐹 < 𝐸 and a transcendental element 𝛼 ∈ 𝐸 over 𝐹 . Then we show

𝐹 (𝛼) =
{
𝑓 (𝛼)
𝑔(𝛼)

���� 𝑓 , 𝑔 ∈ 𝐹 [𝑥], 𝑔(𝛼) ≠ 0
}
.

For an arbitrary symbol 𝑡 , let

𝐹 (𝑡) =
{
𝑓 (𝑡)
𝑔(𝑡)

���� 𝑓 , 𝑔 ∈ 𝐹 [𝑥], 𝑔 ≠ 0
}
.

For any 𝑓 ′ ∈ 𝐹 (𝑡), we know

𝐹 (𝑓 ′) =
{
𝑓 (𝑓 ′)
𝑔(𝑓 ′)

���� 𝑓 , 𝑔 ∈ 𝐹 [𝑥], 𝑔(𝑓 ′) ≠ 0
}
.

Let 𝑓 ′ = 𝑡2. It holds that [𝐹 (𝑡) : 𝐹 (𝑡2)] = 2.
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3.4 Galois group
For fields 𝐾, 𝐿, consider a field homomorphism 𝜎 : 𝐾 → 𝐿. It is routine to investigate ker(𝜎). Since ker(𝜎) is an
ideal, if there exists 𝛼 ≠ 0 ∈ ker(𝜎), we know 1 = 𝛼𝛼−1 ∈ ker(𝜎), meaning that ker(𝜎) = 𝐾 . Then ker(𝜎) = (0)
or 𝐾 .

When ker(𝜎) = 𝐾 , we show 𝜎 = 0. When ker(𝜎) = (0), it holds that 𝜎 is an injection. And we say 𝜎 : 𝐾 → 𝐿

is embedded.
For 𝐹 < 𝐾 and 𝐹 < 𝐿 and 𝜎 : 𝐾 → 𝐿, we say 𝜎 is an 𝐹 -homomorphism if 𝜎 |𝐹 = Id. If 𝜎 is a bijection, we say

𝜎 is an 𝐹 -isomorphism. An 𝐹 -isomorphism from a field 𝐾 to itself is called an 𝐹 -automorphism.
Note that, for an 𝐹 -homomorphism 𝜎 : 𝐾 → 𝐿, it is a linear mapping from 𝐾 to 𝐿. Additionally, if [𝐾 : 𝐹 ] =

[𝐿 : 𝐹 ] = 𝑛, for an 𝐹 -basis {𝛼1, . . . , 𝛼𝑛} of 𝐾 , it’s not hard to show 𝜎 (𝛼1), . . . , 𝜎 (𝛼𝑛) is an 𝐹 -basis of 𝐿. Then we
know 𝜎 is bijection. This means 𝜎 is 𝐹 -isomorphism.

We denote by Aut(𝐾) the collection of all automorphisms of 𝐾 , and denote by Aut𝐹 (𝐾) the collection of
𝐹 -automorphisms.

Definition 3.17 (Galois group). Let 𝐹 < 𝐾 . We say Aut𝐹 (𝐾) is the Galois group of 𝐾/𝐹 , denoted by Gal(𝐾/𝐹 ).

Theorem 3.18. Let 𝐾 = 𝐹 (𝑋 ) and 𝜎, 𝜏 ∈ Gal(𝐾/𝐹 ). If 𝜎 |𝑋 = 𝜏 |𝑋 , then 𝜎 = 𝜏 .

Proof. For all 𝛼 ∈ 𝐾 , there exist 𝑓 , 𝑔 ∈ 𝐹 [𝑥1, . . . , 𝑥𝑛] and {𝛼1, . . . , 𝛼𝑛} ⊆ 𝑋 such that

𝛼 =
𝑓 (𝛼1, . . . , 𝛼𝑛)
𝑔(𝛼1, . . . , 𝛼𝑛)

.

Suppose that

𝑓 (𝑥1, . . . , 𝑥𝑛) =
∑︁
𝑖1,...,𝑖𝑛

𝑏𝑖1,...,𝑖𝑛

∏
𝑗∈[𝑛]

𝑥
𝑖 𝑗
𝑗
.

𝑔(𝑥1, . . . , 𝑥𝑛) =
∑︁
𝑖1,...,𝑖𝑛

𝑐𝑖1,...,𝑖𝑛

∏
𝑗∈[𝑛]

𝑥
𝑖 𝑗
𝑗
.

Since 𝜎 |𝑋 = 𝜏 |𝑋 , it holds that

𝜎 (𝑓 (𝛼1, . . . , 𝛼𝑛)) = 𝜏 (𝑓 (𝛼1, . . . , 𝛼𝑛)), 𝜎 (𝑔(𝛼1, . . . , 𝛼𝑛)) = 𝜏 (𝑔(𝛼1, . . . , 𝛼𝑛)) .

Then 𝜎 (𝛼) = 𝜏 (𝛼). Thus we conclude 𝜎 = 𝜏 . □

The following result comes directly from the definition of homomorphism.

Theorem 3.19. Let 𝜎 : 𝐾 → 𝐿 be an isomorphism. For 𝛼 ∈ 𝐾 and 𝑝 (𝑥) := min(𝐹, 𝛼), if 𝑓 (𝛼) = 0, 𝑓 ∈ 𝐹 [𝑥], then
𝑓 (𝜎 (𝛼)) = 0. Also we know min(𝐹, 𝜎 (𝛼)) = 𝑝 .

On the other hand, we pick any arbitrary root 𝛽 of 𝑝 (𝑥). We construct a mapping 𝜎 : 𝐹 (𝛼) → 𝐹 (𝛼) such that
𝛼 ↦→ 𝛽 . Then 𝜎 is an 𝐹 -automorphism.

When 𝐾 = 𝐿, [𝐾 : 𝐹 ] = 𝑛 < ∞ and an 𝐹 -automorphism 𝜎 : 𝐾 → 𝐾 , by Theorem 3.19, for 𝛼 ∈ 𝐾 , if
𝑓 (𝛼) = 0 then 𝑓 (𝜎 (𝛼)) = 0. If 𝛼1, . . . , 𝛼𝑚 ∈ 𝐾 are roots of 𝑓 , then 𝜎 (𝛼1), . . . , 𝜎 (𝛼𝑛) are roots of 𝑓 (a permutation
of 𝛼1, . . . , 𝛼𝑛).

With the discussion above, we can show that, if [𝐾 : 𝐹 ] = 𝑛 < ∞, we know 𝐾 = 𝐹 (𝛼1, . . . , 𝛼𝑛) where
𝛼1, . . . , 𝛼𝑛 are algebraic. Then we know 𝜎 (𝛼𝑖 ) ≤ degmin(𝐹, 𝛼𝑖 ). This means |Gal(𝐾/𝐹 ) | < ∞.

Example 3.20. For R < C, since C = R(𝑖) and min(R, 𝑖) = 𝑥2 + 1, we know 𝜎 = Id or 𝜎 : 𝑧 ↦→ 𝑧. Then
|Gal(C/R) | = 2.

Example 3.21. For Q < Q( 3√2), let 𝜔 = 𝑒2𝜋𝑖/3. We know

𝜎 ( 3√2) ∈
{

3√2, 3√2𝜔, 3√2𝜔2
}
.

However, since Q( 3√2) ⊆ R, we know 𝜎 = Id. Then
���Gal(Q( 3√2)/Q)

��� = 1.

Example 3.22. Let 𝐹 = 𝐹2 (𝑡2) < 𝐾 = 𝐹2 (𝑡). It’s not hard to see 𝐾 = 𝐹 (𝑡). Since min(𝐹, 𝑡) = 𝑥2 − 𝑡2 = (𝑥 − 𝑡)2.
Then we know 𝜎 = Id.
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Example 3.23. Let 𝐹 = 𝐹2 < 𝐾 = 𝐹22 . We know 𝐾 =
𝐹2 [𝑥 ]
(𝑓 ) where 𝑓 (𝑥) = 𝑥2 + 𝑥 + 1. We write 𝐾 as

𝐾 = {𝑎 + 𝑏𝑥 + (𝑓 ) | 𝑎, 𝑏 ∈ 𝐹 } =
{
𝑎 + 𝑏𝑥

��� 𝑎, 𝑏 ∈ 𝐹
}
.

It’s not hard to see the 𝐹 -basis of 𝐾 is
{
1, 𝑥

}
, which means 𝐾 = 𝐹 (𝑥).

It’s not hard to verify min(𝐹, 𝑥) = 𝑓 and 𝑓 (𝑥) = 𝑓 (𝑥 + 1) = 0. Then we know 𝜎 = Id or 𝜎 (𝑥) = 𝑥 + 1. This
means |Gal(𝐾/𝐹 ) | = 2.

Definition 3.24. Let 𝐾 be a finite extension of 𝐹 . If |Gal(𝐾/𝐹 ) | = [𝐾 : 𝐹 ], then we say 𝐾 is a Galois extension of
𝐹 .

Now we study further on Galois theory. Let 𝐹 < 𝐿 < 𝐾 . It’s not hard to see Gal(𝐾/𝐿) ⊆ Gal(𝐾/𝐹 ).

Definition 3.25 (fixed field). For 𝑆 ⊆ Aut(𝐾), define its fixed field as

F (𝑆) = {𝛼 ∈ 𝐾 | ∀𝜎 ∈ 𝑆, 𝜎 (𝛼) = 𝛼} .

It’s not hard to verify F (𝑆) is a field.

Here are some basic properties.

(P1) If 𝐿1 < 𝐿2 < 𝐾 , then Gal(𝐾/𝐿2) ⊆ Gal(𝐾/𝐿1).

(P2) For 𝐿 < 𝐾 , 𝐿 ⊆ F (Gal(𝐾/𝐿)).

(P3) For 𝑆1 ⊆ 𝑆2 ⊆ Aut(𝐾), it holds that F (𝑆2) ⊆ F (𝑆1).

(P4) For 𝑆 ⊆ Aut(𝐾), 𝑆 ⊆ Gal(𝐾/F (𝑆)).

(P5) If 𝐿 = F (𝑆) for some 𝑆 ⊆ Aut(𝐾), then it holds that 𝐿 = F (Gal(𝐾/𝐿)).

Proof. By (P4), we know 𝑆 ⊆ Gal(𝐾/𝐿). By (P3), we show F (Gal(𝐾/𝐿)) ⊆ F (𝑆) = 𝐿. On the other hand,
by (P2), 𝐿 ⊆ F (Gal(𝐾/𝐿)). □

(P6) If 𝐻 = Gal(𝐾/𝐿) for some 𝐿 < 𝐾 , then 𝐻 = Gal(𝐾/𝐹 (𝐻 )).

Proof. By (P4), 𝐻 ⊆ Gal(𝐾/𝐹 (𝐻 )). On the other hand, by (P2), we know 𝐿 ⊆ 𝐹 (Gal(𝐾/𝐿)). By (P1), we
know Gal(𝐾/𝐹 (𝐻 )) ⊆ Gal(𝐾/𝐿) = 𝐻 . □

We use F to denote the collection of all sub-fields 𝐿 such that 𝐹 < 𝐿 < 𝐾 and 𝐿 = F (𝑆) for some 𝑆 ⊆
Gal(𝐾/𝐹 ), and use G to denote all sub-groups 𝐻 ⊆ Gal(𝐾/𝐹 ) such that 𝐻 = Gal(𝐾/𝐿) for some 𝐿 < 𝐾 . By
(P5) and (P6), it’s not hard to see the mapping F → G, 𝐿 ↦→ Gal(𝐾/𝐿) is bijective, and its inverse is G → F ,
𝐻 ↦→ 𝐹 (𝐻 ).

Definition 3.26. Let 𝐺 be a group and 𝐾 be a field. A character is a group homomorphism from 𝐺 to 𝐾 \ {0}.

Note that, for all 𝜎 ∈ Aut(𝐾), it can be a character from 𝐾 \ {0} to 𝐾 \ {0}.

Lemma 3.27 (Dedekind’s Lemma). Assume that 𝜏1, . . . , 𝜏𝑛 are distinct characters from𝐺 to𝐾 \{0}. Then 𝜏1, . . . , 𝜏𝑛
are linearly independent. Precisely speaking, if there exist 𝑐1, . . . , 𝑐𝑛 ∈ 𝐾 such that

∑𝑛
𝑖=1 𝑐𝑖𝜏𝑖 (𝑔) = 0 for all 𝑔 ∈ 𝐺 ,

then 𝑐𝑖 = 0 for all 𝑖 ∈ [𝑛].

Proof. Assume that 𝜏1, . . . , 𝜏𝑘 are not linearly independent and 𝑘 is the minimal. Since 𝜏1 ≠ 𝜏2, there exists ℎ ∈ 𝐺
such that 𝜏1 (ℎ) ≠ 𝜏2 (ℎ). Since 𝜏1, . . . , 𝜏𝑘 are not linear independent, there exist 𝑐1, . . . , 𝑐𝑘 ∈ 𝐾 such that 𝑐1, . . . , 𝑐𝑘
are not all zero and for all 𝑔 ∈ 𝐺 ,

𝑘∑︁
𝑖=1

𝑐𝑖𝜏𝑖 (𝑔) = 0,
𝑘∑︁
𝑖=1

𝑐𝑖𝜏𝑖 (ℎ · 𝑔) = 0.
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Since 𝑘 is minimal, we know 𝑐𝑖 ≠ 0 for all 𝑖 ∈ [𝑘]. Thus we know
𝑘∑︁
𝑖=1

𝑐𝑖𝜏1 (ℎ)𝜏𝑖 (𝑔) = 0
𝑘∑︁
𝑖=1

𝑐𝑖𝜏𝑖 (ℎ)𝜏𝑖 (𝑔) = 0.

Then it implies

𝑘∑︁
𝑖=2

𝑐𝑖 (𝜏𝑖 (ℎ) − 𝜏1 (ℎ))𝜏𝑖 (𝑔) = 0.

Then we see 𝜏2, . . . , 𝜏𝑘 are not linearly independent, leading to a contradiction to the choice 𝑘 is minimal. □

It makes sense that we give a vector space interpretation of Dedekind’s Lemma.

Proposition 3.28. If 𝐾 is a finite field extension of 𝐹 , then |Gal(𝐾/𝐹 ) | ≤ [𝐾 : 𝐹 ].

Proof. Since [𝐾 : 𝐹 ] < ∞, we know |Gal(𝐾/𝐹 ) | < ∞. Let Gal(𝐾/𝐹 ) = {𝜏1, . . . , 𝜏𝑛}, and let 𝛼1, . . . , 𝛼𝑚 be a basis
for 𝐾 as an 𝐹 -vector space. Consider the matrix Γ ∈ 𝐾𝑛×𝑚 defined as

Γ𝑖 𝑗 = 𝜏𝑖 (𝛼 𝑗 ), ∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚] .

Suppose that 𝑚 < 𝑛. Then we know rank(Γ) = 𝑚 < 𝑛, which means Γ1, . . . , Γ𝑛 are not linearly independent.
Thus there exist 𝑐1, . . . , 𝑐𝑛 ∈ 𝐾 such that 𝑐1, . . . , 𝑐𝑛 are not all zero and

𝑛∑︁
𝑖=1

𝑐𝑖𝜏𝑖 (𝛼 𝑗 ) = 0, ∀𝑗 ∈ [𝑚] .

For all 𝑔 ∈ 𝐾 \ {0}, it holds that 𝑔 =
∑𝑚
𝑗=1 𝑎 𝑗𝛼 𝑗 for some 𝑎1, . . . , 𝑎𝑚 ∈ 𝐾 . Thus,

𝑛∑︁
𝑖=1

𝑐𝑖𝜏𝑖 (𝑔) =
𝑛∑︁
𝑖=1

𝑐𝑖𝜏𝑖

(
𝑚∑︁
𝑗=1

𝑎 𝑗𝛼 𝑗

)
=

𝑛∑︁
𝑖=1

𝑐𝑖

𝑚∑︁
𝑗=1

𝑎 𝑗𝜏𝑖 (𝛼 𝑗 )

=

𝑚∑︁
𝑗=1

𝑎 𝑗

𝑛∑︁
𝑖=1

𝑐𝑖𝜏𝑖 (𝛼 𝑗 )

= 0.

By Lemma 3.27, we know 𝑐𝑖 = 0 for all 𝑖 ∈ [𝑛]. This leads to a contradiction. □

It’s very interesting to investigate when |Gal(𝐾/𝐹 ) | = [𝐾 : 𝐹 ].

Proposition 3.29. Let 𝐺 ⊆ Aut(𝐾) be a finite subgroup and 𝐹 = F (𝐺). Then |𝐺 | = [𝐾 : 𝐹 ] and 𝐺 = Gal(𝐾/𝐹 ).

Proof. Since 𝐺 ⊆ Gal(𝐾/𝐹 ), we know |𝐺 | ≤ [𝐾 : 𝐹 ]. Assume that 𝑛 := |𝐺 | < [𝐾 : 𝐹 ]. We pick 𝛼1, . . . , 𝛼𝑛+1 ∈ 𝐾
which are linearly independent over 𝐹 . And assume that 𝐺 = {𝜏1, . . . , 𝜏𝑛}. Consider the matrix Γ ∈ 𝐾𝑛×(𝑛+1)

defined as Γ𝑖 𝑗 = 𝜏𝑖 (𝛼 𝑗 ) for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑛 + 1]. Then we know Γ⊤1 , . . . , Γ
⊤
𝑛+1 are linearly dependent. Choose

𝑘 minimal so that, Γ⊤1 , . . . , Γ⊤𝑘 are linearly dependent over 𝐾 . That is to say, there are not all zero 𝑐1, . . . , 𝑐𝑘 ∈ 𝐾
such that

∑𝑘
𝑖=1 𝑐𝑖𝜏 𝑗 (𝛼𝑖 ) = 0 for all 𝑗 ∈ [𝑛]. By the minimality of 𝑘 , for all 𝑖 ∈ [𝑘], 𝑐𝑖 ≠ 0. Without loss of

generality, we assume that 𝑐1 = 1. If all 𝑐𝑖 ∈ 𝐹 , it holds that 0 = 𝜏 𝑗
(∑𝑘

𝑖=1 𝑐𝑖𝛼𝑖
)
for all 𝑗 ∈ [𝑛], which means

𝑘∑︁
𝑖=1

𝑐𝑖𝛼𝑖 = 0,

leading to a contradiction to the choice of 𝛼1, . . . , 𝛼𝑛+1. Take 𝜎 ∈ 𝐺 . Note that we can view 𝜎 as a permutation
of 𝐾 , meaning that

∑𝑘
𝑖=1 𝜎 (𝑐𝑖 )𝜏 𝑗 (𝛼𝑖 ) = 0 for all 𝑗 ∈ [𝑛]. Then, we know ∑𝑘

𝑖=2 (𝑐𝑖 − 𝜎 (𝑐𝑖 ))𝜏 𝑗 (𝛼𝑖 ) = 0 for all 𝑗 ∈ [𝑛].
From the minimality of 𝑘 , we know 𝑐𝑖 = 𝜎 (𝑐𝑖 ) for all 𝑖 ∈ [𝑘]. Then we know for all 𝜎 ∈ 𝐺 , 𝜎 ∈ F (𝐺) = 𝐹 . Thus
we know |𝐺 | = [𝐾 : 𝐹 ]. Since 𝐺 ⊆ Gal(𝐾/𝐹 ), then we know 𝐺 = Gal(𝐾/𝐹 ). □
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Now we are ready to introduce the formal definition of Galois extensions.

Definition 3.30 (formal definition of Galois extensions). Let 𝐾 be an algebraic extension of 𝐹 . We say 𝐾 is a
Galois extension of 𝐹 if and only if 𝐹 = F (Gal(𝐾/𝐹 )).

Remark 3.31. It’s not hard to show when [𝐾 : 𝐹 ] < ∞, Definition 3.24 is equivalent to Definition 3.30. Also,
another equivalent definition is that 𝐾/𝐹 is a Galois extension if and only if 𝐾/𝐹 is normal and splitting.

It’s not an easy work to see whether an extension is Galois. To consider a simple/basic case, we consider a
simple algebraic extension over a field.

Corollary 3.32. Let 𝐾 be a field extension of 𝐹 and 𝛼 ∈ 𝐾 \ 𝐹 be algebraic over 𝐹 . Then |Gal(𝐹 (𝛼)/𝐹 ) | is equal to
the number of distinct roots of min(𝐹, 𝛼) in 𝐹 . Therefore 𝐹 (𝛼) is a Galois extension over 𝐹 if and only if min(𝐹, 𝛼)
has 𝑛 distinct roots in 𝐹 (𝛼), where 𝑛 = deg(min(𝐹, 𝛼)).

3.5 Normal extensions
Now let’s see the normal extensions. Let 𝐹 be a field. For 𝑓 (𝑥) ∈ 𝐹 [𝑥] with deg(𝑓 ) = 𝑛 > 0, we know that there
exists a field extension 𝐾 of 𝐹 such that 𝑓 has 𝑛 roots in 𝐾 , and [𝐾 : 𝐹 ] ≤ 𝑛!. Conversely, for any field extension
𝐸 of 𝐹 , 𝑓 has at most 𝑛 roots in 𝐸.

Definition 3.33. Let 𝐹 < 𝐾 and 𝑓 ∈ 𝐹 [𝑥]. If 𝑓 (𝑥) = 𝛼 (𝑥 − 𝛼1) . . . (𝑥 − 𝛼𝑛) where 𝛼𝑖 ∈ 𝐾 for all 𝑖 ∈ [𝑛], then we
say 𝑓 splits over 𝐾 .

Definition 3.34. Let 𝐹 < 𝐾 and 𝑓 (𝑥) ∈ 𝐹 [𝑥], and let 𝑆 be a collection of non-constant polynomials over 𝐹 .

1. If 𝑓 (𝑥) = 𝛼 (𝑥 − 𝛼1) . . . (𝑥 − 𝛼𝑛) splits over 𝐾 and 𝐾 = 𝐹 (𝛼1, . . . , 𝛼𝑛), then we say 𝐾 is a splitting field of 𝑓
over 𝐹 .

2. We say 𝐾 is a splitting field of 𝑆 over 𝐹 if for all 𝑓 ∈ 𝑆 , 𝑓 splits over 𝐾 and 𝐾 = 𝐹 (𝑋 ) where 𝑋 is the
collection of all roots of all 𝑓 ∈ 𝑆 .

Given 𝐹 and 𝑆 , it needs to show whether the splitting field exists. Firstly, when 𝑆 is finite, assume that
𝑆 = {𝑓1, . . . , 𝑓𝑚}. Let 𝑓 = 𝑓1 . . . 𝑓𝑚 . Then there exists a field extension 𝐾 of 𝐹 such that 𝐾 is the splitting field of 𝑆
over 𝐹 .

Theorem 3.35. The followings are equivalent.

1. There are no algebraic extensions of 𝐾 other than 𝐾 itself.

2. There are no finite extensions of 𝐾 other than 𝐾 itself.

3. If 𝐿 is a field extension of 𝐾 , then 𝐾 = {𝛼 ∈ 𝐿 | 𝛼 is algebraic over 𝐾}.

4. Every 𝑓 (𝑥) ∈ 𝐾 [𝑥] splits over 𝐾 .

5. Every 𝑓 (𝑥) ∈ 𝐾 [𝑥] has a root in 𝐾 .

6. Every irreducible polynomial over 𝐾 has degree 1.

Proof. 1 =⇒ 2: This is trivial.
2 =⇒ 3: Firstly it is clear that 𝐾 ⊆ {𝛼 ∈ 𝐿 | 𝛼 is algebraic over 𝐾}. On the other hand, for all 𝛼 ∈ 𝐿 which

is algebraic over 𝐾 , 𝐾 (𝛼) is a finite extension of 𝐾 , which means 𝐾 (𝛼) = 𝐾 . Then we know 𝛼 ∈ 𝐾 .
3 =⇒ 4: Let 𝐿 be the splitting field of 𝑓 over 𝐾 . Then we know 𝐿 is algebraic over 𝐾 , which means 𝐿 = 𝐾 .
4 =⇒ 5: This is clear.
5 =⇒ 6: Let 𝑓 ∈ 𝐾 [𝑥] be irreducible. By 5, 𝑓 has a root in 𝐾 , so 𝑓 has a linear factor. Since 𝑓 is irreducible,

we know that 𝑓 must be linear, meaning that deg(𝑓 ) = 1.
6 =⇒ 1: Let 𝐿 be an algebraic extension of 𝐾 . For 𝛼 ∈ 𝐿, consider 𝑝 (𝑥) = min(𝐾, 𝛼). By 6, it holds that

deg(𝑝 (𝑥)) = 1, which means [𝐾 (𝛼) : 𝐾] = 1. Then 𝛼 ∈ 𝐾 . □

Then we can give a formal definition of algebraic closures.
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Definition 3.36 (formal definition of algebraic closures). For a field 𝐾 , if 𝐾 satisfies one of 1− 6, then we say 𝐾
is algebraically closed. If 𝐾 is an algebraic extension of 𝐹 and 𝐾 is algebraically closed, we say 𝐾 is an algebraic
closure of 𝐹 , written as 𝐹 .

Example 3.37. C is algebraically closed. But C is not an algebraic closure of Q. Now consider

𝐴 := {𝛼 ∈ C | 𝛼 is algebraic over Q} .

Then it’s not hard to verify 𝐴 is an algebraic closure of Q.

The following theorem shows the algebraic closures always exist. For the sake of simplicity, we omit the
proof.

Theorem 3.38. Let 𝐹 be a field. Then 𝐹 exists.

Based on Theorem 3.38, we know the splitting field exists.

Corollary 3.39. For all 𝑆 ⊆ 𝐹 [𝑥], there exists a splitting field of 𝑆 over 𝐹 .

Proof. For all 𝑓 ∈ 𝑆 , it is clear that 𝑓 splits over 𝐹 . Then we know 𝑋 ⊆ 𝐹 where 𝑋 is the collection of all roots of
𝑓 ∈ 𝑆 . Then we know 𝐹 (𝑋 ) ⊆ 𝐹 . Then we prove the corollary. □

Corollary 3.40. The splitting field of 𝐹 [𝑥] is 𝐹 .

Proof. Let 𝐾 be the splitting field of 𝐹 [𝑥]. It is clear that 𝐾 ⊆ 𝐾 [𝑥]. For all 𝛼 ∈ 𝐹 , 𝛼 is algebraic over 𝐹 . Then we
know the roots of min(𝐹, 𝛼) are in 𝐾 , meaning that 𝛼 ∈ 𝐾 . Then we know 𝐾 = 𝐹 . □

The following theorem is very significant.

Theorem 3.41 (Isomorphism Extension Theorem). Let 𝜎 : 𝐹 → 𝐹 ′ be a field isomorphism and 𝑆 = {𝑓𝑖 } ⊆ 𝐹 [𝑥].
Let 𝑆 ′ = {𝜎 (𝑓𝑖 )} ⊆ 𝐹 ′ [𝑥]. Assume that 𝐾 is the splitting field of 𝑆 over 𝐹 and 𝐾 ′ is the splitting field of 𝑆 ′ over 𝐹 ′.
Then there exists a field isomorphism 𝜏 : 𝐾 → 𝐾 ′ with 𝜏 |𝐹 = 𝜎 .

Corollary 3.42. Let 𝐹 be a field and 𝑆 ⊆ 𝐹 [𝑥]. Then there exists a field isomorphism between two splitting fields
of 𝑆 . In particular, two algebraic closures of 𝐹 are 𝐹 -isomorphic.

Now we introduce the normal extension.

Definition 3.43 (normal extension). Let 𝐹 < 𝐾 . We say 𝐾 is a normal extension of 𝐹 if 𝐾 is a splitting field of 𝑆
over 𝐹 for some 𝑆 ⊆ 𝐹 [𝑥].

Lemma 3.44. Let 𝐾 be an algebraic extension of 𝐹 . The followings are equivalent.

1. 𝐾 is a normal extension of 𝐹 .

2. 𝑀 is the algebraic closure of 𝐹 and 𝜏 : 𝐾 → 𝑀 is an 𝐹 -embedding. Then 𝜏 (𝐾) = 𝐾 .

3. Let 𝐹 < 𝐿 < 𝐾 < 𝑀 = 𝐹 and 𝜎 : 𝐿 → 𝑀 be an 𝐹 -embedding. Then 𝜎 (𝐿) < 𝐾 and there exists 𝜏 ∈ Gal(𝐾/𝐹 )
such that 𝜏 |𝐿 = 𝜎 .

4. For every irreducible polynomial 𝑓 (𝑥) ∈ 𝐹 [𝑥], if 𝑓 has a root in 𝐾 , then 𝑓 splits over 𝐾 .

Proof. 1 =⇒ 2: Assume that 𝑋 is the collection of roots of 𝑆 in𝑀 and then 𝐾 = 𝐹 (𝑋 ). Thus we know

𝐾 =
⋃

{𝛼1,...,𝛼𝑛 }⊆𝑋
𝐹 (𝛼1, . . . , 𝛼𝑛) .

Thus we know 𝜏 (𝐾) = 𝜏 (𝐹 (𝑋 )) = 𝐹 (𝜏 (𝑋 )). Since 𝜏 |𝑋 is a permutation of 𝑋 , then we know 𝐹 (𝜏 (𝑋 )) = 𝐹 (𝑋 ).
2 =⇒ 3: Given an 𝐹 -embedding 𝜎 : 𝐿 → 𝑀 , we know 𝜎 : 𝐿 → 𝜎 (𝐿) is an 𝐹 -homomorphism. Since 𝑀 = 𝐹 ,

meaning that 𝑀 is the splitting field of 𝐹 [𝑥] \ 𝐹 , by Theorem 3.41, there exists an 𝐹 -isomorphism 𝜎 ′ : 𝑀 → 𝑀

such that 𝜎 ′ |𝐿 = 𝜎 . Let 𝜏 := 𝜎 ′ |𝐾 . By 2, we know 𝜏 (𝐾) = 𝐾 . Thus we have

𝜎 (𝐿) = 𝜎 ′ (𝐿) ⊆ 𝜎 ′ (𝐾) = 𝜏 (𝐾) = 𝐾.
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Additionally, we know 𝜏 (𝐹 ) = 𝜎 ′ (𝐹 ) = 𝜎 (𝐹 ) = 𝐹 . Then we show 𝜏 ∈ Gal(𝐾/𝐹 ).
3 =⇒ 4: Assume that 𝛼 ∈ 𝐾 is a root of 𝑓 , and suppose that 𝛽 ∈ 𝑀 = 𝐹 is another root of 𝑓 . Let 𝐿 = 𝐹 (𝛼).

Consider 𝜎 : 𝐿 → 𝑀 such that 𝜎 : 𝛼 ↦→ 𝛽 . By 3, we know 𝜎 (𝐿) ⊆ 𝐾 . Since 𝛽 = 𝜎 (𝛼) ∈ 𝜎 (𝐿), we know 𝛽 ∈ 𝐾 . By
the arbitrary choice of 𝛽 , we conclude 𝑓 splits over 𝐾 .

4 =⇒ 1: Let

𝑆 = {min(𝐹, 𝛼) | 𝛼 ∈ 𝐾}

and 𝑋 be the collection of all roots of 𝑓 ∈ 𝑆 . By 4, we know 𝑋 ⊆ 𝐾 , meaning that 𝐹 (𝑋 ) ⊆ 𝐾 . On the other hand,
by the construction of 𝑆 , we know 𝐾 ⊆ 𝑋 , 𝐾 ⊆ 𝐹 (𝑋 ). Then we know 𝐾 = 𝐹 (𝑋 ). □

Example 3.45. Consider Q < Q( 3√2, 𝜔), 𝜔 = 𝑒2𝜋𝑖/3. Using 2 in Lemma 3.44, we know Q( 3√2, 𝜔)/Q is normal.

3.6 Separable extensions
Now we focus on some results on separable extensions.

Theorem 3.46. Let 𝐾 be an algebraic extension of 𝐹 . Then the followings are equivalent.

1. 𝐾/𝐹 is Galois.

2. 𝐾/𝐹 is normal and separable.

3. 𝐾 is a splitting field of a family of separable polynomials on 𝐹 .

Proof. 1 =⇒ 2: For all 𝛼 ∈ 𝐾 , it holds that

{𝜎 (𝛼) | 𝜎 ∈ Gal(𝐾/𝐹 )} ⊆ 𝐾.

Let {𝜎 (𝛼) | 𝜎 ∈ Gal(𝐾/𝐹 )} = {𝛼1, . . . , 𝛼𝑛}. It holds that min(𝐹, 𝛼) = min(𝐹, 𝛼𝑖 ), for all 𝑖 ∈ [𝑛].
Consider 𝑓 (𝑥) = ∏𝑛

𝑖=1 (𝑥 − 𝛼𝑖 ). Then we know

𝜎 𝑓 =

𝑛∏
𝑖=1

(𝑥 − 𝜎 (𝛼𝑖 )) = 𝑓 .

This means 𝜎 keeps the coefficients of 𝑓 stable, coef (𝑓 ) ⊆ F (Gal(𝐾 \ 𝐹 )) = 𝐹 . Then 𝑓 (𝑥) ∈ 𝐹 [𝑥], meaning that
min(𝐹, 𝛼) | 𝑓 . Obviously 𝑓 | min(𝐹, 𝛼). Then 𝑓 (𝑥) = min(𝐹, 𝛼), meaning that 𝑓 is separable on 𝐾 .

2 =⇒ 3: Consider 𝑆 = {min(𝐹, 𝛼) | 𝛼 ∈ 𝐾} and 𝐾 is the splitting field of 𝑆 on 𝐹 .
3 =⇒ 1: Assume that [𝐾 : 𝐹 ] < ∞. Let 𝑛 = [𝐾 : 𝐹 ]. If 𝑛 = 1, 𝐾 = 𝐹 , then it is trivial 𝐹 = F (Gal(𝐾/𝐹 )).

Assume that when𝑚 < 𝑛 the statement is true. Assume that 𝐾 is the splitting field of {𝑓𝑖 } on 𝐹 where each 𝑓𝑖 is
separable. Pick a root 𝛼 of 𝑓𝑖 , 𝛼 ∉ 𝐹 . Let 𝐿 = 𝐹 (𝛼). Then [𝐾 : 𝐿] < 𝑛. By hypothesis assumption, 𝐾/𝐿 is Galois.
Let 𝐻 = Gal(𝐾/𝐿). Then |𝐻 | = [𝐾 : 𝐿]. Let 𝐺 = Gal(𝐾/𝐹 ). It is trivial that 𝐻 ⊆ 𝐿. Consider 𝐺/𝐻 . Let 𝛼1, . . . , 𝛼𝑟
be different roots of min(𝐹, 𝛼) in 𝐾 . Consider the homomorphism id : 𝐹 → 𝐹 . By Theorem 3.41, there exists an
𝐹 -isomorphism 𝜏 : 𝐾 → 𝐾 . We can pick 𝜏 (𝛼) = 𝛼𝑖 for any arbitrary 𝑖 ∈ [𝑛]. We enumerate them as 𝜏1, . . . , 𝜏𝑟
and 𝜏𝑖 ∈ Gal(𝐾/𝐹 ) = 𝐺 . Note that 𝜏1𝐻, . . . , 𝜏𝑟𝐻 are different cosets, meaning that |𝐺/𝐻 | ≥ 𝑟 .

|𝐺 | = |𝐺/𝐻 | · |𝐻 | ≥ 𝑟 |𝐻 | = [𝐿 : 𝐹 ] [𝐾 : 𝐿] = [𝐾 : 𝐹 ] .

Together with the fact |𝐺 | ≤ [𝐾 : 𝐹 ], we know [𝐾 : 𝐹 ] = |𝐺 |. Since [𝐾 : 𝐹 ] < ∞, we know 𝐾/𝐹 is Galois.
Now we consider any arbitrary algebraic 𝐹 < 𝐾 . Assume that 𝐾 is the splitting field of 𝑆 on 𝐹 and any

𝑓 ∈ 𝑆 is separable. Let 𝑋 be the collection of all roots of 𝑓 ∈ 𝑆 . Then 𝐾 = 𝐹 (𝑋 ). Now we prove that for all
𝛼 ∈ F (Gal(𝐾/𝐹 )), 𝛼 ∈ 𝐹 . Since 𝐾 = 𝐹 (𝑋 ), there exists {𝛼1, . . . , 𝛼𝑛} ⊆ 𝑋 such that

𝛼 ∈ 𝐹 (𝛼1, . . . , 𝛼𝑛).

Consider the splitting field 𝐿 ⊆ 𝐾 of {min(𝐹, 𝛼𝑖 ) : ∀𝑖 ∈ [𝑛]}. Then we know 𝐿/𝐹 is Galois. Note that 𝛼 ∈ 𝐿. By
Theorem 3.41, we have

Gal(𝐿/𝐹 ) = {𝜎 |𝐿 | 𝜎 ∈ Gal(𝐾/𝐹 )} .

Then we know 𝛼 ∈ F (Gal(𝐿/𝐹 )) = 𝐹 . Then we know F (Gal(𝐿/𝐹 )) = 𝐹 , meaning that 𝐾/𝐹 is Galois. □
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3.7 Fundamental theorem of Galois theory
Now we introduce the most important theorem of Galois theory.

Theorem 3.47 (fundamental theorem of Galois theory). Let 𝐾/𝐹 be a finite Galois extension and𝐺 = Gal(𝐾/𝐹 ).
Then,

1. There exists an one-to-one mappings between all intermediate fields of 𝐾/𝐹 and all subgroups of𝐺 . Precisely,
for 𝐹 < 𝐿 < 𝐾 , we map 𝐿 to Gal(𝐾/𝐿) and for 𝐻 < 𝐺 , we map 𝐻 to F (𝐻 ).

2. For 𝐿 ↔ 𝐻 , it holds that [𝐾 : 𝐿] = |𝐻 | and [𝐿 : 𝐹 ] = [𝐺 : 𝐻 ].

3. For 𝐿 ↔ 𝐻 , 𝐻 is a normal subgroup of 𝐺 if and only if 𝐿/𝐹 is Galois. When it occurs, Gal(𝐿/𝐹 ) � 𝐺/𝐻 .

Proof. 1. We have already known that the maps 𝐿 ↦→ Gal(𝐾/𝐿) and the map 𝐻 ↦→ F (𝐻 ) give an one-to-one
correspondence from {𝐹 < 𝐿 < 𝐾 | ∃𝐻 ⊆ 𝐺, 𝐿 = F (𝐻 )} and {𝐻 < 𝐺 | ∃𝐹 < 𝐿 < 𝐾,𝐻 = Gal(𝐾/𝐿)}. What
remains to do is to prove for all 𝐹 < 𝐿 < 𝐾 , there exists 𝐻 < 𝐺 such that F (𝐻 ) = 𝐿 and for all 𝐻 < 𝐺 ,
there exists 𝐹 < 𝐿 < 𝐾 such that Gal(𝐾/𝐿) = 𝐻 .
Since 𝐾/𝐹 is Galois, we assume that 𝐾 is the splitting field of {𝑓𝑖 } on 𝐹 and each 𝑓𝑖 is separable. Then
𝐾 is the splitting field of {𝑓𝑖 } on 𝐿 and each 𝑓𝑖 is separable, meaning that 𝐾/𝐿 is Galois. Thus we know
𝐿 = F (Gal(𝐾/𝐿)).
For all 𝐻 < 𝐺 , since 𝐻 is finite, we know 𝐻 = Gal(𝐾/F (𝐻 )).

2. Since 𝐾/𝐿 is a finite Galois extension, we know that

[𝐾 : 𝐿] = |Gal(𝐾/𝐿) | = |𝐻 |.

On the other hand,

|𝐺 : 𝐻 | = |𝐺 |/|𝐻 | = [𝐾 : 𝐹 ]/[𝐾 : 𝐿] = [𝐿 : 𝐹 ] .

3. Assume that 𝐻 is the normal subgroup of 𝐺 . For all 𝛼 ∈ 𝐿, we consider min(𝐹, 𝛼). Assume that 𝛽 is
another root of min(𝐹, 𝛼). For id : 𝐹 → 𝐹 , by Theorem 3.41, we can find an 𝐹 -isomorphism 𝜎 : 𝐾 → 𝐾

such that 𝜎 (𝛼) = 𝛽 . For 𝜏 ∈ 𝐻 = Gal(𝐾/𝐿), 𝜏 |𝐿 = 𝐿. Since 𝐻 is normal, we know 𝜎−1𝜏𝜎 ∈ 𝐻 and
𝜏 (𝛽) = 𝛽 (𝜎 (𝛼)) = 𝜎𝜎−1𝜏 (𝜎 (𝛼)) = 𝜎 (𝛼) = 𝛽 . Thus 𝛽 ∈ F (𝐻 ). Then 𝛽 ∈ 𝐿, meaning that min(𝐹, 𝛼) splits
over 𝐿. That is to say, 𝐿/𝐹 is normal. Additionally, since 𝐾/𝐹 is separable, we know 𝐿/𝐹 is Galois.
Now we assume that 𝐿/𝐹 is Galois. Define 𝜃 : 𝐺 → Gal(𝐿/𝐹 ), 𝜎 ↦→ 𝜎 |𝐿 . It’s not hard to see 𝜃 is a
homomorphism. Since 𝐿/𝐹 is normal, we know 𝜎 |𝐿 = 𝐿. Thus we know

ker(𝜃 ) = {𝜎 ∈ 𝐺 | 𝜎 |𝐿 = id} = Gal(𝐾/𝐿) = 𝐻.

This implies 𝐻 is the normal subgroup. Moreover, we know 𝜃 is surjective, meaning that 𝐺/ker(𝜃 ) �
Gal(𝐿/𝐹 ), 𝐺/𝐻 � Gal(𝐿/𝐹 ).

□
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4 Finite Fields
Given a finite field 𝐹 , we know char(𝐹 ) = 𝑝 where 𝑝 is a prime number, and (𝐹 ∗ = 𝐹 \ {0} ,×) is a cyclic group.
Then, we know the extension of 𝐹 of finite degree is simple.

For 𝐹𝑝 < 𝐹 , [𝐹 : 𝐹𝑝 ] = 𝑛, assume that 𝛼1, . . . , 𝛼𝑛 are 𝐹𝑝 -basis of 𝐹 . Then we know |𝐹 | = 𝑝𝑛 .

Lemma 4.1. Every finite field is a splitting field.

Proof. Assume that 𝐹𝑝 < 𝐹𝑞 , where 𝑞 = 𝑝𝑛 . For all 𝛼 ∈ 𝐹 ∗𝑞 , we know 𝛼𝑞−1 = 1. Then for all 𝛼 ∈ 𝐹𝑞 , 𝛼 is a zero of
𝑥𝑞 − 𝑥 . Since 𝑥𝑞 − 𝑥 has at most 𝑞 zeros and (𝑥𝑞 − 𝑥)′ = −1 ≠ 0, we know all zeros of 𝑥𝑞 − 𝑥 are 𝐹𝑞 . Then we
know 𝐹𝑞 is the splitting field of 𝑥𝑞 − 𝑥 over 𝐹𝑝 . □

Recall that, every irreducible polynomial has no repeated roots. Then we know 𝐾 < 𝐿 is Galois of finite
degree, for finite fields 𝐾 < 𝐿.

Question: For all 𝑛 > 0, does there exist 𝐹𝑞 with 𝑞 = 𝑝𝑛?
The answer is yes. For all 𝑛, 𝑝, 𝑞 such that 𝑞 = 𝑝𝑛 , let 𝑓𝑞 (𝑥) = 𝑥𝑞 − 𝑥 . Then we know 𝑓𝑞 (𝑥) splits on 𝐹𝑝 and is

separable. Let 𝑅 be 𝑞 distinct zeros of 𝑓𝑞 (𝑥). For all 𝛼, 𝛽 ∈ 𝑅, it’s not hard to show 𝛼 − 𝛽 ∈ 𝑅, 𝛼𝛽−1 ∈ 𝑅. Then we
know 𝑅 is a field (𝑅 = 𝐹𝑞).

Note that, by Theorem 3.41, under the isomorphism we can say 𝐹𝑞 is unique. Now for 𝐹𝑞 < 𝐹𝑞𝑛 , we conclude:

• 𝑓𝑞𝑛 (𝑥) = 𝑥𝑞
𝑛 − 𝑥 is the determining polynomial of 𝐹𝑞𝑛 .

• 𝐹𝑞𝑛 is the splitting field of 𝑓𝑞𝑛 over 𝐹𝑞 .

• For all 𝑛 > 0, there exists 𝐹𝑞𝑛 .

• Every extension of 𝐹𝑞 must be 𝐹𝑞𝑛 for some 𝑛 ∈ N.

Since 𝐹𝑞 < 𝐹𝑞𝑛 is finitely Galois, we know��Gal(𝐹𝑞𝑛/𝐹𝑞)�� = [𝐹𝑞𝑛 : 𝐹𝑞] = 𝑛.

4.1 Subfields of a finite field
Let 𝐹𝑞 < 𝐾 < 𝐿 where 𝐾 = 𝐹𝑞𝑑 , 𝐿 = 𝐹𝑞𝑛 . Then we know

[𝐹𝑞𝑛 : 𝐹𝑞] = [𝐹𝑞𝑛 : 𝐹𝑞𝑑 ] · [𝐹𝑞𝑑 : 𝐹𝑞],

meaning that 𝑑 | 𝑛.
When 𝑑 | 𝑛, for all 𝛼 ∈ 𝐹𝑞𝑑 , we know 𝛼𝑞

𝑑

= 𝛼 . Then we show that

𝛼𝑞
𝑛

= 𝛼 (𝑞𝑑 )𝑛/𝑑 = 𝛼.

Thus we know 𝛼 ∈ 𝐹𝑞𝑛 . Then 𝐹𝑞𝑑 < 𝐹𝑞𝑛 . Combining all above, we conclude

𝐹𝑞𝑑 < 𝐹𝑞𝑛 ⇐⇒ 𝑑 | 𝑛.

We consider 𝑓𝑞𝑑 (𝑥) and 𝑓𝑞𝑛 (𝑥). If 𝐹𝑞𝑑 < 𝐹𝑞𝑛 , we know

𝑓𝑞𝑑 (𝑥) =
∏
𝛼∈𝐹

𝑞𝑑

(𝑥 − 𝛼)
����� ∏
𝛼∈𝐹𝑞𝑛

(𝑥 − 𝛼) = 𝑓𝑞𝑛 (𝑥).

Conversely, if 𝑓𝑞𝑑 (𝑥) | 𝑓𝑞𝑛 (𝑥), it is trivial to see 𝐹𝑞𝑑 < 𝐹𝑞𝑛 . Then we know

𝐹𝑞𝑑 < 𝐹𝑞𝑛 ⇐⇒ 𝑑 | 𝑛 ⇐⇒ 𝑓𝑞𝑑 | 𝑓𝑞𝑛 .
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4.2 Galois group of finite extension of finite fields
Let 𝐹𝑞 < 𝐹𝑞𝑛 and 𝐺 = Gal(𝐹𝑞𝑛/𝐹𝑞). Then |𝐺 | = 𝑛. We define an isomorphism 𝜎 : 𝐹𝑞𝑛 → 𝐹𝑞𝑛 , 𝛼 ↦→ 𝛼𝑞 . For all
𝛼 ∈ 𝐹𝑞 , we know 𝜎 (𝛼) = 𝛼𝑞 = 𝛼 . Then we know 𝜎 ∈ Gal(𝐹𝑞𝑛/𝐹𝑞). Consider F (𝜎) =

{
𝛼 ∈ 𝐹𝑞𝑛

�� 𝛼𝑞 = 𝛼
}
. Then

𝐹𝑞 ⊆ F (𝜎). Obviously |F (𝜎) | ≤ 𝑞. Then we know F (𝜎) = 𝐹𝑞 . Actually we know

F (⟨𝜎⟩) = F (𝜎) = 𝐹𝑞 .

Then we know ⟨𝜎⟩ = Gal(𝐹𝑞𝑛/𝐹𝑞). We call 𝜎 the Frobenius mapping.
For an extension, if its Galois group is cyclic, we say this extension is cyclic. Also if its Galois group is abelian,

we call this extension abelian.

4.3 Existence of irreducible polynomials
Now we answer the question: for all 𝑑 > 0, is there any irreducible polynomial with degree 𝑑 over 𝐹𝑞? The
answer is yes. For 𝐹𝑞 < 𝐹𝑞𝑑 = 𝐹𝑞 (𝛼), it holds that deg(min(𝐹𝑞, 𝛼)) = 𝑑 .

Assume that 𝑝 (𝑥) is an irreducible polynomial over 𝐹𝑞 with degree 𝑑 , and 𝑝 (𝛼) = 0. Then we know 𝐹𝑞 (𝛼) =
𝐹𝑞𝑑 . Since 𝐹𝑞 < 𝐹𝑞𝑑 is normal, we know 𝑝 (𝑥) | 𝑥𝑞𝑑 − 𝑥 . And it’s not hard to show

𝑝 (𝑥) | 𝑥𝑞𝑛 − 𝑥 ⇐⇒ 𝐹𝑞𝑑 < 𝐹𝑞𝑛 ⇐⇒ 𝑑 | 𝑛.

Assume that 𝐹𝑞 (𝛼) = 𝐹𝑞𝑑 , and𝐺 = Gal(𝐹𝑞𝑑 /𝐹𝑞) = ⟨𝜎⟩, where𝜎 : 𝛼 ↦→ 𝛼𝑞 . Thenwe know𝛼, 𝜎 (𝛼), . . . , 𝜎𝑑−1 (𝛼)
are 𝑑 distinct roots of min(𝐹𝑞, 𝛼). Then we know

min(𝐹𝑞, 𝛼) =
𝑑−1∏
𝑖=0

(𝑥 − 𝛼𝑞𝑑−1 ) .

Then we know

𝑓𝑞𝑛 (𝑥) =
∏
𝛼∈𝐹𝑞𝑛

(𝑥 − 𝛼) = 𝑝1 (𝑥) . . . 𝑝𝑚 (𝑥)

where deg(𝑝𝑖 ) | 𝑛 for all 𝑖 ∈ [𝑚].
Conversely, we know 𝑓𝑞𝑛 (𝑥) = 𝑥𝑞

𝑛 − 𝑥 can be decomposed into all monic minimal irreducible with degree
𝑑 | 𝑛.

For 𝐹𝑞 < 𝐾 < 𝐹𝑞𝑑 = 𝐹𝑞 (𝛼), we know for 𝛽 ∈ 𝐾 , its conjugate elements are 𝜎 (𝛽), . . . , 𝜎𝑑 (𝛽).

4.4 Order of irreducible polynomials

Given an irreducible polynomial 𝑝 (𝑥) and its zero 𝛼 , assume that deg(𝑝) = 𝑑 . Then we know 𝛼𝑞
𝑑−1 = 1. Assume

that 𝑜 (𝛼) = 𝑣 . Then it can be shown that 𝑜 (𝜎 (𝛼)) = 𝑜 (𝛼) = 𝑣 . Then we define 𝑜 (𝑝 (𝑥)) = 𝑜 (𝛼) = 𝑣 .
If 𝑜 (𝑝) = 𝑞𝑑 − 1, we say 𝑝 is a primitive polynomial.

4.4.1 Connection between degree and order

It’s not hard to show

𝑣 | 𝑞𝑑 − 1, 𝑞𝑑 ≡ 1(mod 𝑣).

For all 𝑛, if 𝛼𝑞𝑛 = 𝛼 , then we know 𝑞𝑛 ≡ 1(mod 𝑣). Thus we know 𝑑 ≤ 𝑛, meaning that it is the order of 𝑞 in 𝑍 ∗
𝑣 .

4.4.2 Calculate the order of a polynomial

Assume that 𝑣 = 𝑜 (𝑝). We know that

• 𝑣 | 𝑝𝑑 − 1.

• For all 𝑛 ∈ N>0, 𝑣 | 𝑛 ⇐⇒ 𝑝 (𝑥) | 𝑥𝑛 − 1.
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Then we calculate the factorization of 𝑝𝑑 − 1 as 𝑝𝑒11 . . . 𝑝
𝑒𝑚
𝑚 . Then we know

𝑣 = 𝑝
𝑓1
1 . . . 𝑝

𝑓𝑚
𝑚 , 𝑓𝑖 ≤ 𝑒𝑖∀𝑖 ∈ [𝑚] .

For 𝑖 ∈ [𝑚], we run 𝑎𝑖 = 0, 1, . . . , 𝑒𝑖 and test

𝑝 (𝑥) | 𝑥𝑝
𝑒1
1 ...𝑝

𝑎𝑖
𝑖
...𝑝

𝑒𝑚
𝑚 − 1.

If the test succeeds, we set 𝑓𝑖 = 𝑎𝑖 . Finally we get the value of 𝑣 .

4.5 Finite field arithmetic
For 𝐹𝑝 < 𝐹 = 𝐹𝑝 (𝛼) where 𝛼 ∈ 𝐹 is primitive, assume that deg(min(𝐹𝑝 , 𝛼)) = 𝑑 and 𝐹 ∗ = ⟨𝛼⟩. Then we know

𝐹 =

{
0, 1, 𝛼, . . . , 𝛼 |𝐹 |−2

}
.

On the other hand, we know

𝐹𝑝 (𝛼) =
{
𝑓 (𝛼)

�� 𝑓 ∈ 𝐹𝑝 [𝑥], deg(𝑓 ) < 𝑑
}
.

Then we know for every 0 ≤ 𝑘 ≤ |𝐹 | − 2, there exists 𝑓 ∈ 𝐹𝑝 [𝑥] such that 𝛼𝑘 = 𝑓 (𝛼).

Example 4.2. Let 𝐹2 < 𝐹24 = 𝐹16. Consider the polynomial 𝑝 (𝑥) = 𝑥4 + 𝑥 + 1 ∈ 𝐹2 [𝑥]. It’s not hard to verify 𝑝 (𝑥)
is irreducible. Let 𝛼 ∈ 𝐹2 be a zero of 𝑝 (𝑥). Then, we know the element in 𝐹16 can be represented as

Constants: 0, 1
Linear: 𝛼, 𝛼 + 1
Quadratic: 𝛼2, 𝛼2 + 1, 𝛼2 + 𝛼, 𝛼2 + 𝛼 + 1
Cubic: 𝛼3, 𝛼3 + 1, 𝛼3 + 𝛼, 𝛼3 + 𝛼 + 1, 𝛼3 + 𝛼2, 𝛼3 + 𝛼2 + 1, 𝛼3 + 𝛼2 + 𝛼, 𝛼3 + 𝛼2 + 𝛼 + 1.

For 0 ≤ 𝑘 ≤ 14, assume that 𝛼𝑘 = 𝑎3𝛼
3 + 𝑎2𝛼2 + 𝑎1𝛼 + 𝛼0. For instance, we have 𝛼4 = 𝛼 + 1. By direct calculation,

we have the following field table.

𝑘 𝑎3𝑎2𝑎1𝑎0
0 0001
1 0010
2 0100
3 1000
4 0011
5 0110
6 1100
7 1011
8 0101
9 1010
10 0111
11 1110
12 1111
13 1101
14 1001

We can use the field table to simplify the calculations.
Also, the field table can be used to find the minimal polynomial of 𝛽 ∈ 𝐹16 over 𝐹2. Firstly, for all 𝛽 ∈ 𝐹2 (𝛼)

where 𝐹2 < 𝐹2 (𝛽) < 𝐹2 (𝛼), assume that Gal(𝐹2 (𝛽)/𝐹 ) = ⟨𝜏⟩. Let 𝐿 = 𝐹2 (𝛽). Then 𝐹2 < 𝐿 < 𝐹16. For all 𝜏∗ ∈ ⟨𝜏⟩,
we know 𝜏∗ : 𝐿 → 𝐿 is an 𝐹2-isomorphism. Then we can find 𝜎∗ : 𝐹16 → 𝐹16 is an 𝐹2-isomorphism and 𝜎∗ |𝐿 = 𝜏∗.
Conversely, for any 𝜎∗ ∈ ⟨𝜎⟩, we know 𝜎∗ |𝐿 : 𝐿 → 𝐹 is an 𝐹2-embedding. Since 𝐿/𝐹2 is normal, we know 𝜎∗ |𝐿 ∈ ⟨𝜏⟩.
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Then, to find the minimal polynomial of 𝛽 , it suffices to find all conjugations of 𝛽 .{
𝛼, 𝛼2, 𝛼4, 𝛼8

}
,{

𝛼3, 𝛼6, 𝛼12, 𝛼9
}
,{

𝛼5, 𝛼10
}
,{

𝛼7, 𝛼14, 𝛼13, 𝛼11
}
.

Then we know

min(𝐹2, 𝛼) = 𝑥4 + 𝑥 + 1,min(𝐹2, 𝛼3) = 𝑥4 + 𝑥3 + 𝑥2 + 1,
min(𝐹2, 𝛼5) = 𝑥2 + 𝑥 + 1,min(𝐹2, 𝛼7) = 𝑥4 + 𝑥3 + 1.

Also we can show

𝑥16 − 𝑥 = 𝑥 (𝑥 + 1) (𝑥4 + 𝑥 + 1) (𝑥4 + 𝑥3 + 𝑥2 + 1) (𝑥2 + 𝑥 + 1) (𝑥4 + 𝑥3 + 1).

4.6 The number of irreducible polynomials of degree 𝑑
Now we want to know the number of irreducible polynomials of degree 𝑑 in 𝐹𝑝 [𝑥], denoted by 𝑁𝑞 (𝑑). Since we
know

𝑥𝑞
𝑛 − 𝑥 = 𝑝1 (𝑥) . . . 𝑝𝑚 (𝑥)

where 𝑝1, . . . , 𝑝𝑚 are all irreducible polynomials in 𝐹𝑝 [𝑥], taking zeros into consideration, we obtain

𝑞𝑛 =
∑︁
𝑑 | 𝑛

𝑑𝑁𝑞 (𝑑).

We employ the Möbius inversion. For any 𝑓 , 𝑔 satisfying

𝑔(𝑛) =
∑︁
𝑑 | 𝑛

𝑓 (𝑑),

it holds that

𝑓 (𝑛) =
∑︁
𝑑 | 𝑛

𝑔(𝑑)𝜇
(𝑛
𝑑

)
where 𝜇 is the Möbius function satisfying ∑︁

𝑑 | 𝑛
𝜇 (𝑑) = 1 [𝑛 = 1] .

Thus we know

𝑁𝑞 (𝑛) =
1
𝑛

∑︁
𝑑 | 𝑛

𝑞𝑑𝜇

(𝑛
𝑑

)
.

4.7 Factoring over Z𝑝 : Berlekamp’s algorithm
For every 𝑓 ∈ 𝐹𝑝 [𝑥] with deg(𝑓 ) = 𝑑 , we want to check whether it is irreducible. Our goal is to find 𝑔(𝑥) ∈ 𝐹𝑝 [𝑥]
of degree < 𝑑 such that 𝑓 (𝑥) | 𝑔(𝑥)𝑝 − 𝑔(𝑥).

The correctness of the method: Since

𝑥𝑝 − 𝑥 =

𝑝−1∏
𝑖=0

(𝑥 − 𝑖),
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we know

𝑔(𝑥)𝑝 − 𝑔(𝑥) =
𝑝−1∏
𝑖=0

(𝑔(𝑥) − 𝑖).

In an UFD, if 𝑎 | 𝑏1 . . . 𝑏𝑘 and for all distinct 𝑖, 𝑗 , 𝑏𝑖 and 𝑏 𝑗 are relative prime, then (assume that 𝑎 = 𝑝
𝑒1
1 . . . 𝑝

𝑒𝑚
𝑚 )

for all 𝑖 ∈ [𝑚], there exists 𝑏 𝑗 such that 𝑝𝑒𝑖
𝑖

| 𝑏 𝑗 . Thus we know

𝑎 = 𝑝
𝑒1
1 . . . 𝑝

𝑒𝑚
𝑚 |

𝑘∏
𝑗=1

gcd(𝑎, 𝑏 𝑗 ).

Conversely, we know

𝑘∏
𝑗=1

gcd(𝑎, 𝑏 𝑗 ) | 𝑎.

Then we know

𝑎 =

𝑘∏
𝑗=1

gcd(𝑎, 𝑏 𝑗 ).

Then we know 𝑓 (𝑥) = ∏𝑝−1
𝑗=0 gcd(𝑓 , 𝑔 − 𝑗).

The algorithm: Let 𝑔(𝑥) = ∑𝑑−1
𝑖=0 𝑔𝑖𝑥

𝑖 . Then by direct calculation, it holds that

𝑔(𝑥)𝑝 − 𝑔(𝑥) =
𝑑−1∑︁
𝑖=0

𝑔𝑖 (𝑥𝑖𝑝 − 𝑥𝑖 ).

Assume that 𝑥𝑖𝑝 = 𝑎𝑖 𝑓 (𝑥) + 𝑟𝑖 (𝑥) where deg(𝑟𝑖 ) < 𝑑 . Then

𝑓 | 𝑔𝑝 − 𝑔 ⇐⇒ 𝑓 |
𝑑−1∑︁
𝑖=0

𝑔𝑖 (𝑟𝑖 (𝑥) − 𝑥𝑖 ) ⇐⇒
𝑑−1∑︁
𝑖=0

𝑔𝑖 (𝑟𝑖 (𝑥) − 𝑥𝑖 ) = 0.

Let 𝑟𝑖 (𝑥) =
∑𝑑−1
ℓ=0 𝑟𝑖ℓ𝑥

ℓ . Then, let𝑀 = (𝑟𝑖 𝑗 )𝑖 𝑗 , 𝐺⊤ = (𝑔0, . . . , 𝑔𝑑−1). Then we know

(𝑀⊤ − 𝐼 )𝐺 = 0.

Solving this linear equations, we can obtain 𝑔 or show 𝑓 is irreducible.
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5 Roots of Unity

Nowwe focus on the roots of𝑥𝑛−1. We have already known the roots of𝑥𝑛−1 overC is
{
𝑒𝑘

2𝜋𝑖
𝑛

��� 𝑘 = 0, 1, . . . , 𝑛 − 1
}
.

Definition 5.1. Given a field 𝐹 , we say the roots of 𝑥𝑛 − 1 over 𝐹 on 𝐹 are the 𝑛-th roots of the unity over 𝐹 .
Furthermore, for an 𝑛-th root 𝜔 , if order(𝜔) = 𝑛 on 𝐹 , we say 𝜔 is a primitive 𝑛-th root. Under this case, we

say 𝐹 < 𝐹 (𝜔) is a cyclotomic extension.

Remark 5.2. If 𝜔 is a primitive 𝑛-th root, then we know char(𝐹 ) ̸ | 𝑛. Assume that 𝑛 =𝑚𝑝 . Then we know

𝑥𝑛 − 1 = 𝑥𝑚𝑝 − 1 = (𝑥𝑚 − 1)𝑝 ,

meaning that 𝜔 is an𝑚-th root of the unity over 𝐹 . Then we know 𝑝 ̸ | 𝑛.
If 𝜔 is the 𝑛-th root, it holds that order(𝜔) | 𝑛.

Let 𝑈𝑛 :=
{
𝜔 ∈ 𝐹

��� 𝜔𝑛 − 1 = 0
}
. It’s not hard to see 𝑈𝑛 is a group. Furthermore, 𝑈𝑛 is a subgroup of 𝐹 ∗.

Recall that, a finite subgroup of the multiplication group 𝐹 ∗ of a field 𝐹 is cyclic. Then we have the following
proposition.

Proposition 5.3. 𝑈𝑛 is cyclic. That is to say, there exists a generator 𝜔 ∈ 𝑈𝑛 such that𝑈𝑛 = ⟨𝜔⟩.

Recall the Euler function 𝜑 (𝑛). Then we know the group

Z∗𝑛 := {𝑎 ∈ Z𝑛 | (𝑎, 𝑛) = 1} .

Then we know
��Z∗𝑛 �� = 𝜑 (𝑛).

Lemma 5.4. Suppose that char(𝐹 ) ̸ | 𝑛. Let𝐾 be the splitting field of 𝑥𝑛−1 over 𝐹 . Then we know𝐾/𝐹 is Galois, and
𝐾 = 𝐹 (𝜔) where𝜔 is the primitive 𝑛-th root. Furthermore, there exists a subgroup 𝑆 of Z∗𝑛 such that Gal(𝐾/𝐹 ) � Z∗𝑛 .
Thus we know Gal(𝐾/𝐹 ) is abelian and [𝐾 : 𝐹 ] | 𝜑 (𝑛).

Proof. Since (𝑥𝑛 − 1)′ = 𝑛𝑥𝑛−1 ≠ 0 for all 𝑥 ≠ 0 ∈ 𝐹 . Then we know 𝑥𝑛 − 1 has repetitive roots. Then we know
𝐾/𝐹 is separable. It is trivial that 𝐾/𝐹 is normal. Then we conclude 𝐾/𝐹 is Galois.

Let𝑈𝑛 be the collection of roots of 𝑥𝑛 − 1 and 𝜔 be a primitive 𝑛-th root. Then 𝐾 = 𝐹 (𝑈𝑛) = 𝐹 (𝜔). Consider
a mapping 𝑓 : Gal(𝐾/𝐹 ) → Z∗𝑛 where for all 𝜎 ∈ Gal(𝐾/𝐹 ), 𝜎 (𝜔) = 𝜔𝑖 and order(𝜔𝑖 ) = 𝑛 = 𝑛

(𝑛,𝑖 ) . Then we
know (𝑖, 𝑛) = 1. We denote by 𝜎𝑖 this mapping. We let 𝑓 (𝜎𝑖 ) = 𝑖 and ker(𝑓 ) = {id}. Then we know there exists
some 𝑆 < Z∗𝑛 such that Gal(𝐾/𝐹 ) � Z∗𝑛 . □

Example 5.5. We know 𝑖 is the primitive 4-th root. Then we know [Q(𝑖) : Q] = 2. Then we know

Gal(Q(𝑖)/Q) � Z∗4 = {1, 3} .

Example 5.6. For the field F2, 𝜔 is the primitive 3-rd root: 𝜔3 − 1 = 0. Then we know

min(F2, 𝜔) = 𝑥2 + 𝑥 + 1.

And the roots of 𝑥2 + 𝑥 + 1 are {𝜔,𝜔 + 1}. Then we know [F2 : F] = 2.

Gal(F2 (𝜔)/F2) � Z∗3 = {1, 2} .

Example 5.7. For the field F2, 𝜌 is the primitive 7-th root of 𝜌7 − 1. Then we know

𝑥7 − 1 = (𝑥 − 1) (𝑥3 + 𝑥 + 1) (𝑥3 + 𝑥2 + 1).

Then we know 𝜌 is the root of 𝑥3 + 𝑥 + 1 or 𝑥3 + 𝑥2 + 1. It holds that

[F2 (𝜌) : F2] = 3 =⇒ |Gal(F2 (𝜌)/F2)) | = 3.

Then we know Gal(F2 (𝜌)/F2) ⫋ Z∗7.

Definition 5.8. Given a field 𝐹 , let𝑄𝑛 =
∏
𝜔 (𝑥 −𝜔𝑖 ) where 𝜔𝑖 are all primitive 𝑛-th root be the 𝑛-th cyclotomic

polynomial. It’s not hard to see deg(𝑄𝑛) = 𝜑 (𝑛).
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It holds that for all 𝑛 ∈ N,

𝑥𝑛 =
∏
𝑑 | 𝑛

𝑄𝑑 (𝑥).

Theorem 5.9. 𝑄𝑑 (𝑥) is monic and all coefficients of 𝐹 lie on the prime subfield of 𝐹 .

Proof. It’s easy to show 𝑄𝑑 (𝑥) is monic. Now we prove the second statement by induction. For 𝑛 = 1, it’s not
hard to see 𝑄𝑑 (𝑥) = 1. For all prime number 𝑝 ,

𝑄𝑝 (𝑥) =
𝑥𝑝 − 1
𝑥 − 1 = 𝑥𝑝−1 + 𝑥𝑝−2 + . . . + 1.

Consider 𝑄𝑛 (𝑥). Assume that for all 𝑑 | 𝑛 with 𝑑 < 𝑛, the coefficients of 𝑄𝑑 (𝑥) lie on the prime subfield of 𝐹 .

𝑥𝑛 − 1 =
∏
𝑑 | 𝑛

𝑄𝑑 (𝑥) = 𝑄𝑛 (𝑥)
∏

𝑑 | 𝑛,𝑑<𝑛
𝑄𝑑 (𝑥) .

Assume that 𝑅(𝑥) = ∏
𝑑 | 𝑛,𝑑<𝑛 𝑄𝑑 (𝑥). Then all coefficients of 𝑅(𝑥) lie on the prime subfield of 𝐹 . Assume that

𝑄𝑛 (𝑥) =
𝑚1∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 , 𝑅(𝑥) =

𝑚2∑︁
𝑖=0

𝑏𝑖𝑥
𝑖 .

Assume that 𝑎𝑚′ does not lie on the prime subfield of 𝐹 and𝑚′ is maximal. Consider the coefficient of 𝑥𝑚′+𝑚2 .
Thus we know

𝑎′𝑚𝑏𝑚2 + 𝑎𝑚′+1𝑏𝑚2−1 + . . . + 𝑎𝑚1𝑏𝑚2−𝑚1+𝑚′

lies on the prime subfield of 𝐹 , meaning that 𝑎′𝑚𝑏𝑚2 lies on the prime subfield of 𝐹 . □

Recall the Gaussian lemma: let 𝑅 be an UFD and 𝑅′ be the quotient field of 𝑅. For all 𝑓 (𝑥) ∈ 𝑅 [𝑥], if
𝑓 (𝑥) = 𝑝 (𝑥)ℎ(𝑥), 𝑝 ∈ 𝑅 [𝑥] primitive and ℎ(𝑥) ∈ 𝑅′ [𝑥]. Then we know ℎ ∈ 𝑅 [𝑥]. Thus we know the following
result.

Proposition 5.10. All coefficients of 𝑄𝑛 (𝑥) lie on Z.

Also there exists another polynomial.

Proof. Let 𝑥𝑛 = 𝑄𝑛 (𝑥)𝑅(𝑥) and 𝑅 ∈ Z[𝑥] (by induction). Assume that

𝑥𝑛 − 1 = 𝑞(𝑥)𝑅(𝑥) + 𝑟 (𝑥) 𝑝, 𝑟 ∈ Z[𝑥], deg(𝑟 ) < 𝑑𝑒𝑔(𝑅).

Then we know (𝑄𝑛 (𝑥) − 𝑞(𝑥))𝑅(𝑥) = 𝑟 (𝑥), meaning that 𝑄𝑛 (𝑥) = 𝑞(𝑥). □

For F𝑞 < F𝑞𝑛 , it holds that

𝑥𝑞
𝑛−1 − 1 =

∏
𝛼∈F∗

𝑞𝑛

(𝑥 − 𝛼) =
∏

𝑑 | 𝑞𝑛−1
𝑝𝑑,1 (𝑥) . . . 𝑝𝑑,𝑘𝑑 (𝑥)

where for all 𝑖 ∈ [𝑘𝑑 ], order(𝑝𝑑,𝑘𝑖 ) = 𝑑 . Thus we can show

𝑄𝑑 (𝑥) = 𝑝1 (𝑥) . . . 𝑝𝑘 (𝑥)

where all 𝑝𝑖 (𝑥) are of order 𝑑 .
The following theorem is very interesting and of great significance.

Theorem 5.11. For the field Q, 𝑄𝑛 (𝑥) is irreducible.

Then we know that Gal(Q(𝜔)/Q) � Z∗𝑛 for any primitive 𝑛-th root 𝜔 .
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6 Algebraic Coding Theory
Now we introduce an application of finite field: algebraic coding theory. Firstly we state some basic concepts and
some informal introductions here.

Consider the field F2. For every ‘legal’ 0/1-string, we call it a codeword. Let 𝑘 be the number of bits of the
information, 𝑟 be the number of verification bits, and 𝑛 = 𝑘 + 𝑟 be the length of codewords. The collection of all
2𝑘 codewords forms the code.

There exists another view for the codes. We can see all 0/1-strings of length 𝑛 as the vector space over F2
with dimension 𝑛, and the space of the codes is some sub-space of this vector space with dimension 𝑘 .

To describe the efficiency of the codes, we define

Rate = 𝑘

𝑛
.

• Repetition Code: When 𝑘 = 1, we repeat the bit for 𝑟 times. The decoding process is quite simple: we
only choose the majority. And Rate = 1/𝑛, which is very low.

• Single Parity-Check Code: For a piece of information 𝑐1𝑐2 . . . 𝑐𝑘 , we let 𝑟 = 1, and

𝑐𝑘+1 :=
𝑘∑︁
𝑖=1

𝑐𝑖 .

If there exist odd number of errors, then the decode will fail. Otherwise the decode is wrong. And Rate =
𝑛−1
𝑛

= 1 − 1
𝑛
.

Now we introduce the formal definition of the algebraic coding. We consider F𝑞𝑛 as a vector space of dimen-
sion 𝑛 over F𝑞 . Usually we denote it by𝑉𝑞 [𝑛]. When the context is clear, we also use𝑉 [𝑛]. Also we assume that
(𝑛, 𝑞) = 1.

Definition 6.1 (linear code). For a vector sub-space𝐶 of𝑉𝑞 [𝑛], we say𝐶 is a linear code. Let 𝑘 be the dimension
of 𝐶 . Then we denote 𝐶 by 𝑉𝑞 [𝑛, 𝑘] or [𝑛, 𝑘].

Definition 6.2 (weight and distance). For every 𝑐 ∈ 𝐶 , we define the weight of 𝑐 as the number of non-zero
element in 𝑐 . For 𝑐1, 𝑐2 ∈ 𝐶 , we define the distance 𝑑 (𝑐1, 𝑐2) between 𝑐1 and 𝑐2 as the weight of 𝑐1 − 𝑐2. Moreover,
let

𝑑 = min(𝐶) := min
𝑐1≠𝑐2∈𝐶

𝑑 (𝑐1, 𝑐2).

Also we denote 𝐶 = [𝑛, 𝑘] by [𝑛, 𝑘, 𝑑].

6.1 Cyclic code
Now we focus a family of codes named cyclic code.

Definition 6.3 (cyclic code). For a linear code𝐶 ⊆ 𝑉𝑞 [𝑛], we say𝐶 is a cyclic code if for every 𝑐0𝑐1 . . . 𝑐𝑛−1 ∈ 𝐶 ,
𝑐𝑛−1𝑐0𝑐1 . . . 𝑐𝑛−2 ∈ 𝐶 .

Now we use the polynomials to express codes. For a codeword 𝑐0𝑐1 . . . 𝑐𝑛−1, let

𝜑 (𝑐0 . . . 𝑐𝑛−1) := 𝑐0 + 𝑐1𝑥 + . . . 𝑐𝑛−1𝑥𝑛−1 .

It is obvious to see 𝜑 : 𝐶 → F≤𝑛−1𝑞 [𝑥] is injective.
Consider F𝑞 [𝑥]/⟨𝑥𝑛 − 1⟩. Let 𝑅𝑛 = F𝑞 [𝑥]/⟨𝑥𝑛 − 1⟩. Then it’s not hard to show, for all 𝑝 ∈ 𝜑 (𝐶) and 𝑟 ∈ 𝑅𝑛 ,

𝑝 (𝑥)𝑟 (𝑥) ∈ 𝑅𝑛 , meaning that 𝜑 (𝐶) is an ideal of 𝑅𝑛 . Then we know

𝐶 is a cyclic code in 𝑉𝑞 [𝑛] ⇐⇒ 𝜑 (𝐶) is an ideal of 𝑅𝑛 .

• Another fact is 𝑅𝑛 is a principle integral domain. Let 𝑔(𝑥) ∈ 𝐶 be the monic polynomial with minimal
degree. Thus we know ⟨𝑔(𝑥)⟩ ⊆ 𝐶 . For every 𝑓 ∈ 𝐶 , assume that

𝑓 (𝑥) = 𝑞(𝑥)𝑔(𝑥) + 𝑟 (𝑥), 𝑞(𝑥) ∈ 𝑅𝑛, 𝑟 = 0 ∨ deg(𝑟 ) < deg(𝑔).

Then we know 𝑟 (𝑥) = 0. Thus we know 𝐶 = ⟨𝑔⟩.
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• Since 𝑥𝑛 − 1 = 0 ∈ 𝐶 = ⟨𝑔⟩, we know 𝑔 | 𝑥𝑛 − 1.

• Let deg(𝑔) = 𝑟 . We define dim(𝐶) = 𝑛 − 𝑟 . Since

𝐶 = {𝑓 (𝑥)𝑔(𝑥) | 𝑓 ∈ 𝑅𝑛} ,

we call 𝑔(𝑥) the generating polynomial of 𝐶 . It’s not hard to show 𝑥0𝑔(𝑥), . . . , 𝑥𝑛−𝑟−1𝑔(𝑥) is a basis of 𝐶 .

• For all 𝑝 (𝑥) | 𝑥𝑛 − 1, we will show 𝑝 (𝑥) could be a generating polynomial. Let ⟨𝑝 (𝑥)⟩ = 𝐶 = ⟨𝑔(𝑥)⟩ and
deg(𝑔) < deg(𝑝). We pick 𝑔(𝑥) as the one of minimal degree. Since 𝑔 ∈ ⟨𝑝⟩, there exists 𝑎 ∈ 𝑅𝑛 such that
𝑔 = 𝑝𝑎. Assume that 𝑥𝑛 − 1 = 𝑝 (𝑥) 𝑓 (𝑥). Then we know 𝑔(𝑥) 𝑓 (𝑥) = 𝑝 (𝑥)𝑎(𝑥) 𝑓 (𝑥) = 0 over 𝑅𝑛 . But this is
impossible.
To emphasize 𝑔(𝑥) is the monic polynomial of minimal degree, we use the notation 𝐶 = ⟨⟨𝑔(𝑥)⟩⟩. And if
𝑥𝑛 − 1 = 𝑔(𝑥)ℎ(𝑥), we call ℎ(𝑥) the parity-checking polynomial.

• It’s not hard to show

⟨𝑔(𝑥)⟩ = {𝑝 (𝑥) ∈ 𝑅𝑛 | 𝑝 (𝑥)ℎ(𝑥) = 0} .

6.1.1 Zeros of the cyclic code

Let 𝑥𝑛 − 1 =𝑚1 (𝑥) . . .𝑚𝑡 (𝑥) where for every 𝑖 ,𝑚𝑖 (𝑥) is irreducible over F𝑞 . Consider the zero 𝛼 ∈ F𝑞 of𝑚𝑖 (𝑥)
(𝑚𝑖 (𝛼) = 0). For every 𝑓 ∈ F𝑞 [𝑥], it holds that

𝑓 (𝛼) = 0 ⇐⇒ 𝑓 (𝑥) = 𝑎(𝑥)𝑚𝑖 (𝑥)

meaning that

𝑓 (𝛼) = 0 ⇐⇒ 𝑓 ∈ ⟨⟨𝑚𝑖 (𝑥)⟩⟩.

For𝑚1 (𝑥), . . . ,𝑚𝑡 (𝑥) and 𝛼1, . . . , 𝛼𝑡 satisfying min(F𝑞, 𝛼𝑖 ), then we consider

𝑔(𝑥) = lcm(𝑚1 (𝑥), . . . ,𝑚𝑡 (𝑥))

and thus we know

⟨⟨𝑔(𝑥)⟩⟩ = {𝑓 ∈ 𝑅𝑛 | ∀𝑖 ∈ [𝑡], 𝑓 (𝛼𝑖 ) = 0} .

Let 𝑓 =
∑𝑛−1
𝑖=0 𝑓𝑖𝑥

𝑖 . Thus we know 
𝛼01 𝛼11 . . . 𝛼𝑛−11
...

. . .
...

𝛼0𝑡 𝛼1𝑡 . . . 𝛼𝑛−1𝑡



𝑓0
...

𝑓𝑛−1

 =


0
...

0

 .
6.2 Hamming code
We set 𝑛 = 2𝑟 − 1 and assume that F∗2𝑟 = ⟨𝜔⟩. Then we know 𝜔 is the primitive (2𝑟 − 1)-th root of unity. Thus
we know F2𝑟 = F2 (𝜔) and the parity-check matrix

𝐻 =
[
𝜔0 . . . 𝜔𝑛−2

]
.

Then we know 𝐶 = {𝑓 ∈ 𝑅𝑛 | 𝑓 (𝜔) = 0}.

6.3 Bose-Chaudhuri-Hocquenghem code
Now we introduce BCH codes.
Definition 6.4 (BCH code). For a field F𝑞 and 𝑅𝑛 = F𝑞 [𝑥]/⟨𝑥𝑛 − 1⟩, let 𝜔 be the primitive 𝑛-th root of unity, and

𝑔(𝑥) := lcm(min(F𝑞, 𝜔𝑏), . . . ,min(F𝑞, 𝜔𝑏+𝛿−2)), 𝑏 ≥ 0, 𝛿 ≥ 1.

Then we say 𝐶 = ⟨⟨𝑔(𝑥)⟩⟩ is the BCH code with parameters 𝑞, 𝑛, 𝜔,𝑏, 𝛿 , denoted by 𝐵𝑞 (𝑛,𝜔,𝑏, 𝛿).
When 𝑏 = 1, it is the typical BCH code. When 𝑛 = 𝑞𝑠 − 1, we call it the primitive BCH code.

Theorem 6.5. Let 𝐶 = 𝐵𝑞 (𝑛,𝜔,𝑏, 𝛿). Then min(𝐶) ≥ 𝛿 .
Remark 6.6. To correct𝑚 errors, we need to set 𝛿 = 2𝑚 + 1.
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6.3.1 Decoding for 2-ary BCH code

Consider the codeword 𝑐0, . . . , 𝑐𝑛−1. Let 𝑐 (𝑥) =
∑𝑛−1
𝑖=0 𝑐𝑖𝑥

𝑖 . Assume that we receive𝑢 (𝑥) and the error polynomial
is 𝑒 (𝑥). Then 𝑢 (𝑥) = 𝑐 (𝑥) + 𝑒 (𝑥).

For the parity-check matrix

𝐻 =


1 𝜔 . . . 𝜔𝑛−1

1 𝜔2 . . . 𝜔2(𝑛−1)

...
. . .

...

1 𝜔𝛿−1 . . . 𝜔 (𝛿−1) (𝑛−1)


,

we know that 𝑐 (𝜔 𝑗 ) = 0. Assume that we need to correct𝑤 errors. Then 𝛿 = 2𝑤 + 1. Let

𝑢1 = 𝑢 (𝜔) = 𝑒 (𝜔), 𝑢3 = 𝑢 (𝜔3) = 𝑒 (𝜔3), . . . , 𝑢2𝑤−1 = 𝑒 (𝜔2𝑤−1).

Assume that 𝑒 (𝑥) = ∑𝑤
𝑗=1 𝑥

𝑖 𝑗 . Then we know

𝑢1 =
𝑤∑︁
𝑗=1

𝜔𝑖 𝑗 , . . . , 𝑢2𝑤−1 =
𝑤∑︁
𝑗=1

𝜔 (2𝑤−1)𝑖 𝑗 .

Let 𝑋 𝑗 = 𝜔𝑖 𝑗 . Then we know

𝑢1 =
𝑤∑︁
𝑗=1

𝑋 𝑗 , . . . , 𝑢2𝑤−1 =
𝑤∑︁
𝑗=1

𝑋 2𝑤−1
𝑖 𝑗

.

Define ℓ (𝑥) := ∏𝑤
𝑗=1 (1 − 𝑋 𝑗𝑥) and assume that ℓ (𝑥) = ∑𝑤

𝑖=0 𝜎𝑖𝑥
𝑖 . Thus we know

1 0 0 0 0 0 . . . 0
𝑢2 𝑢1 1 0 0 0 . . . 0
𝑢4 𝑢3 𝑢2 𝑢1 1 0 . . . 0
...

. . . 0
𝑢2𝑤−2 𝑢2𝑤−3 . . . 𝑢𝑤−1



𝜎1
𝜎2
...

𝜎𝑤


=


𝑢1
𝑢3
...

𝑢2𝑤−1


To get 𝑒 (𝜔2𝑗 ), note that 𝑒 (𝜔2𝑗 ) = (𝑒 (𝜔 𝑗 ))2 over F2.

6.4 Reed-Solomon code
For 𝐵𝑞 (𝑛,𝜔,𝑏, 𝛿), let 𝑛 = 𝑞 − 1. Then we call this code Reed-Solomon code (RS code). Then we know the zeros of
𝑥𝑛 − 1 is F∗𝑞 , and F∗𝑞 = ⟨𝜔⟩. Then,

𝑔(𝑥) = (𝑥 − 𝜔) . . . (𝑥 − 𝜔𝛿−1),

meaning that deg(𝑔) = 𝛿 − 1, dim(𝐵𝑞 (𝑞 − 1, 1, 𝜔, 𝛿)) = 𝑛 − (𝛿 − 1) = 𝑞 − 𝛿 .
To encode the message 𝑎0, . . . , 𝑎𝑘−1, let 𝑎(𝑥) =

∑𝑘−1
𝑖=0 𝑎𝑖𝑥

𝑖 . Then we know the codeword is 𝑐 (𝑥) = 𝑎(𝑥)𝑔(𝑥).

6.4.1 Original definition of RS code

For the sake of convenience, we introduce a simpler but equivalent definition for RS code. We focus on 𝐵𝑞 (𝑛 =

𝑞 − 1, 𝑏 = 0, 𝜔, 𝑑). For a message 𝑎0, . . . , 𝑎𝑘−1 ∈ F𝑞 , let 𝑎(𝑥) =
∑𝑘−1
𝑖=0 𝑎𝑖𝑥

𝑖 . Then we let the codeword to be

𝑐 (𝑥) :=
𝑛−1∑︁
𝑗=0

𝑎(𝜔 𝑗 )𝑥 𝑗 .

Consider the parity-check matrix

𝐻 =


1 𝜔0 . . . 𝜔0

1 𝜔 . . . 𝜔𝑛−1

...
. . .

...

1 𝜔𝑑−2 . . . 𝜔 (𝑑−2) (𝑛−1)


.
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We need to show 𝑐 (𝜔0) = 𝑐 (𝜔) = . . . = 𝑐 (𝜔𝑑−2) = 0. For convenience, we set 𝑎(𝑥) = ∑𝑛−1
𝑖=0 𝑎𝑖𝑥

𝑖 where 𝑎𝑖 = 0 for
𝑖 ≥ 𝑘 .

Lemma 6.7. For 𝑝 (𝑥) = 𝑝0 + 𝑝1𝑥 + . . . + 𝑝𝑛−1𝑥𝑛−1 ∈ F𝑞 [𝑥] and 𝜔 is the primitive 𝑛-th root of unity. Then

𝑝𝑖 =
1
𝑛

𝑚−1∑︁
𝑗=0

𝑝 (𝜔 𝑗 )𝜔−𝑖 𝑗 .

Proof. By direct calculation, for every 𝑝𝑖 ,

1
𝑛

𝑚−1∑︁
𝑗=0

𝑝 (𝜔 𝑗 )𝜔−𝑖 𝑗 =
1
𝑛

𝑛−1∑︁
𝑗=0

(
𝑛−1∑︁
𝑘=0

𝑝𝑘𝜔
𝑗𝑘

)
𝜔−𝑖 𝑗

=
1
𝑛

𝑛−1∑︁
𝑘=0

𝑝𝑘

𝑛−1∑︁
𝑗=0

𝜔 𝑗 (𝑘−𝑖 )

=
1
𝑛
𝑝𝑖

𝑛−1∑︁
𝑗=0

𝜔0 + 1
𝑛

∑︁
𝑘≠𝑖

𝑝𝑘

𝑛−1∑︁
𝑗=0

𝜔 𝑗 (𝑘−𝑖 )

= 𝑝𝑖 +
1
𝑛

∑︁
𝑘≠𝑖

𝑝𝑘
𝜔𝑛 (𝑘−𝑖 ) − 1
𝜔𝑘−𝑖 − 1

= 𝑝𝑖 .

□

By Lemma 6.7, we know

𝑎𝑖 =
1
𝑛

𝑛−1∑︁
𝑗=0

𝑎(𝜔 𝑗 )𝜔−𝑖 𝑗

=
1
𝑛
𝑐 (𝜔−𝑖 )

meaning that 𝑐 (𝜔 𝑗 ) = 𝑛𝑎𝑛− 𝑗 = 0, for all 0 ≤ 𝑗 ≤ 𝑑 − 2 = 𝑛 − 𝑘 . For the decoding, we directly use 𝑎𝑖 = 1
𝑛
𝑐 (𝜔𝑛−𝑖 ).
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7 Collection of All Homeworks
The followings are all homework of this course.
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APPLIED ALGEBRAIC — HOMEWORK 1

ZHIDAN LI

Problem 1. Prove that every Euclidean domain is a principal integral domain.

Proof. Let (𝑅, +, ·) be a Euclidean domain with zero 0 and Euclidean function 𝑣 . For all ideal 𝐼 of 𝑅, we
will show 𝐼 is a principal ideal. Without loss of generality we assume 𝐼 ≠ {0}. Assume that 𝑎 ∈ 𝐼 \ {0}
with the smallest value, i.e., 𝑣 (𝑎) is the smallest in 𝐼 .

For every 𝑏 ∈ 𝐼 , since 𝑅 is an Euclidean domain, it holds that there exists 𝑞, 𝑟 ∈ 𝑅 such that
𝑏 = 𝑞𝑎 + 𝑟, 𝑟 = 0 ∨ 𝑣 (𝑟 ) < 𝑣 (𝑎).

When 𝑟 ≠ 0, it holds that 𝑟 = 𝑏 −𝑞𝑎. Since 𝐼 is an ideal, it holds that 𝑞𝑎 ∈ 𝐼 , which means 𝑏 −𝑞𝑎 ∈ 𝐼 , or
equivalently 𝑟 ∈ 𝐼 . However, since 𝑣 (𝑟 ) < 𝑣 (𝑎) and 𝑣 (𝑎) is the smallest in 𝐼 , this leads to a contradiction.
Thus 𝑟 = 0. Then 𝑏 = 𝑞𝑎 for all 𝑏 ∈ 𝐼 . This means 𝐼 is the principal ideal generated by 𝑎. Then we
know (𝑅, +, ·) is a principal integral domain. □

Problem 2. Prove that every principal integral domain is a unique factorization domain.

Proof. For a principal integral domain (𝑅, +, ·), we prove it is an UFD by the following steps:
(1) Every element 𝑎 ∈ 𝑅 \ {0} (not unit) can be expressed as 𝑎 = 𝑝1 . . . 𝑝𝑛 where 𝑝𝑖 is irreducible

for all 𝑖 ∈ [𝑛].
(2) Every irreducible element in 𝑅 is prime.
(3) 𝑎 = 𝑝1 . . . 𝑝𝑛 is “unique” (the definition in UFD).

We prove them step by step.
Proof of (1) To prove (1), assume that there exists an element 𝑎 ∈ 𝑅 \ {0} such that 𝑎 is not a unit and

cannot be decomposed as product of finite irreducible elements. Then 𝑎 is reducible, which
means there exists 𝑎1, 𝑏1 ∈ 𝑅 such that 𝑎 = 𝑎1𝑏1, and neither 𝑎1 nor 𝑏1 are unit. Since 𝑎 cannot
be decomposed as product of finite irreducible elements, either 𝑎1 or 𝑏1 cannot be a product of
finite irreducible elements (otherwise, 𝑎 can be decomposed). Without loss of generality, let 𝑎1
be such an element. Since 𝑎1 | 𝑎, it holds that (𝑎) ⊂ (𝑎1). Do the similar thing for 𝑎1 and so on.
Then we obtain 𝑎0 = 𝑎, 𝑎1, 𝑎2, . . . such that

(𝑎0) ⊂ (𝑎1) ⊂ (𝑎2) ⊂ . . .

Consider 𝐼 :=
⋃

𝑛≥0(𝑎𝑛), and we can show that, for all 𝑏 ∈ 𝑅, 𝑐 ∈ 𝐼 , there exists some𝑚 ≥ 0
such that 𝑐 ∈ (𝑎𝑚) and 𝑏𝑐, 𝑐𝑏 ∈ (𝑎𝑚) ⊆ 𝐼 , which means 𝐼 is an ideal of 𝑅. Since 𝑅 is a PID, we
know 𝐼 = (𝑎). Additionally, since 𝑎 ∈ 𝐼 = ⋃

𝑛≥0(𝑎𝑛), there exists 𝑛 ∈ ℕ≥0 such that 𝑎 ∈ (𝑎𝑛).
This show for every 𝑗 ≥ 𝑛, (𝑎 𝑗 ) = (𝑎), which leads to a contradiction. Then we know every
element 𝑎 can be decomposed as a product of finite irreducible elements.

Proof of (2) To show every irreducible element 𝑝 ∈ 𝑅 is prime, it suffices to show that, in PID, a non-zero
ideal is maximal if and only if it is prime. When 𝐼 is a maximal ideal, suppose that 𝐼 is not prime.
Then there exists 𝑎, 𝑏 ∈ 𝑅 \ 𝐼 such that 𝑎𝑏 = 𝑏𝑎 ∈ 𝐼 . Consider the minimal ideal 𝐼 ′ containing
𝐼 ∪ {𝑎}. Clearly 𝐼 ⊂ 𝐼 ′, which means 𝐼 ′ = 𝑅. On the other hand,

𝐼 ′ := {𝑥 + 𝑎𝑟 | 𝑥 ∈ 𝐼 , 𝑟 ∈ 𝑅} .
This means 1 = 𝑥1 + 𝑎𝑟1 for some 𝑥1 ∈ 𝐼 and 𝑟1 ∈ 𝑅. Then

𝑏 = 𝑏1 = 𝑏𝑥1 + 𝑏𝑎𝑟1 ∈ 𝐼
which leads to a contradiction. Then we show 𝐼 is prime.

When 𝐼 = (𝑝) is prime, we need to show
(𝑝) ⊆ (𝑚) ⊆ 𝑅 =⇒ (𝑚) = (𝑝) ∨ (𝑚) = 𝑅.
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Since (𝑝) ⊆ (𝑚), it holds that𝑚 | 𝑝 . This means 𝑝 =𝑚𝑢 for some 𝑢 ∈ 𝑅. Since 𝑝 is prime, 𝑝 is
irreducible. This means𝑚 or 𝑢 is unit. Then (𝑚) = 𝑅 or (𝑚) = 𝑅.

Since for irreducible element 𝑎 ∈ 𝑅, (𝑎) is maximal, we know that (𝑎) is prime. Then we
know 𝑎 is prime.

Proof of (3) For 𝑎 ∈ 𝑅, assume that
𝑎 = 𝑝1 . . . 𝑝𝑛 = 𝑞1 . . . 𝑞𝑚

where 𝑝1, . . . , 𝑝𝑛 and 𝑞1, . . . , 𝑞𝑚 are irreducible. Now we show there exists 𝑞 𝑗 such that 𝑝1 | 𝑞 𝑗 .
Since

𝑝 | 𝑞1(𝑞2 . . . 𝑞𝑚)
and 𝑝 is prime, it holds that

𝑝 | 𝑞1 ∨ 𝑝 | 𝑞2 . . . 𝑞𝑚 .
By induction we know there exists 𝑞 𝑗 such that 𝑝1 | 𝑞 𝑗 . Without loss of generality assume that
𝑗 = 1 (reordering if necessary). Since they are both irreducible, we know 𝑝1 ∼ 𝑞1. Since 𝑅 is an
integral domain, we know there exists some unit 𝑢

𝑝2 . . . 𝑝𝑛 = 𝑢𝑞2 . . . 𝑞𝑚 .

Continuing this process, we can match 𝑝𝑖 ∼ 𝑞𝑖 for any 𝑖 (reordering if necessary) and 𝑛 = 𝑚.
Then we show this decomposition is unique.

Combining all above, we know 𝑅 is an UFD. □

Problem 3. Given an integral domain (𝑅, +, ·), construct a field of quotients of 𝑅. Prove that it is the
smallest field containing 𝑅.

Proof. Firstly we construct the quotient field of 𝑅. We define the collection of elements as
𝐸 := {(𝑎, 𝑏) | 𝑎, 𝑏 ∈ 𝑅,𝑏 ≠ 0} .

Additionally, for (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐸, we say (𝑎, 𝑏) is equivalent to (𝑐, 𝑑) if and only if 𝑎𝑑 = 𝑏𝑐 , denoted by
(𝑎, 𝑏) ∼ (𝑐, 𝑑). It’s not hard to show that, if (𝑎, 𝑏) ∼ (𝑐, 𝑑), (𝑐, 𝑑) ∼ (𝑒, 𝑓 ), then (𝑎, 𝑏) ∼ (𝑒, 𝑓 ). Then we
define 𝐹 as

𝐹 :=
{
(𝑎, 𝑏)

��� (𝑎, 𝑏) ∈ 𝐸}
where we use (𝑎, 𝑏) to denote the equivalent class of (𝑎, 𝑏) in 𝐸.

Now we define the operators + and · in 𝐹 . For (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐹 , we define
(𝑎, 𝑏) + (𝑐, 𝑑) := (𝑎𝑑 + 𝑏𝑐, 𝑏𝑑).
(𝑎, 𝑏) · (𝑐, 𝑑) := (𝑎𝑐, 𝑏𝑑)

Since 𝑅 is an integral domain and 𝑏, 𝑑 ≠ 0, it holds that 𝑏𝑑 ≠ 0. Then we know + and · are closed in 𝐹 .
Now we prove (𝐹, +, ·) is a field.

• (𝐹, +) is an abelian group.
– Associativity: For all (𝑎, 𝑏), (𝑐, 𝑑), (𝑒, 𝑓 ) ∈ 𝐹 , it holds that(

(𝑎, 𝑏) + (𝑐, 𝑑)
)
+ (𝑒, 𝑓 ) = (𝑎𝑑 + 𝑏𝑐, 𝑏𝑑) + (𝑒, 𝑓 ) = (𝑎𝑑 𝑓 + 𝑏𝑐 𝑓 + 𝑏𝑑𝑒, 𝑏𝑑 𝑓 ),

(𝑎, 𝑏) +
(
(𝑐, 𝑑) + (𝑒, 𝑓 )

)
= (𝑎, 𝑏) + (𝑐 𝑓 + 𝑑𝑒, 𝑑 𝑓 ) = (𝑎𝑑 𝑓 + 𝑏𝑐 𝑓 + 𝑏𝑑𝑒, 𝑏𝑑 𝑓 ) .

Then we know
(
(𝑎, 𝑏) + (𝑐, 𝑑)

)
+ (𝑒, 𝑓 ) = (𝑎, 𝑏) +

(
(𝑐, 𝑑) + (𝑒, 𝑓 )

)
.

– Identity: Consider the element (0, 1). Then for all (𝑎, 𝑏) ∈ 𝐹 , it holds that
(𝑎, 𝑏) + (0, 1) = (0, 1) + (𝑎, 𝑏) = (𝑎, 𝑏) .

– Inverse: For (𝑎, 𝑏) ∈ 𝐹 , it holds that
(𝑎, 𝑏) + (−𝑎, 𝑏) = (0, 𝑏 · 𝑏) = (0, 1) .
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– Commutative: For (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐹 , by elementary calculation, since 𝑅 is an integral
domain,

(𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎𝑑 + 𝑏𝑐, 𝑏𝑑) = (𝑐, 𝑑) + (𝑎, 𝑏).

•
(
𝐹 \

{
(0, 1)

}
, ·
)
is an abelian group.

– Associativity: For all (𝑎, 𝑏), (𝑐, 𝑑), (𝑒, 𝑓 ) ∈ 𝐹 \
{
(0, 1)

}
, by the fact 𝑅 is an integral domain,(

(𝑎, 𝑏) · (𝑐, 𝑑)
)
· (𝑒, 𝑓 ) = (𝑎𝑐, 𝑏𝑑) · (𝑒, 𝑓 ) = (𝑎𝑐𝑒, 𝑏𝑑 𝑓 ),

(𝑎, 𝑏) ·
(
(𝑐, 𝑑) · (𝑒, 𝑓 )

)
= (𝑎, 𝑏) · (𝑐𝑒, 𝑑 𝑓 ) = (𝑎𝑐𝑒, 𝑏𝑑 𝑓 ).

Then we know
(
(𝑎, 𝑏) · (𝑐, 𝑑)

)
· (𝑒, 𝑓 ) = (𝑎, 𝑏) ·

(
(𝑐, 𝑑) · (𝑒, 𝑓 )

)
.

– Identity: Consider the element (1, 1). It holds that for all (𝑎, 𝑏) ∈ 𝐹 \
{
(0, 1)

}
,

(1, 1) · (𝑎, 𝑏) = (𝑎, 𝑏) · (1, 1) = (𝑎, 𝑏).

– Inverse: For all (𝑎, 𝑏) ∈ 𝐹 \
{
(0, 1)

}
, since (𝑎, 𝑏) ≠ (0, 1), it holds that 𝑎 ≠ 0. Then we show

that
(𝑎, 𝑏) · (𝑏, 𝑎) = (𝑏, 𝑎) · (𝑎, 𝑏) = (𝑎𝑏, 𝑎𝑏) = (1, 1) .

– Commutative: For all (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐹 \
{
(0, 1)

}
, since 𝑅 is an integral domain, it holds

that 𝑎𝑐 = 𝑐𝑎, 𝑏𝑑 = 𝑑𝑏. Then,
(𝑎, 𝑏) · (𝑐, 𝑑) = (𝑎𝑐, 𝑏𝑑) = (𝑐𝑎, 𝑑𝑏) = (𝑐, 𝑑) · (𝑎, 𝑏) .

• Distributivity: For all (𝑎, 𝑏), (𝑐, 𝑑), (𝑒, 𝑓 ) ∈ 𝐹 , by elementary calculation,(
(𝑎, 𝑏) + (𝑐, 𝑑)

)
· (𝑒, 𝑓 ) = (𝑎𝑑 + 𝑏𝑐, 𝑏𝑑) · (𝑒, 𝑓 ) = (𝑎𝑑𝑒 + 𝑏𝑐𝑒, 𝑏𝑑 𝑓 ),

(𝑎, 𝑏) · (𝑒, 𝑓 ) + (𝑐, 𝑑) · (𝑒, 𝑓 ) = (𝑎𝑒, 𝑏 𝑓 ) + (𝑐𝑒, 𝑑 𝑓 ) = (𝑎𝑑𝑒 𝑓 + 𝑏𝑐𝑒 𝑓 , 𝑏𝑑 𝑓 · 𝑓 ) .
Since (𝑎𝑑𝑒 + 𝑏𝑐𝑒)𝑏𝑑 𝑓 · 𝑓 = (𝑎𝑑𝑒 𝑓 + 𝑏𝑐𝑒 𝑓 ) · 𝑏𝑑 𝑓 , it holds that(

(𝑎, 𝑏) + (𝑐, 𝑑)
)
· (𝑒, 𝑓 ) = (𝑎, 𝑏) · (𝑒, 𝑓 ) + (𝑐, 𝑑).

Similarly we can show that

(𝑎, 𝑏) ·
(
(𝑐, 𝑑) + (𝑒, 𝑓 )

)
= (𝑎, 𝑏) · (𝑐 𝑓 + 𝑑𝑒, 𝑑 𝑓 ) = (𝑎𝑐 𝑓 + 𝑎𝑑𝑒, 𝑏𝑑 𝑓 ),

(𝑎, 𝑏) · (𝑐, 𝑑) + (𝑎, 𝑏) · (𝑒, 𝑓 ) = (𝑎𝑐, 𝑏𝑑) + (𝑎𝑒, 𝑏 𝑓 ) = (𝑎𝑏𝑐 𝑓 + 𝑎𝑏𝑑𝑒, 𝑏 · 𝑏𝑑 𝑓 ) = (𝑎𝑐 𝑓 + 𝑎𝑑𝑒, 𝑏𝑑 𝑓 ).
Then we know

(𝑎, 𝑏) ·
(
(𝑐, 𝑑) + (𝑒, 𝑓 )

)
= (𝑎, 𝑏) · (𝑐, 𝑑) + (𝑎, 𝑏) · (𝑒, 𝑓 ) .

Combining all above, we show (𝐹, +, ·) is a field. Now we need to show 𝑅 is a sub-integral domain
of 𝐹 . In fact, consider the mapping 𝜉 : 𝑅 → 𝐹 , 𝑎 ↦→ (𝑎, 1). For 𝑎, 𝑏 ∈ 𝑅, if 𝜉 (𝑎) = 𝜉 (𝑏), it holds
that (𝑎, 1) = (𝑏, 1), then (𝑎, 1) ∼ (𝑏, 1), which means 𝑎 = 𝑏. So 𝜉 is injective. And by definition,
𝜉 (𝑎) + 𝜉 (𝑏) = (𝑎 + 𝑏, 1) = 𝜉 (𝑎 + 𝑏) and 𝜉 (𝑎)𝜉 (𝑏) = (𝑎𝑏, 1) = 𝜉 (𝑎𝑏). Thus 𝜉 is a ring isomorphism. Then
we know 𝐹 contains 𝑅.

Nowwe show every field 𝐸 containing𝑅must be an extension of 𝐹 . Consider themapping𝜑 : 𝐹 → 𝐸,
(𝑎, 𝑏) ↦→ 𝑎𝑏−1. It holds that 𝜑 ((𝑎, 𝑏)) ·𝜑 ((𝑐, 𝑑)) = (𝑎𝑐) · (𝑏𝑑)−1 = 𝜑 ((𝑎𝑐, 𝑏𝑑)) and 𝜑 ((𝑎, 𝑏)) +𝜑 ((𝑐, 𝑑)) =
(𝑎𝑏−1 + 𝑐𝑑−1) = (𝑎𝑑𝑏−1𝑑−1 + 𝑏𝑐𝑏−1𝑑−1) = (𝑎𝑑 + 𝑏𝑐) (𝑏𝑑)−1 = 𝜑 ((𝑎𝑑 + 𝑏𝑐, 𝑏𝑑)). For (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐹 , if
𝜑 ((𝑎, 𝑏)) = 𝜑 ((𝑐, 𝑑)), since 𝑅 is an integral domain, it holds that

𝑎𝑏−1 = 𝑐𝑑−1 =⇒ 𝑎𝑑 = 𝑏𝑐
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which means (𝑎, 𝑏) ∼ (𝑐, 𝑑), (𝑎, 𝑏) = (𝑐, 𝑑). Then we know 𝜑 is injective. Thus we show 𝐹 is isomor-
phism to a sub-field of 𝐸. Then we conclude that 𝐹 is the minimal field containing 𝑅. □

Problem 4. Is 2𝑥 + 2 irreducible in ℤ[𝑥] or ℚ[𝑥]? Is 𝑥2 + 1 irreducible in ℝ[𝑥] or ℂ[𝑥]?
Proof. For 𝑓 (𝑥) := 2𝑥 + 2. Consider ℤ[𝑥]. Assume that 𝑓 = 𝑝𝑞 where 𝑝, 𝑞 ∈ ℤ[𝑥]. It holds that
1 = deg(𝑓 ) = deg(𝑝) + deg(𝑞). Then it holds that deg(𝑝) = 0 or deg(𝑞) = 0, which means either 𝑝 or
𝑞 is unit. Then we know 𝑓 is irreducible in ℤ[𝑥]. When we consider ℚ[𝑥]. The similar reason holds
and we can show 𝑓 (𝑥) is irreducible in ℚ[𝑥].

For 𝑓 (𝑥) := 𝑥2+1 inℝ[𝑥], assume that 𝑓 = 𝑝𝑞 where 𝑝, 𝑞 ∈ ℝ[𝑥]. Without loss of generality assume
that 𝑝, 𝑞 are both monic. Assume that deg(𝑝) > 0 and deg(𝑞) > 0. Since 2 = deg(𝑓 ) = deg(𝑝) +deg(𝑞),
it holds that 𝑝 = 𝑥 + 𝑐1 and 𝑞 = 𝑥 + 𝑐2 for some 𝑐1, 𝑐2 ∈ ℝ. Then we know that{

𝑐1 + 𝑐2 = 0
𝑐1𝑐2 = 1

.

But there exist no 𝑐1, 𝑐2 ∈ ℝ satisfying the above constraints. Then we know there exist no 𝑝, 𝑞 with
deg(𝑝), deg(𝑞) > 0 satisfying 𝑓 = 𝑝𝑞, which means either 𝑝 or 𝑞 is unit. Then we know 𝑓 (𝑥) = 𝑥2 + 1
is irreducible.

For 𝑥2 + 1 in ℂ[𝑥], it holds that 𝑥2 + 1 = (𝑥 + 𝑖) (𝑥 − 𝑖). Then we know 𝑥2 + 1 is not irreducible in
ℂ[𝑥]. □

Problem 5. Assume that 𝛼 is an algebraic element over 𝐹 . Define

𝐼𝛼 := {𝑔(𝑥) ∈ 𝐹 [𝑥] | 𝑔(𝛼) = 0} .
Prove that 𝐼𝛼 is an ideal of 𝐹 [𝑥]. Define the minimal polynomial of 𝛼 over 𝐹 is the (unique) monic poly-
nomial 𝑝 (𝑥) ∈ 𝐼𝛼 with the lowest degree satisfying 𝑝 (𝛼) = 0. Prove that 𝑝 (𝑥) generates 𝐼𝛼 .
Proof. Firstly we prove that 𝐼𝛼 is an ideal. For every 𝑓 (𝑥) ∈ 𝐹 [𝑥], 𝑔(𝑥) ∈ 𝐼𝛼 , it holds that

(𝑓 · 𝑔) (𝛼) = 𝑓 (𝛼)𝑔(𝛼) = 0,
(𝑔 · 𝑓 ) (𝛼) = 𝑔(𝛼) 𝑓 (𝛼) = 0.

Then we know 𝑓 𝑔, 𝑔𝑓 ∈ 𝐼𝛼 , which means 𝐼𝛼 is an ideal.
Now we show the minimal polynomial 𝑝 (𝑥) of 𝛼 generates 𝐼𝛼 . Since 𝑝 (𝛼) = 0, it holds that 𝑝 ∈ 𝐼𝛼 .

Since 𝐹 [𝑥] is an Euclidean domain, it holds that 𝐼𝛼 is a principal ideal. Define 𝐼𝛼 = (𝑞). Then it holds
that

𝑝 (𝑥) = 𝑎(𝑥)𝑞(𝑥) ∃𝑎(𝑥) ∈ 𝐹 [𝑥], 𝑎(𝑥) ≠ 0.
This means deg(𝑝) ≥ deg(𝑞). Since the degree of 𝑝 is the lowest, we know deg(𝑞) ≥ deg(𝑝), which
means deg(𝑎) = 0. Then we conclude that 𝑎(𝑥) is unit in 𝐹 [𝑥]. This shows 𝑝 ∼ 𝑞. Thus we know 𝑝
also generates (𝑞) = 𝐼𝛼 . □
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Problem 1. Prove that 𝑓 (𝑥) = 𝑥2 + 𝑥 + 2 is irreducible on ℚ[𝑥].
Proof. To show 𝑓 (𝑥) is irreducible on ℚ, it suffices to show 𝑓 is irreducible on ℤ. Note that 𝑓 (𝑥 + 3) =
𝑥2 + 7𝑥 + 14. By Eisenstein’s Criterion (with choice 𝑝 = 7), 𝑓 (𝑥 + 3) is irreducible on ℤ, meaning that
𝑓 (𝑥) is irreducible on ℤ. Then we show 𝑓 is irreducible on ℚ. □

Problem 2. Let 𝐹 < 𝐸. For 𝑢 ∈ 𝐸 with odd deg(min(𝐹,𝑢)), prove that 𝐹 (𝑢) = 𝐹 (𝑢2).
Proof. It is not hard to see 𝐹 (𝑢2) ⊆ 𝐹 (𝑢). Now it suffices to prove [𝐹 (𝑢) : 𝐹 (𝑢2)] = 1. Let 𝑓 (𝑥) = 𝑥2−𝑢2.
Since 𝑓 (𝑢) = 0, we know that [𝐹 (𝑢) : 𝐹 (𝑢2)] ≤ 2. If [𝐹 (𝑢) : 𝐹 (𝑢2)] = 2, by the tower property, we
know [𝐹 (𝑢) : 𝐹 ] = [𝐹 (𝑢) : 𝐹 (𝑢2)] · [𝐹 (𝑢2) : 𝐹 ]. Then we have [𝐹 (𝑢) : 𝐹 ] is even. However, since
deg(min(𝐹,𝑢)) is odd, we can see [𝐹 (𝑢) : 𝐹 ] = deg(min(𝐹,𝑢)) is odd, leading to a contradiction. Then
we know [𝐹 (𝑢) : 𝐹 (𝑢2)] must be 1, which means 𝐹 (𝑢) = 𝐹 (𝑢2). □

Problem 3. a) Find all automorphisms of ℚ.
b) Is there an isomorphism 𝜎 : ℚ(√2) → ℚ(√3) over ℚ for which 𝜎 (√2) = √

3?
c) Is there an isomorphism 𝜎 : ℚ(√2) → ℚ(√2) over ℚ other than identity?

Solution. a) For an automorphism 𝜎 : ℚ → ℚ, firstly, since 𝜎 is a ring homomorphism, we know
𝜎 (0) = 0 and 𝜎 (1) = 1. Then for all𝑚 ∈ ℤ, it holds that

𝜎 (𝑚) = 𝜎 (𝑚 · 1) =𝑚𝜎 (1) =𝑚.
Then, for all𝑚/𝑛 ∈ ℚ, we have

𝜎 (𝑚) = 𝜎 (𝑛 ·𝑚/𝑛) = 𝜎 (𝑛)𝜎 (𝑚/𝑛) .
Thus we have 𝜎 (𝑚/𝑛) =𝑚/𝑛. This means 𝜎 : ℚ → ℚ must be identity.

b) Suppose that 𝜎 is an isomorphism. Then we have 𝜎 (0) = 0. Consider 𝑓 (𝑥) = 𝑥2 − 2. Since 𝜎 is
an isomorphism, we know

𝑓 (𝜎 (
√
2)) = 𝜎 (𝑓 (

√
2)) = 𝜎 (0) = 0.

However, 𝑓 (√3) = 3 − 2 = 1 ≠ 0. Then we conclude 𝜎 cannot be an isomorphism.
c) Let 𝑝 (𝑥) = min(ℚ,√2). It is not hard to see 𝑝 (𝑥) = 𝑥2 − 2. The roots of 𝑝 (𝑥) are ±√2. Then,

for an isomorphism 𝜎 : ℚ(√2) → ℚ(√2), it holds that 𝜎 (√2) =
√
2 or 𝜎 (√2) = −√2. When

𝜎 (√2) = √
2, by a), for all 𝑎𝑏 +𝑚

𝑛

√
2 ∈ ℚ(√2), we have 𝜎

(
𝑎
𝑏 + 𝑚

𝑛

√
2
)
= 𝑎

𝑏 +𝑚
𝑛

√
2, meaning that 𝜎 is

identity. When 𝜎 (√2) = −√2, by a), for all 𝑎𝑏 +𝑚
𝑛

√
2 ∈ ℚ(√2), we have 𝜎

(
𝑎
𝑏 + 𝑚

𝑛

√
2
)
= 𝑎

𝑏 −𝑚
𝑛

√
2.

Then, for all 𝑥 + 𝑦√2, 𝛼 + 𝛽√2 ∈ ℚ, we have

𝜎 ((𝑥 + 𝑦
√
2) + (𝛼 + 𝛽

√
2)) = (𝑥 + 𝛼) − (𝑦 + 𝛽)

√
2

= 𝜎 (𝑥 + 𝑦
√
2) + 𝜎 (𝛼 + 𝛽

√
2),

𝜎 ((𝑥 + 𝑦
√
2) (𝛼 + 𝛽

√
2)) = (𝑥𝛼 + 2𝑦𝛽) − (𝑥𝛽 + 𝑦𝛼)

√
2

= (𝑥 − 𝑦
√
2) (𝛼 − 𝛽

√
2)

= 𝜎 (𝑥 + 𝑦
√
2)𝜎 (𝛼 + 𝛽

√
2).

Thus we know 𝜎 is an isomorphism.
□
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Problem 4. Prove that if 𝐹 < 𝐸 is algebraic and has only finite intermediate fields, then 𝐹 < 𝐸 is a
finite extension.

Proof. Suppose that 𝐹 < 𝐾 is not a finite extension. Then there exists a infinite sequence such that
𝐹 ⫋ 𝐹 (𝛼1) ⫋ 𝐹 (𝛼1, 𝛼2) ⫋ . . .

and 𝐹 (𝛼1, . . . , 𝛼𝑛) ⫋ 𝐾 for all 𝑛 ∈ ℕ. This leads to a contradiction with the statement 𝐹 < 𝐸 only has
finite intermediate fields. Then we conclude 𝐾 = 𝐹 (𝛼1, . . . , 𝛼𝑛) for some 𝛼1, . . . , 𝛼𝑛 ∈ 𝐾 and all 𝛼𝑖 are
algebraic. Then we know

[𝐾 : 𝐹 ] ≤
𝑛∏
𝑖=1

[𝐹 (𝛼𝑖) : 𝐹 ] < ∞.

Thus we know 𝐹 < 𝐾 is finite. □

Problem 5. Let 𝐹 = 𝔽2 and𝐾 = 𝐹 (𝛼), where 𝛼 is a root of 1+𝑥 +𝑥2. Show that the function 𝜎 : 𝐾 → 𝐾
given by 𝜎 (𝑎 + 𝑏𝛼) = 𝑎 + 𝑏 + 𝑏𝛼 for 𝑎, 𝑏 ∈ 𝐹 is an 𝐹 -automorphism of 𝐾 .

Proof. Firstly we show 𝜎 is an automorphism. Since 𝐾 = 𝐹 (𝛼) and 𝛼 is algebraic over 𝐹 (𝛼 is the root
of 𝑥2 + 𝑥 + 1), it holds that

𝐾 = {𝑎 + 𝑏𝛼 | 𝑎, 𝑏 ∈ 𝐹 } .
By definition, for 𝑎 = 1, 𝑏 = 0, we have 𝜎 (1) = 1. And for 𝑎 = 𝑏 = 0 we have 𝜎 (0) = 0. For
𝑎 + 𝑏𝛼, 𝑥 + 𝑦𝛼 ∈ 𝐾 , it holds that

𝜎 ((𝑎 + 𝑏𝛼) + (𝑥 + 𝑦𝛼)) = 𝜎 ((𝑎 + 𝑥) + (𝑏 + 𝑦)𝛼)
= (𝑎 + 𝑥) + (𝑏 + 𝑦) + (𝑏 + 𝑦)𝛼
= (𝑎 + 𝑏 + 𝑏𝛼) + (𝑥 + 𝑦 + 𝑦𝛼)
= 𝜎 (𝑎 + 𝑏𝛼) + 𝜎 (𝑥 + 𝑦𝛼),

𝜎 ((𝑎 + 𝑏𝛼) (𝑥 + 𝑦𝛼)) = 𝜎 (𝑎𝑥 + (𝑎𝑦 + 𝑏𝑥)𝛼 + 𝑦𝑏𝛼2)
= 𝜎 (𝑎𝑥 + (𝑎𝑦 + 𝑏𝑥)𝛼 + 𝑦𝑏 (−1 − 𝛼))
= 𝜎 ((𝑎𝑥 + 𝑏𝑦) + (𝑎𝑦 + 𝑏𝑥 + 𝑏𝑦)𝛼)
= (𝑎𝑥 + 𝑏𝑦) + (𝑎𝑦 + 𝑏𝑥 + 𝑏𝑦) + (𝑎𝑦 + 𝑏𝑥 + 𝑏𝑦)𝛼,

𝜎 (𝑎 + 𝑏𝛼)𝜎 (𝑥 + 𝑦𝛼) = (𝑎 + 𝑏 + 𝑏𝛼) (𝑥 + 𝑦 + 𝑦𝛼)
= 𝑎𝑥 + 𝑎𝑦 + 𝑎𝑦𝛼 + 𝑏𝑥 + 𝑏𝑦 + 𝑏𝑦𝛼 + 𝑏𝑥𝛼 + 𝑏𝑦𝛼 + 𝑏𝑦𝛼2
= (𝑎𝑥 + 𝑏𝑦) + (𝑎𝑦 + 𝑏𝑥 + 𝑏𝑦) + (𝑎𝑦 + 𝑏𝑥 + 𝑏𝑦)𝛼 + 𝑏𝑦 (1 + 𝛼 + 𝛼2)
= (𝑎𝑥 + 𝑏𝑦) + (𝑎𝑦 + 𝑏𝑥 + 𝑏𝑦) + (𝑎𝑦 + 𝑏𝑥 + 𝑏𝑦)𝛼
= 𝜎 ((𝑎 + 𝑏𝛼) (𝑥 + 𝑦𝛼)) .

Then we can show 𝜎 is an automorphism. For 𝑏 = 0, we know 𝜎 (𝑎) = 𝑎 for all 𝑎 ∈ 𝐹 . Then we conclude
𝜎 is an 𝐹 -automorphism of 𝐾 . □
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Problem 1. Prove that every finite separable extension is a simple extension. Find a ∈ R such that
Q(

√
3,
√
5,
√
7) = Q(a).

Proof. Firstly we prove the following more general lemma.

Lemma 1. A finite field extension E/F is simple if and only if there exists only finitely many intermediate
fields L with F < L < E.

Proof. When E/F is a finite extension, we need to show there exists only finitely many intermediate fields.
Assume that E = F(α). Let p = min(F,α). If L is an intermediate field, then let f = min(L,α). And let
L ′ is the field generated by the coefficients of f(x). Then we know, min(L ′,α) = f(x) and L ′ ⊆ L. Since
K ⊆ L, we know f | p. Then we know:

[E : L] = deg(f) = [E : L ′].

So that L = L ′. This means, every intermediate field corresponds a factor of min(F,α). Since min(F,α)
only has finite factors, we know there exists only finitely many intermediate subfields.

Now suppose conversely that there exists only finitely many subfields. When F is finite, E is finite and
we have simply already known E = F(α) for some α. Suppose that F is infinite (and therefore E). Since
[E : F] < ∞, assume that E = F(α1, . . . ,αn). It suffices to show for the case n = 2 we can find α such that
F(α) = F(α1,α2) and apply the hypothesis induction for the general case.

When K = F(α1,α2), for every element {α1 + βα2} for every β ∈ F\{0}. By our assumption, this set is
infinite but has only finitely many intermediate subfields. So there must be two values α1+ζα2,α1+χα2
generating a same intermediate subfield L = F(α1 + ζα2) = F(α1 + χα2). L contains

(α1 + ζα2) − (α1 + χα2)

ζ− χ
= α2

and

(α1 + ζα2)/ζ− (α1 + χα2)/χ

1/ζ− 1/χ = α1

meaning that L = K. Set α = α1 + ζα2, and we know

F(α) = L = K.

1



Suppose K/F is a finite separable extension. Then K = F(α1, . . . ,αn) for distinct αi. Now we define
E as the splitting field of {min(F,αi) : ∀i ∈ [n]} over F. Since K is a separable extension of F, we know
min(F,αi) is separable over F for each i ∈ [n]. Then E is a finite Galois extension of F. Moreover, since all
αi ∈ E, we know F < K < E. By the fundamental theorem of Galois theory, the intermediate subfields of
E/F are in bijection with the subgroups of Gal(E/F). Since Gal(E/F) is finite, we know |{H < Gal(E/F)}| <
∞ and F < K < E, there exists finitely many intermediate subfields of K/F. By Lemma 1, K/F is simple.

By the proof of Lemma 1, we set a =
√
3 +

√
5 +

√
7. It is obvious that Q(

√
3 +

√
5 +

√
7) ⊆

Q(
√
3,
√
5,
√
7). To show Q(

√
3,
√
5,
√
7) = Q(

√
3 +

√
5 +

√
7), we compute [Q(

√
3,
√
5,
√
7) : Q] and

[Q(
√
3+

√
5+

√
7) : Q].

[Q(
√
3,
√
5,
√
7) : Q] = [Q(

√
3,
√
5,
√
7) : Q(

√
5,
√
7)][Q(

√
5,
√
7) : Q(

√
7)][Q(

√
7) : Q] = 2× 2× 2 = 8.

On the other hand, to compute min(Q,
√
3+

√
5+

√
7), it suffices to show

f(x) :=
∏

c1,c2,c3∈{−1,+1}
(x+ c1

√
3+ c2

√
5+ c3

√
7) ∈ Q[x]

and we know all roots of f(x) lies in Q(a), thus we obtain min(Q,a) = f(x). And by direct calculation it
can be shown that f(x) = x8 − 60x6 + 782x4 − 3180x2 + 3481 ∈ Q[x]. Then we show [Q(a) : Q] = 8 =
[Q(

√
3,
√
5,
√
7) : Q]. Then we know Q(a) = Q(

√
3,
√
5,
√
7).

Problem 2. Prove that
√
5,
√
7 ∈ Q(

√
5+

√
7).

Proof. For the sake of simplicity we let a =
√
5+

√
7. It holds that

√
7−

√
5 = 2√

7+
√
5
=

2
a
.

Then we know
√
5 = 1

2(a− 2
a) =

a2−2
2a ∈ Q(a),

√
7 = 1

2(a+ 2
a) =

a2+2
2a ∈ Q(a).

Problem 3. Prove that any extension of degree 2 is normal.

Proof. Let K be an extension of F of degree 2. For every α ∈ K\F, let L = F(α). Then we know F < L < K.
Then it holds that

[K : F] = [K : L] · [L : F].

If [L : F] = 1. In this case we know F(α) = F, meaning that α ∈ F. Then we know [F(α) : F] = 2
and K = F(α). It holds that deg(min(F,α)) = 2. That is to say, in K, we know f(x) = (x − α)g(x) and
deg(g) = 1. Since f(x) ∈ F[x] ⊆ K[x], we know g(x) ∈ K[x]. That is to say f(x) = (x− α)(x− β) where
α,β ∈ K. Then we know f splits over K. Thus we conclude K/F is normal.

Problem 4. Prove thatQ( 3√5,ω) is a Galois extension ofQ whereω = e2πi/3. Show the Galois group of
this extension, all subgroups and their corresponding intermediate fields.

Proof. Nowwe showQ( 3√5,ω) is the splitting field of S =
{
x3 − 1, x3 − 5

}
overQ. LetX be the collection

of all roots of f ∈ S. Then

X =
{
1,ω,ω2, 3√5, 3√5ω, 3√5ω2

}
.
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Then it is not hard to see Q( 3√5,ω) ⊆ Q(X). On the other hand, we know X ⊆ Q( 3√5,ω), thus Q(X) ⊆
Q( 3√5,ω). Then Q( 3√5,ω) = Q(X). Equivalently speaking, Q( 3√5,ω) is the splitting field of S. Trivially
all f ∈ S are separable. Then we know Q( 3√5,ω)/Q is Galois.

LetG = Gal(Q( 3√5,ω)/Q). By the fundamental theorem of Galois theory, we know |G| = [Q( 3√5,ω) :
Q] = 6. Then we know G is made up of

id :
3√5 7→ 3√5,ω 7→ ω,

σ :
3√5 7→ ω

3√5,ω 7→ ω,
τ :

3√5 7→ 3√5,ω 7→ ω2,
ρ :

3√5 7→ ω
3√5,ω 7→ ω2,

µ :
3√5 7→ ω2 3√5,ω 7→ ω,

ξ :
3√5 7→ ω2 3√5,ω 7→ ω2.

All subgroups of G and their corresponding intermediate fields are

⟨id⟩ 7→ Q(
3√5,ω),

⟨σ⟩ = {id,σ,µ} 7→ Q(ω),
⟨τ⟩ = {id, τ} 7→ Q(

3√5),
⟨ρ⟩ = {id, ρ} 7→ Q(ω2 3√5),
⟨ξ⟩ = {id, ξ} 7→ Q(ω

3√5),
G 7→ Q.
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Problem 1: Determine the number of subfields of F1024 and F729.

Proof. It holds that F1024 = F210 . Then for every L = F2k such that L < F1024 = F210 , L should satisfy

k | 10.

Then we can pick k = 1, 2, 5, 10, meaning that the subfields of F1024 are F2,F4,F32,F1024.
It’s not hard to see F729 = F36 . For every L = F3k such that L < F729 = F36 , L should satisfy

k | 6.

Then we can pick k = 1, 2, 3, 6, meaning that the subfields of F729 are F3,F9,F27 and F729.

Problem 2: Find the order of the following irreducible polynomial: x4 + x+ 1 over F2.

Solution. Assume that the order of x4 + x+ 1 is v. Thus we know

v | qd − 1 = 15.

Let v = 3a5b. Then a is the smallest number such that

p(x) = x4 + x+ 1 | x3a5 − 1.

and b is the smallest number such that

p(x) = x4 + x+ 1 | x3·5b − 1.

For a = 0, we know p(x) ̸ | x5 − 1. Then a must be 1. For b = 0, we know p(x) ̸ | x3 − 1 and b must be
1. Then we know v = 15.

Problem 3: Construct two distinct field tables for F8 over F2.

Solution. Since [F8 : F2] = 3, the all polynomials over F2 of degree < 3 are

Constant 0, 1;

Linear x, x+ 1;

Square x2, x2 + 1, x2 + x, x2 + x+ 1.

By the hint, we know the polynomial p(x) = x3 + x + 1 and q(x) = x3 + x2 + 1 are two irreducible
polynomials.

• For p(x) = x3 + x + 1, suppose that α is the root of p, i.e., α3 = α + 1. Then we calculate the
field table as

1



k a2a1a0
0 001

1 010

2 100

3 011

4 110

5 111

6 101

• For q(x) = x3 + x2 + 1, suppose that β is the root of q, i.e., β3 = β2 + 1. Then we calculate the
field table as

k a2a1a0
0 001

1 010

2 100

3 101

4 111

5 011

6 110

Problem 4: Factor

f(x) = x5 + x4 + x3 + x2 + 1

over Z2.

Solution. We employ Berlekamp’s algorithm. Firstly we get

r0(x) = 1,

r1(x) = x2,

r2(x) = x4,

r3(x) = x2 + x+ 1,

r4(x) = x4 + x3 + x2.

Then we know the matrix M − I is

M − I =




0 0 0 0 0
0 1 1 0 0
0 0 1 0 1
1 1 1 1 0
0 0 1 1 0




.

Then we need to solve 



g3 = 0

g1 + g3 = 0

g1 + g2 + g3 + g4 = 0

g3 + g4 = 0

g2 = 0

Then the solution is

g0 is arbitrary; g1 = g2 = g3 = g4 = 0.

Thus we know g(x) = 0 or g(x) = 1, meaning that f is irreducible over Z2.
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Problem 5: Calculate Nq(20).

Solution. By Möbius inversion, it holds that

Nq(20) =
1

20

∑

d | 20
qdµ

(
20

d

)

=
1

20

(
qµ(20) + q2µ(10) + q4µ(5) + q5µ(4) + q10µ(2) + q20µ(1)

)

=
1

20

(
q20 − q10 − q4 + q2

)
.
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Applied Algebraic — Homework 5

Zhidan Li

December 9, 2023

Problem 1: Assume K = Q(ωp) where ωp is the p-th primitive root of unity, and p is a prime number.
Prove that

1. Gal(K/Q) ∼= (Z/pZ)∗ (and then the order of this Galois group is p− 1).

2. For every d | p− 1, there exists a subfield M ⊆ K such that [M : Q] = d.

Proof. 1. Since we have already known Gal(K/Q) ∼= S for some S ⊆ (Z/pZ)∗, to prove Gal(K/Q) ∼=
(Z/pZ)∗, it suffices to show |Gal(K/Q)| = ϕ(p), equivalently Qp(x) is irreducible. Since p is a prime,
we know that

Qp(x) = xp−1 + . . .+ 1.

Consider the polynomial Qp(x+ 1). By the binomial theorem,

Qp(x+ 1) =
(x+ 1)p − 1

x
=

p−1∑

i=0

(
p

i+ 1

)
xi.

Since p | p =
(
p
1

)
= a0, p2 ̸ | a0, p ̸ |

(
p
p

)
= ap−1, by Eisenstein’s criterion, Qp(x + 1) is irreducible,

which means Qp(x) is irreducible.

2. By the fundamental theorem of Galois theory, it suffices to find a subgroup S of Gal(K/Q) such that
[Gal(K/Q) : S] = p−1

d . Since Gal(K/Q) is a cyclic group with order p− 1, we only need to find such

a subgroup S with order d. Assume that Gal(K/Q) = ⟨σ⟩. Consider S =
〈
σ

p−1
d

〉
. Then we know

|S| = order(σ(p−1)/d) = d.

On the other hand, [Gal(K/Q) : S] = |Gal(K/Q)|/|S| = (p − 1)/d. Thus we can find M =
F(Gal(K/S)) such that [M : Q] = d.

Problem 2: Factorize x10 − 1 over F3.

Solution. It holds that

x10 − 1 = Q1(x)Q2(x)Q5(x)Q10(x)

= (x− 1)(x+ 1)(x4 + x3 + x2 + x+ 1)(x4 + 2x3 + x2 + 2x+ 1)

= (x+ 1)(x+ 2)(x4 + x3 + x2 + x+ 1)(x4 + 2x3 + x2 + 2x+ 1).
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Problem 3: Assume that the parity-check matrix is

H =



0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 .

Decode the following words:

R = [1110000],

R = [1111000].

Solution. When R = [1110000], its syndrome over F2 is

S = HR⊤ =



0
0
0


 .

Then we know C = R.
When R = [1111000], its syndrome over F2 is

S = HR⊤ =



1
0
0


 .

Then we can find E = [1000000]. Thus we know C = R+ E = [0111000].

Problem 4: Please state the BCH code and its method for correction over F2 with n = 15, r = 8.
Requirements: Firstly give the Hamming parity-check matrix H for r = 4. And then you can express
each column of this matrix in F16. Extend H to correcting two errors, and describe the decode process.

Solution. Firstly we consider the Hamming parity-check matrix H1 with r = 4, n = 15. Then we know

H1 =




000000011111111
000111100001111
011001100110011
101010101010101


 .

Assume that F16 = {0, β1, . . . , β15}. Then we can express H2 as

H1 =
[
β1 . . . β15

]
.

For a permutation f : F∗
16 → F∗

16, we consider the parity-check matrix

H =

[
β1 . . . β15

f(β1) . . . f(β15)

]
=

[
H1

H2

]
.

Let f(β) = β3. When receiving a code R, we compute

S1 = H1R
⊤ =

∑
βiEi, S2 = H2R

⊤ =
∑

β3
i Ei.

• S1 = 0. Then there exists no error. We decode C = R.

• S1 ̸= 0, S2 = S3
1 , we know that there exists exactly one error. Then we find E with least 1 such that

H1E
⊤ = S1 and decode C = R+ E.
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• S1 ̸= 0 and S2 ̸= S3
1 . We solve the equation

x2 − S1x+
S2

S1
− S2

1 = 0.

If we find two solution x1, x2 ∈ F∗
16, we flip the values at position x1 and x2 in R as C. Otherwise

we report the failure of decoding process.
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